De-Sealing Reverses Habitat Decay More Than Increasing Groundcover Vegetation
Abstract
:1. Introduction
1.1. Area of Interest: IZTECH Campus, Cesme-Karaburun Peninsula, Turkey
1.2. Use of GIS-Based Ecological Analysis to Support Sustainability Initiatives
1.3. Nature-Based Solutions, and Using GIS-Based Maps to Measure Their Effectiveness
1.4. Goal of the Study
2. Materials and Methods
- Photogrammetric scanning of the AOI;
- Downloading soil moisture maps from Copernicus for years 2016 and 2021;
- Creating flow accumulation maps from (1) high-resolution Digital Surface Model (DSM) and (2) low-resolution Digital Elevation Model (DEM);
- Mapping habitat quality (biodiversity), using auto-produced land-use–land-cover map and Copernicus images from 2016 and 2021;
- Designing a preliminary NbSs masterplan;
- Mapping habitat quality of the AOI with the first iteration of NbSs (Scenario 1), in which a relatively wide area was re-classified as “Groundcover, Shrubs and Trees”;
- Interpreting results and creating a performance-based iteration of NbSs (Scenario 2), in which de-sealing of select areas of existing pavement was added to Scenario 1 to reduce the edge effect of roads;
- Comparing the results of analysis of the Baseline Condition (BC) with the first and second iterations of NbSs (Scenarios 1 and 2);
- Revising the design strategy and creating a performance-based NbS masterplan, based on modeling results.
2.1. Data Acquisition and Processing
2.2. Use of Copernicus Images
2.3. Ecological Analysis of the Existing Study Area (Baseline Condition)
2.3.1. Existent Land Use and Land Cover
2.3.2. Modeling Habitat Quality of the Baseline Condition
2.3.3. Flow Accumulation Analysis of the Baseline Condition
2.4. Creation of Preliminary NbS Masterplan
2.5. Re-Classification and Ecological Analysis of Scenarios 1 and 2
- Baseline Condition (BC), derived from digitalization of the origins, per photogrammetric acquisition by drone;
- Scenario 1 (S1), which included the first iteration of NbSs;
- Scenario 2 (S2), which included the second iteration of NbSs and tested whether or not it was possible to reduce habitat decay along the main roads of campus by de-sealing in areas where roads caused a high degree of ecological interference with streams.
2.6. Preliminary NbSs Masterplan and Performance-Based NbSs Masterplan
3. Results
3.1. Baseline Condition (BC)
3.1.1. LULC of Baseline Condition
- 49.84% (329 ha) of the AOI is covered by bare land or soil without vegetation, including unpaved roads and compacted soil;
- 21.64% of the AOI is covered by dense vegetation (trees, 142 ha);
- 12.00% is covered by grasslands (79 ha);
- 10.31% is covered by shrubs and bushes (medium-density-vegetation land, 68 ha);
- 3.54% is covered by paved roads and parking areas (23 ha);
- 2.67% is covered by buildings (17 ha).
3.1.2. Habitat Quality of Baseline Condition
3.2. Ecological Analysis of the First Iteration of NbSs Design (Scenario 1)
3.3. Ecological Analysis of the Second Iteration of NbSs Design (Scenario 2)
4. Discussion
4.1. Limits and Potentialities
4.2. Future Studies
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Madrigano, J.; Ito, K.; Johnson, S.; Kinney, P.L.; Matte, T. A Case-Only Study of Vulnerability to Heat Wave–Related Mortality in New York City (2000–2011). Environ. Health Perspect. 2015, 123, 672–678. [Google Scholar] [CrossRef] [PubMed]
- Akbari, H.; Cartalis, C.; Kolokotsa, D.; Muscio, A.; Pisello, A.L.; Rossi, F.; Santamouris, M.; Synnefa, A.; Wong, N.H.; Zinzi, M. Local Climate Change and Urban Heat Island Mitigation Techniques—The State of the Art. J. Civ. Eng. Manag. 2016, 22, 1–16. [Google Scholar] [CrossRef]
- Gill, S.E.; Handley, J.F.; Ennos, A.R.; Pauleit, S. Adapting Cities for Climate Change: The Role of the Green Infrastructure. Built Environ. 2007, 33, 115–133. [Google Scholar] [CrossRef]
- Toparlar, Y. The Effect of an Urban Park on the Microclimate in Its Vicinity: A Case Study for Antwerp, Belgium. Int. J. Climatol. 2018, 38, e303–e322. [Google Scholar] [CrossRef]
- Chelleri, L. From the «Resilient City» to Urban Resilience. A Review Essay on Understanding and Integrating the Resilience Perspective for Urban Systems. Documents d’Anàlisi Geogràfica 2012, 582, 287–306. [Google Scholar] [CrossRef]
- Jiang, Y.; Hou, L.; Shi, T.; Gui, Q. A Review of Urban Planning Research for Climate Change. Sustainability 2017, 9, 2224. [Google Scholar] [CrossRef]
- Song, C.; Ikei, H.; Igarashi, M.; Takagaki, M.; Miyazaki, Y. Physiological and Psychological Effects of a Walk in Urban Parks in Fall. Int. J. Environ. Res. Public Health 2015, 12, 14216–14228. [Google Scholar] [CrossRef]
- Hamstead, Z.A.; Farmer, C.; McPhearson, T. Landscape-Based Extreme Heat Vulnerability Assessment. J. Extrem. Events 2018, 5, 1850018. [Google Scholar] [CrossRef]
- Fletcher, D.H.; Garrett, J.K.; Thomas, A.; Fitch, A.; Cryle, P.; Shilton, S.; Jones, L. Location, Location, Location: Modelling of Noise Mitigation by Urban Woodland Shows the Benefit of Targeted Tree Planting in Cities. Sustainability 2022, 14, 7079. [Google Scholar] [CrossRef]
- Ronchi, S.; Salata, S.; Arcidiacono, A. The Adoption of Performance Based Planning for Setting Urban Design Parameters against Climate Changes. An Urban Cooling Application in Milano City. In Proceedings of the Third World Conference of the Society for Urban Ecology, Poznań, Poland, 30 April 2021; Society for Urban Ecology, Ed.; Fundacja UAM w Poznaniu: Poznań, Poland, 2021; p. 164. [Google Scholar]
- Alshuwaikhat, H.M.; Abubakar, I.R.; Aina, Y.A.; Adenle, Y.A.; Umair, M. The Development of a GIS-Based Model for Campus Environmental Sustainability Assessment. Sustainability 2017, 9, 439. [Google Scholar] [CrossRef]
- Salata, S. Designing Healthier Cities. An Empirical Study of the Ecosystem Functioning and Mortality in the Districts of Turin (Italy). In Policies and Practices in Energy, Environment and Health Research. Addressing Cross-Cutting Issues; Leal Filho, W., Vidal, D.G., Dinis, M.A., Dias, R.C., Eds.; Springer: Cham, Switzerland, 2021; pp. 205–221. ISBN 978-3-030-86303-6. [Google Scholar]
- McPhearson, T.; Andersson, E.; Elmqvist, T.; Frantzeskaki, N. Resilience of and through Urban Ecosystem Services. Ecosyst. Serv. 2015, 12, 152–156. [Google Scholar] [CrossRef]
- Fattore, E.; Paiano, V.; Borgini, A. Human health risk in relation to air quality in two municipalities in an industrialized area of Northern Italy. Environ. Res. 2016, 111, 1321–1327. [Google Scholar] [CrossRef]
- Sharp, R.; Tallis, H.; Ricketts, T.; Guerry, A.; Wood, S.; Chaplin-Kramer, R.; Nelson, E.; Ennaanay, D.; Wolny, S.; Olwero, N.; et al. Natural Capital Project, 2022. InVEST 3.13.0.post11+ug.gfa34215 User’s Guide. Stanford University, University of Minnesota, Chinese Academy of Sciences, The Nature Conservancy, World Wildlife Fund, and Stockholm Resilience Centre. Available online: https://storage.googleapis.com/releases.naturalcapitalproject.org/invest-userguide/latest/en/index.html (accessed on 12 February 2023).
- Meerow, S.; Newell, J.P. Spatial Planning for Multifunctional Green Infrastructure: Growing Resilience in Detroit. Landsc. Urban Plan. 2017, 159, 62–75. [Google Scholar] [CrossRef]
- Salata, S.; Giaimo, C.; Barbieri, C.A.; Ballocca, A.; Scalise, F.; Pantaloni, G. The Utilization of Normalized Difference Vegetation Index to Map Habitat Quality in Turin (Italy). Sustainability 2020, 12, 7751. [Google Scholar] [CrossRef]
- Lopes, C.M.; Costa, J.M.; Egipto, R.; Zarrouk, O.; Chaves, M.M. Can Mediterranean Terroirs Withstand Climate Change? Case Studies at the Alentejo Portuguese Winegrowing Region. E3S Web Conf. 2018, 50, 01004. [Google Scholar] [CrossRef]
- Zagaria, C.; Schulp, C.J.E.; Malek, Ž.; Verburg, P.H. Potential for Land and Water Management Adaptations in Mediterranean Croplands under Climate Change. Agric. Syst. 2023, 205, 103586. [Google Scholar] [CrossRef]
- Costa, J.M.; Egipto, R.; Silvestre, J.; Lopes, C.M.; Chaves, M.M. Water and Heat Fluxes in Mediterranean Vineyards: Indicators and Relevance for Management. In Water Scarcity and Sustainable Agriculture in Semiarid Environment; Academic Press: Cambridge, MA, USA, 2018; pp. 219–245. [Google Scholar] [CrossRef]
- Chew, S.C.; Sarabia, D. Nature-Culture Relations: Early Globalization, Climate Changes, and System Crisis. Sustainability 2016, 8, 78. [Google Scholar] [CrossRef]
- Saraiva, A.; Presumido, P.; Silvestre, J.; Feliciano, M.; Rodrigues, G.; Oliveira e Silva, P.; Damásio, M.; Ribeiro, A.; Ramôa, S.; Ferreira, L.; et al. Water Footprint Sustainability as a Tool to Address Climate Change in the Wine Sector: A Methodological Approach Applied to a Portuguese Case Study. Atmosphere 2020, 11, 934. [Google Scholar] [CrossRef]
- Abadie, L.M.; de Murieta, E.S.; Galarraga, I. Climate Risk Assessment under Uncertainty: An Application to Main European Coastal Cities. Front. Mar. Sci. 2016, 3, 265. [Google Scholar] [CrossRef]
- Izmir Municipality. Izmir Province Disaster Risk Reduction Plan/İzmir İl Afet Risk Azaltma Planı; Izmir Municipality: Izmir, Turkey, 2021. [Google Scholar]
- IMPACT2C Project. Available online: https://www.atlas.impact2c.eu/en/climate/tropical-nights/?parent_id=22 (accessed on 18 January 2023).
- Krauß, R.; Marinova, E.; De Brue, H.; Weninger, B. The Rapid Spread of Early Farming from the Aegean into the Balkans via the Sub-Mediterranean-Aegean Vegetation Zone. Quat. Int. 2018, 496, 24–41. [Google Scholar] [CrossRef]
- IZSU. Izmir Drinking Water Master Plan; IZSU: Izmir, Turkey, 2017.
- TURKSTAT Turkish Statistical Institute. Address Based Population Registration System; TURKSTAT Turkish Statistical Institute: Çankaya, Turkey, 2022.
- Izmir Municipality Büyükşehir’in “Çeşme” Formülü. Available online: https://www.izmir.bel.tr/tr/Haberler/buyuksehirin-cesme-formulu/10489/156 (accessed on 21 March 2023).
- Gely, C.; Laurance, S.G.W.; Stork, N.E. How Do Herbivorous Insects Respond to Drought Stress in Trees? Biol. Rev. 2019, 95, 434–448. [Google Scholar] [CrossRef] [PubMed]
- Wildfires Destroy over 1500 Acres of Land in Western Turkey’s Izmir. 2019. Daily Sabah Online Journal. Available online: https://www.dailysabah.com/turkey/2019/08/19/wildfires-destroy-over-1500-acres-of-land-in-western-turkeys-izmir (accessed on 12 November 2022).
- Velibeyoğlu, K.; Özdemir, S.; Baba, A.; Arsan, Z.D.; Yazdani, H.; Hazar, D.; Kaplan, A.; Boyacı, M.; Kurucu, Y.; Erdoğan, N.; et al. ‘Urla-Çeşme-Karaburun’ Peninsula Sustainable Development Strategy 2014–2023; İZKA (İzmir Development Agency): Izmir, Turkey, 2014.
- Gemici, Ü.; Oyman, T. The Influence of the Abandoned Kalecik Hg Mine on Water and Stream Sediments (Karaburun, Izmir, Turkey). Sci. Total Environ. 2003, 312, 155–166. [Google Scholar] [CrossRef] [PubMed]
- Government of Turkiye. Denizlerde Faaliyet Gösteren Balık Çiftliklerinin Çevresel Yönetimi Yönetmeliği; Government of Turkiye: Ankara, Turkey, 2020.
- Salata, S.; Özkavaf-Şenalp, S.; Velibeyoğlu, K. Integrating Ecosystem Vulnerability in the Environmental Regulation Plan of Izmir (Turkey)—What Are the Limits and Potentialities? Urban Sci. 2022, 6, 19. [Google Scholar] [CrossRef]
- Cive, Y.Ö.; Avar, A.A. Neoliberal Governance and Accumulation by Dispossession in Karaburun Peninsula, Izmir, Turkey. In Proceedings of the AESOP 2019 Planning for Transition: Planning, Law and Property Right: In the Face of Transitions Section, Venıce, Italy, 9–13 July 2019; pp. 2964–2976. [Google Scholar]
- Coskun Hepcan, C. Quantifying Landscape Pattern and Connectivity in a Mediterranean Coastal Settlement: The Case of the Urla District, Turkey. Environ. Monit. Assess. 2013, 185, 143–155. [Google Scholar] [CrossRef] [PubMed]
- İzmir Büyükşehir Belediyesi İzmir’in “Doğaya Saygı” Plan. Available online: https://him.izmir.bel.tr/YuklenenDosyalar/Dokumanlar/2019HizmetRehberi.pdf (accessed on 15 July 2022).
- Pazi, I.; Kucuksezgin, F. Status of Organic Pollutants in the Aegean Sea: Organochlorine Residues and Polycyclic Aromatic Hydrocarbons. In The Aegean Sea Marine Biodiversity, Fisheries, Conservation and Governance; Katağan, T., Tokaç, A., Beşiktepe, Ş., Öztürk, B., Eds.; Turkish Marine Research Foundation (TUDAV): Istanbul, Turkey, 2015. [Google Scholar]
- Saricam, S.Y.; Erdem, U. Planning of Izmir-Karaburun Peninsula as Biosphere Reserve Area. Ekoloji 2010, 19, 42–50. [Google Scholar] [CrossRef]
- Hazar Kalonya, D.; Özçam, Z. Wind Farm Conflicts on the Rural-Ecological Commons: The Case of Karaburun. Online J. Art Des. 2021, 9, 294–313. [Google Scholar]
- Kurucu, Y.; Uysal, H.; Bolca, M.; Yolcu, G.; Karakurt, H. Creating Soil Lost Mapping of the Karaburun Peninsula by Geographical Information System and Remote Sensing Technique. Anadolu Tarım Bilim. Derg. 2010, 25, 20–28. [Google Scholar]
- Salata, S.; Couch, V.T. Monitoring Soil Degradation Processes for Ecological Compensation in the Izmir Institute of Technology Campus (Turkey). Eng 2022, 3, 325–342. [Google Scholar] [CrossRef]
- Uzelli, T.; Baba, A.; Gül Mungan, G.; Dirik, R.K.; Sözbilir, H. Conceptual Model of the Gülbahçe Geothermal System, Western Anatolia, Turkey: Based on Structural and Hydrogeochemical Data. Geothermics 2017, 68, 67–85. [Google Scholar] [CrossRef]
- Uzelli, T.; Bilgiç, E.; Öztürk, B.; Baba, A.; Sözbilir, H.; Tatar, O. Effects of Seismic Activity on Groundwater Level and Geothermal Systems in İzmir, Western Anatolia, Turkey: The Case Study from October 30, 2020 Samos Earthquake. Turk. J. Earth Sci. 2021, 30, 5. [Google Scholar] [CrossRef]
- Gulcin, D.; Yilmaz, T. Quantification of the Change in Ecological Connectivity Using a GIS-Based Model. Int. J. Geogr. Geogr. Educ. (IGGE) 2020, 42, 689–701. [Google Scholar]
- Ruiz, M.C.; Romero, E.; Pérez, M.A.; Fernández, I. Development and Application of a Multi-Criteria Spatial Decision Support System for Planning Sustainable Industrial Areas in Northern Spain. Autom. Constr. 2012, 22, 320–333. [Google Scholar] [CrossRef]
- Silvennoinen, S.; Taka, M.; Yli-Pelkonen, V.; Koivusalo, H.; Ollikainen, M.; Setälä, H. Monetary Value of Urban Green Space as an Ecosystem Service Provider: A Case Study of Urban Runoff Management in Finland. Ecosyst. Serv. 2017, 28, 17–27. [Google Scholar] [CrossRef]
- Morabito, M.; Crisci, A.; Georgiadis, T.; Orlandini, S.; Munafò, M.; Congedo, L.; Rota, P.; Zazzi, M. Urban Imperviousness Effects on Summer Surface Temperatures Nearby Residential Buildings in Different Urban Zones of Parma. Remote Sens. 2018, 10, 26. [Google Scholar] [CrossRef]
- Rosenfeld, A.H.; Akbari, H.; Bretz, S.; Fishman, B.L.; Kurn, D.M.; Sailor, D.; Taha, H. Mitigation of Urban Heat Islands: Materials, Utility Programs, Updates. Energy Build. 1995, 22, 255–265. [Google Scholar] [CrossRef]
- Chatzidimitriou, A.; Yannas, S. Microclimate Design for Open Spaces: Ranking Urban Design Effects on Pedestrian Thermal Comfort in Summer. Sustain. Cities Soc. 2016, 26, 27–47. [Google Scholar] [CrossRef]
- Münch, Z.; Gibson, L.; Palmer, A. Monitoring Effects of Land Cover Change on Biophysical Drivers in Rangelands Using Albedo. Land 2019, 8, 33. [Google Scholar] [CrossRef]
- Du, S.; Wang, C.; Shen, J.; Wen, J.; Gao, J.; Wu, J.; Lin, W.; Xu, H. Mapping the Capacity of Concave Green Land in Mitigating Urban Pluvial Floods and Its Beneficiaries. Sustain. Cities Soc. 2019, 44, 774–782. [Google Scholar] [CrossRef]
- Venter, Z.S.; Barton, D.N.; Martinez-Izquierdo, L.; Langemeyer, J.; Baró, F.; McPhearson, T. Interactive Spatial Planning of Urban Green Infrastructure—Retrofitting Green Roofs Where Ecosystem Services Are Most Needed in Oslo. Ecosyst. Serv. 2021, 50, 101314. [Google Scholar] [CrossRef]
- Ward Thompson, C.; Elizalde, A.; Cummins, S.; Leyland, A.H.; Botha, W.; Briggs, A.; Tilley, S.; Silveirinha de Oliveira, E.; Roe, J.; Aspinall, P.; et al. Enhancing Health Through Access to Nature: How Effective Are Interventions in Woodlands in Deprived Urban Communities? A Quasi-Experimental Study in Scotland, UK. Sustainability 2019, 11, 3317. [Google Scholar] [CrossRef]
- Lovell, S.T.; Taylor, J.R. Supplying Urban Ecosystem Services through Multifunctional Green Infrastructure in the United States. Landsc. Ecol. 2013, 28, 1447–1463. [Google Scholar] [CrossRef]
- Lourdes, K.T.; Hamel, P.; Gibbins, C.N.; Sanusi, R.; Azhar, B.; Lechner, A.M. Planning for Green Infrastructure Using Multiple Urban Ecosystem Service Models and Multicriteria Analysis. Landsc. Urban Plan. 2022, 226, 104500. [Google Scholar] [CrossRef]
- Marchioni, M.; Becciu, G. Experimental Results on Permeable Pavements in Urban Areas: A Synthetic Review. Int. J. Sustain. Dev. Plan. 2015, 10, 806–817. [Google Scholar] [CrossRef]
- Pouya, S.; Pouya, S. Sustainable Landscaping in Istanbul Technical University. Turk. J. For. Sci. 2018, 2, 98–114. [Google Scholar] [CrossRef]
- Wong, L.P.; Alias, H.; Aghamohammadi, N.; Aghazadeh, S.; Nik Sulaiman, N.M. Urban Heat Island Experience, Control Measures and Health Impact: A Survey among Working Community in the City of Kuala Lumpur. Sustain. Cities Soc. 2017, 35, 660–668. [Google Scholar] [CrossRef]
- Holt, E.W.; Lombard, Q.K.; Best, N.; Smiley-Smith, S.; Quinn, J.E. Active and Passive Use of Green Space, Health, and Well-Being amongst University Students. Int. J. Environ. Res. Public Health 2019, 16, 424. [Google Scholar] [CrossRef] [PubMed]
- Baykal, T.M.; Topal, T.Ü. The Role of GIS-Based Thematic Urban Maps in Determining the Effectiveness of Nature-Based Solutions. ACU Int. J. Soc. Sci. 2022, 8, 82–99. [Google Scholar]
- Childers, D.L.; Bois, P.; Hartnett, H.E.; Exploration, S.; Mcphearson, T.; Metson, G.S. Urban Ecological Infrastructure: An Inclusive Concept for the Non-Built Urban Environment. Elem. Sci. Anthr. 2019, 7, 1–14. [Google Scholar] [CrossRef]
- Watkin, L.J.; Ruangpan, L.; Vojinovic, Z.; Weesakul, S.; Torres, A.S. A Framework for Assessing Benefits of Implemented Nature-Based Solutions. Sustainability 2019, 11, 6788. [Google Scholar] [CrossRef]
- Erdoğan, N.; Nurlu, E.; Erdem, Ü. Modelling Land Use Changes in Karaburun by Using CLUE-S. ITU J. Fac. Archit. 2011, 8, 91–102. [Google Scholar]
- Website, I. Official Sustainable Green Campus. Available online: https://surdurulebilir.iyte.edu.tr/en/ (accessed on 11 May 2022).
- Sharps, K.; Masante, D.; Thomas, A.; Jackson, B.; Redhead, J.; May, L.; Prosser, H.; Cosby, B.; Emmett, B.; Jones, L. Comparing strengths and weaknesses of three ecosystem services modelling tools in a diverse UK river catchment. Sci. Total Environ. 2017, 584, 118–130. [Google Scholar] [CrossRef] [PubMed]
- Sallustio, L.; De Toni, A.; Strollo, A.; Di Febbraro, M.; Gissi, E.; Casella, L.; Geneletti, D.; Munafò, M.; Vizzarri, M.; Marchetti, M. Assessing Habitat Quality in Relation to the Spatial Distribution of Protected Areas in Italy. J. Environ. Manag. 2017, 201, 129–137. [Google Scholar] [CrossRef] [PubMed]
- Arcidiacono, A.; Ronchi, S.; Salata, S. Ecosystem Services Assessment Using InVEST as a Tool to Support Decision Making Process: Critical Issues and Opportunities. In Proceedings of the Computational Science and Its Applications—ICCSA, Banff, AB, Canada, 22–25 June 2015; Springer: Cham, Switzerland, 2015; pp. 35–49. [Google Scholar]
- European Environment Agency. Spatial Analysis of Green Infrastructure in Europe; European Environment Agency: Copenhagen, Denmark, 2014; ISBN 9789292134211.
- Salata, S.; Ronchi, S.; Arcidiacono, A.; Ghirardelli, F. Mapping Habitat Quality in the Lombardy Region, Italy. One Ecosyst. 2017, 2, e11402. [Google Scholar] [CrossRef]
- Ihobe Environmental Management Agency. Nature-Based Solutions for Local Climate Adaptation in the Basque Country; Ihobe Environmental Management Agency: Bilbao, Spain, 2017. [Google Scholar]
- Marraccini, E.; Debolini, M.; Moulery, M.; Abrantes, P.; Bouchier, A.; Chéry, J.P.; Sanz Sanz, E.; Sabbatini, T.; Napoleone, C. Common Features and Different Trajectories of Land Cover Changes Insix Western Mediterranean Urban Regions. Appl. Geogr. 2015, 62, 347–356. [Google Scholar] [CrossRef]
- Larsen, L. Urban Climate and Adaptation Strategies. Front. Ecol. Environ. 2015, 13, 486–492. [Google Scholar] [CrossRef] [PubMed]
- Treglia, M.L.; McPhearson, T.; Sanderson, E.W.; Yetman, G.; Maxwell, E.N. Examining the Distribution of Green Roofs in New York City through a Lens of Social, Ecological, and Technological Filters. Ecol. Soc. 2022, 27, 3. [Google Scholar] [CrossRef]
- Salata, S.; Ozkavaf-Senalp, S.; Velibeyoğlu, K.; Elburz, Z. Land Suitability Analysis for Vineyard Cultivation in the Izmir Metropolitan Area. Land 2022, 11, 416. [Google Scholar] [CrossRef]
- Prăvălie, R.; Patriche, C.; Bandoc, G. Quantification of Land Degradation Sensitivity Areas in Southern and Central Southeastern Europe. New Results Based on Improving DISMED Methodology with New Climate Data. Catena 2017, 158, 309–320. [Google Scholar] [CrossRef]
- Adobati, F.; Garda, E. Soil Releasing as Key to Rethink Water Spaces in Urban Planning. City Territ. Archit. 2020, 7, 9. [Google Scholar] [CrossRef]
- Maienza, A.; Ungaro, F.; Baronti, S.; Colzi, I.; Giagnoni, L.; Gonnelli, C.; Renella, G.; Ugolini, F.; Calzolari, C. Biological Restoration of Urban Soils after De-Sealing Interventions. Agriculture 2021, 11, 190. [Google Scholar] [CrossRef]
- Sanesi, G.; Colangelo, G.; Lafortezza, R.; Calvo, E.; Davies, C. Urban Green Infrastructure and Urban Forests: A Case Study of the Metropolitan Area of Milan. Landsc. Res. 2017, 42, 164–175. [Google Scholar] [CrossRef]
- Rouse, D.C.; Bunster-Ossa, I.F. Green Infrastructure: A Landscape Approach; American Planning Association: Washington, DC, USA, 2013; ISBN 9781611900620. [Google Scholar]
Min | Max | Mean | Std Dev | NBC | Average Change from Baseline | |
---|---|---|---|---|---|---|
HQ, Baseline | 0.120 | 0.950 | 0.720 | 0.170 | BC | |
HQ, Scenario 1 | 0.120 | 0.950 | 0.749 | 0.178 | S1 | 3.97% |
HQ, Scenario 2 | 0.091 | 0.950 | 0.774 | 0.159 | S2 | 3.33% |
DEG, Baseline | - | 0.147 | 0.012 | 0.027 | BC | |
DEG, Scenario 1 | - | 0.147 | 0.011 | 0.027 | S1 | −7.67% |
DEG, Scenario 2 | - | 0.126 | 0.009 | 0.032 | S2 | −18.79% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Couch, V.T.; Salata, S.; Saygin, N.; Frary, A.; Arslan, B. De-Sealing Reverses Habitat Decay More Than Increasing Groundcover Vegetation. Climate 2023, 11, 116. https://doi.org/10.3390/cli11060116
Couch VT, Salata S, Saygin N, Frary A, Arslan B. De-Sealing Reverses Habitat Decay More Than Increasing Groundcover Vegetation. Climate. 2023; 11(6):116. https://doi.org/10.3390/cli11060116
Chicago/Turabian StyleCouch, Virginia Thompson, Stefano Salata, Nicel Saygin, Anne Frary, and Bertan Arslan. 2023. "De-Sealing Reverses Habitat Decay More Than Increasing Groundcover Vegetation" Climate 11, no. 6: 116. https://doi.org/10.3390/cli11060116
APA StyleCouch, V. T., Salata, S., Saygin, N., Frary, A., & Arslan, B. (2023). De-Sealing Reverses Habitat Decay More Than Increasing Groundcover Vegetation. Climate, 11(6), 116. https://doi.org/10.3390/cli11060116