Changing Water Cycle under a Warming Climate: Tendencies in the Carpathian Basin
Abstract
:1. Introduction
2. Data and Methods
2.1. Geographic Settings
2.2. Data Sources
3. Results
- Modifications of Earth’s energy budget by anthropogenic activities drive substantial and widespread changes in the global water cycle. There are more and more pieces of evidence that global mean precipitation and evaporation increase with global warming. The increase in global precipitation is determined by a robust response to global mean surface air temperature (likely 2–3% per 1 C). Land use and land-cover changes also drive regional water cycle changes through their influence on surface water and energy budgets (high confidence).
- Warming over land drives an increase in the atmospheric water holding capacity by around 7% per 1 C enhancing the severity of droughts (high confidence). More significant warming over land than over the ocean changes large-scale atmospheric circulation patterns and decreases relative humidity in the continental boundary layer, which contributes to regional droughts (high confidence). Parallel to it, increasing water content in the middle and higher troposphere intensifies heavy precipitation events that enhance the severity of flood hazards.
- Land-use change and water extraction for irrigation have influenced local and regional responses in the water cycle since the mid-20th century (high confidence). Extended deforestation has decreased evapotranspiration and increased runoff over the deforested regions. Urbanization has probably increased local precipitation and runoff intensity (high confidence). Groundwater depletion, mainly for irrigation, has occurred since at least the start of the 21st century (high confidence).
- Anthropogenic surface solar radiation modification (primarily by aerosol emission) could drive abrupt changes in the water cycle (high confidence). The modification is spatially heterogeneous (high confidence), and it probably will not fully mitigate the greenhouse-gas-forced water cycle changes (medium confidence) [18].
- Paleoclimatic records indicate that a collapse in the Atlantic Meridional Overturning Circulation (AMOC) triggers abrupt shifts in the water cycle (high confidence), particularly severe droughts in Europe. High-resolution globally coupled numerical models suggest that such dry spells decrease grass and crop productivity over the European land, both in mountainous and lower areas [19,20].
3.1. Primary Drivers of the Water Cycle
3.1.1. Temperature Trends
3.1.2. Changing Wind Regimes
3.1.3. Atmospheric Moisture
3.1.4. Precipitation Trends
3.2. Hydrological Trends
3.2.1. River Discharge Rates
3.2.2. Timing of Extreme Water Levels
3.2.3. Groundwater Issues
3.2.4. Lakes and Climate Change
3.2.5. Nonlinearities
4. Discussion
- Changes in the temporal distribution of precipitation trigger more extreme rainfall events during shorter periods, resulting in much larger variability of hydrological parameters and an increasing number of flash floods [130].
- In the Carpathian Basin, floods are expected to occur more frequently in the winter- early spring periods since almost all tributaries of the Danube originate from the surrounding mountains, where the winter becomes warmer and rainy instead of snowy (see Section 3.2, and [131]).
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Duncombe, J. Not Your Childhood Water Cycle; Eos: New York City, NY, USA, 2022; Volume 103. [Google Scholar] [CrossRef]
- Abbott, B.W.; Bishop, K.; Zarnetske, J.P.; Minaudo, C.; Chapin, F.S.; Krause, S.; Hannah, D.M.; Conner, L.; Ellison, D.; Godsey, S.E.; et al. Human domination of the global water cycle absent from depictions and perceptions. Nat. Geosci. 2019, 12, 533–540. [Google Scholar] [CrossRef]
- UNESCO World Water Assessment Programme. The United Nations World Water Development Report 2021: Valuing Water; UN Educational, Scientific and Cultural Organization: Paris, France, 2021; Available online: https://unesdoc.unesco.org/ark:/48223 (accessed on 4 May 2023).
- Douville, H.; Raghavan, K.; Renwick, J.; Allan, R.; Arias, P.; Barlow, M.; Cerezo-Mota, R.; Cherchi, A.; Gan, T.; Gergis, J.; et al. Water Cycle Changes. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 1055–1210. [Google Scholar] [CrossRef]
- Szöllősi-Nagy, A. Life changer in development—Part 2: World’s water management faces a turning point (in Hungarian). Hidrológiai Közlöny (Hung. J. Hydrol.) 2018, 98, 9–16. Available online: https://library.hungaricana.hu/hu/view/HidrologiaiKozlony_2018/?pg=260&layout=s (accessed on 4 May 2023).
- Gleeson, T.; Wang-Erlandsson, L.; Zipper, S.C.; Porkka, M.; Jaramillo, F.; Gerten, D.; Fetzer, I.; Cornell, S.E.; Piemontese, L.; Gordon, L.J.; et al. The water planetary boundary: Interrogation and revision. One Earth 2020, 2, 223–234. [Google Scholar] [CrossRef]
- Kirovné Rácz, R.M. Climate adaptation in terms of water security in the Danube Countries. Acad. Appl. Res. Mil. Public Manag. Sci. 2022, 20, 21–36. [Google Scholar] [CrossRef]
- Balatonyi, L.; Ligetvári, K.; Tóth, L.; Berger, Á. Water resources management and its homeland security aspect in Hungary. Sci. Secur. 2022, 2, 519–528. [Google Scholar] [CrossRef]
- Szöllősi-Nagy, A. On climate change, hydrological extremes and water security in a globalized world. Sci. Secur. 2022, 2, 504–509. [Google Scholar] [CrossRef]
- Vörösmarty, C.J.; Rodríguez Osuna, V.; Cak, A.D.; Bhaduri, A.; Bunn, S.E.; Corsi, F.; Gastelumendi, J.; Green, P.; Harrison, I.; Lawford, R.; et al. Ecosystem-based water security and the Sustainable Development Goals (SDGs). Ecohydrol. Hydrobiol. 2018, 18, 317–333, SI: Ecohydrology for the Circular Economy and Nature-Based Solutions towards mitigation/adaptation to Climate Change. [Google Scholar] [CrossRef]
- Jaramillo, F.; Desormeaux, A.; Hedlund, J.; Jawitz, J.W.; Clerici, N.; Piemontese, L.; Rodríguez-Rodriguez, J.A.; Anaya, J.A.; Blanco-Libreros, J.F.; Borja, S.; et al. Priorities and interactions of Sustainable Development Goals (SDGs) with focus on wetlands. Water 2019, 11, 619. [Google Scholar] [CrossRef]
- Mulligan, M.; van Soesbergen, A.; Hole, D.G.; Brooks, T.M.; Burke, S.; Hutton, J. Mapping nature’s contribution to SDG 6 and implications for other SDGs at policy relevant scales. Remote Sens. Environ. 2020, 239, 111671. [Google Scholar] [CrossRef]
- Mishra, B.K.; Kumar, P.; Saraswat, C.; Chakraborty, S.; Gautam, A. Water security in a changing environment: Concept, challenges and solutions. Water 2021, 13, 490. [Google Scholar] [CrossRef]
- Shaikh, M.A.; Hadjikakou, M.; Bryan, B.A. Shared responsibility for global water stress from agri-food production and consumption and opportunities for mitigation. J. Clean. Prod. 2022, 379, 134628. [Google Scholar] [CrossRef]
- Kang, S.; Kroeger, T.; Shemie, D.; Echavarria, M.; Montalvo, T.; Bremer, L.L.; Bennett, G.; Barreto, S.R.; Bracale, H.; Calero, C.; et al. Investing in nature-based solutions: Cost profiles of collective-action watershed investment programs. Ecosyst. Serv. 2023, 59, 101507. [Google Scholar] [CrossRef]
- Bartholy, J.; Pongrácz, R.; Molnár, Z. Classification and analysis of past climate information based on historical documentary sources for the Carpathian basin. Int. J. Climatol. 2004, 24, 1759–1776. [Google Scholar] [CrossRef]
- Lehner, B.; Grill, G. Global river hydrography and network routing: Baseline data and new approaches to study the world’s large river systems. Hydrol. Process. 2013, 27, 2171–2186. [Google Scholar] [CrossRef]
- Turnock, S.T.; Spracklen, D.V.; Carslaw, K.S.; Mann, G.W.; Woodhouse, M.T.; Forster, P.M.; Haywood, J.; Johnson, C.E.; Dalvi, M.; Bellouin, N.; et al. Modelled and observed changes in aerosols and surface solar radiation over Europe between 1960 and 2009. Atmos. Chem. Phys. 2015, 15, 9477–9500. [Google Scholar] [CrossRef]
- Trnka, M.; Rötter, R.P.; Ruiz-Ramos, M.; Kersebaum, K.C.; Olesen, J.E.; Žalud, Z.; Semenov, M.A. Adverse weather conditions for European wheat production will become more frequent with climate change. Nat. Clim. Chang. 2014, 4, 637–643. [Google Scholar] [CrossRef]
- Jackson, L.; Kahana, R.; Graham, T.; Ringer, M.A.; Woollings, T.; Mecking, J.V.; Wood, R.A. Global and European climate impacts of a slowdown of the AMOC in a high resolution GCM. Clim. Dyn. 2015, 45, 3299–3316. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- Menne, M.J.; Durre, I.; Vose, R.S.; Gleason, B.E.; Houston, T.G. An overview of the Global Historical Climatology Network - Daily Database. J. Atmos. Ocean. Technol. 2012, 29, 897–910. [Google Scholar] [CrossRef]
- Lorenz, R.; Stalhandske, Z.; Fischer, E.M. Detection of a climate change signal in extreme heat, heat stress, and cold in Europe from observations. Geophys. Res. Lett. 2019, 46, 8363–8374. [Google Scholar] [CrossRef]
- Naumann, G.; Cammalleri, C.; Mentaschi, L.; Feyen, L. Increased economic drought impacts in Europe with anthropogenic warming. Nat. Clim. Chang. 2021, 11, 485–491. [Google Scholar] [CrossRef]
- Rousi, E.; Kornhuber, K.; Beobide-Arsuaga, G.; Luo, F.; Coumou, D. Accelerated western European heatwave trends linked to more-persistent double jets over Eurasia. Nat. Commun. 2022, 13, 3851. [Google Scholar] [CrossRef] [PubMed]
- Lakatos, M.; Bihari, Z.; Izsák, B.; Szentes, O. Global trends and climate change in Hungary in 2020 (in Hungarian). Sci. Secur. 2021, 2, 164–171. [Google Scholar] [CrossRef]
- Lakatos, M.; Bihari, Z.; Izsák, B.; Marton, A.; Szentes, O. Observed climate change in Hungary (in Hungarian). Légkör (Atmosphere) 2021, 66, 5–11. Available online: https://www.met.hu/downloads.php?fn=/metadmin/newspaper/2022/04/056abbc1a940abd89a3e61da1de4c5cd-legkor-2021-3.pdf (accessed on 4 May 2023).
- Barna, Z.; Izsák, B.; Pieczka, I. Trend analysis: Country-wise temperature trend of hourly values (in Hungarian). Légkör (Atmosphere) 2022, 67, 122–129. [Google Scholar] [CrossRef]
- Lakatos, M.; Bihari, Z.; Szentimrey, T. Signs of climate change in Hungary (in Hungarian). Légkör (Atmosphere) 2014, 59, 158–163. Available online: https://www.met.hu/ismeret-tar/kiadvanyok/legkor/index.php?id=436 (accessed on 4 May 2023).
- Bartholy, J.; Pongrácz, R. Regional analysis of extreme temperature and precipitation indices for the Carpathian Basin from 1946 to 2001. Glob. Planet. Chang. 2007, 57, 83–95. [Google Scholar] [CrossRef]
- Bokros, K.; Lakatos, M. Analysis of hot spells in Hungary from the early 20th century to the present (in Hungarian). Légkör (Atmosphere) 2022, 67, 130–140. [Google Scholar] [CrossRef]
- Milentijević, N.; Valjarević, A.; Bačević, N.R.; Ristić, D.; Kalkan, K.; Cimbaljević, M.; Dragojlović, J.; Savić, S.; Pantelić, M. Assessment of observed and projected climate changes in Bačka (Serbia) using trend analysis and climate modeling. Idojárás (Q. J. Hung. Meteorol. Serv.) 2022, 126, 47–68. [Google Scholar] [CrossRef]
- Gnjato, S.; Popov, T.; Adžić, D.; Ivanišević, M.; Trbić, G.; Bajić, D. Influence of climate change on river discharges over the Sava River watershed in Bosnia and Herzegovina. Idojárás (Q. J. Hung. Meteorol. Serv.) 2021, 125, 449–462. [Google Scholar] [CrossRef]
- Solanki, S.K.; Krivova, N.A.; Haigh, J.D. Solar irradiance variability and climate. Annu. Rev. Astron. Astrophys. 2013, 51, 311–351. [Google Scholar] [CrossRef]
- Krivova, N.A. Solar irradiance variability and Earth’s climate. In Climate Changes in the Holocene; Chiotis, E., Ed.; Taylor & Francis, CRC Press: Boca Raton, FL, USA, 2018; pp. 107–119. [Google Scholar] [CrossRef]
- Chatzistergos, T.; Krivova, N.A.; Yeo, K.L. Long-term changes in solar activity and irradiance. arXiv 2023. [Google Scholar] [CrossRef]
- Kocsis, T.; Jakus, P.; Szabó, B. Analysis of the sunshine duration data between 1968 and 1999 at Keszthelyt (in Hungarian). Légkör (Atmosphere) 2012, 57, 68–72. Available online: https://www.met.hu/downloads.php?fn=/metadmin/newspaper/2013/01/legkor-2012-2.pdf (accessed on 4 May 2023).
- Mika, J.; Csabai, E.K.; Dobi, I.; Molnár, Z.; Nagy, Z.; Rázsi, A.; Tóth-Tarjányi, Z.; Pajtók-Tari, I. Solar and wind energy resources of the Eger Region. Hung. Geogr. Bull. 2014, 63, 17–27. [Google Scholar] [CrossRef]
- Kovács, E.; Puskás, J.; Pozsgai, A. Positive effects of climate change on the field of Sopron wine-growing region in Hungary. In Perspectives on Atmospheric Sciences; Karacostas, T., Bais, A., Nastos, P.T., Eds.; Springer International Publishing: Cham, Switzerland, 2017; pp. 607–613. [Google Scholar] [CrossRef]
- Sanchez-Lorenzo, A.; Wild, M.; Brunetti, M.; Guijarro, J.A.; Hakuba, M.Z.; Calbó, J.; Mystakidis, S.; Bartok, B. Reassessment and update of long-term trends in downward surface shortwave radiation over Europe (1939–2012). J. Geophys. Res. Atmos. 2015, 120, 9555–9569. [Google Scholar] [CrossRef]
- Augustine, J.A.; Capotondi, A. Forcing for multidecadal surface solar radiation trends over Northern Hemisphere continents. J. Geophys. Res. Atmos. 2022, 127, e2021JD036342. [Google Scholar] [CrossRef]
- Gulev, S.; Thorne, P.; Ahn, J.; Dentener, F.; Domingues, C.; Gerland, S.; Gong, D.; Kaufman, D.; Nnamchi, H.; Quaas, J.; et al. Changing state of the climate system. In Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2021; pp. 287–422. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Laurila, T.K.; Sinclair, V.A.; Gregow, H. Climatology, variability, and trends in near-surface wind speeds over the North Atlantic and Europe during 1979–2018 based on ERA5. Int. J. Climatol. 2021, 41, 2253–2278. [Google Scholar] [CrossRef]
- Zsilinszki, A.; Dezso, Z.; Bartholy, J.; Pongrácz, R. Synoptic-climatological analysis of high level air flow over the Carpathian Basin. Idojárás (Q. J. Hung. Meteorol. Serv.) 2019, 123, 19–38. [Google Scholar] [CrossRef]
- Gimeno, L.; Eiras-Barca, J.; Durán-Quesada, A.M.; Dominguez, F.; van der Ent, R.; Sodemann, H.; Sánchez-Murillo, R.; Nieto, R.; Kirchner, J.W. The residence time of water vapour in the atmosphere. Nat. Rev. Earth Environ. 2021, 2, 558–569. [Google Scholar] [CrossRef]
- Allan, R.P.; Willett, K.M.; John, V.O.; Trent, T. Global changes in water vapor 1979–2020. J. Geophys. Res. Atmos. 2022, 127, e2022JD036728. [Google Scholar] [CrossRef]
- Spinoni, J.; Antofie, T.; Barbosa, P.; Bihari, Z.; Lakatos, M.; Szalai, S.; Szentimrey, T.; Vogt, J. An overview of drought events in the Carpathian Region in 1961–2010. Adv. Sci. Res. 2013, 10, 21–32. [Google Scholar] [CrossRef]
- Lakatos, M.; Weidinger, T.; Hoffmann, L.; Bihari, Z.; Horváth, A. Computation of daily Penman–Monteith reference evapotranspiration in the Carpathian Region and comparison with Thornthwaite estimates. Adv. Sci. Res. 2020, 16, 251–259. [Google Scholar] [CrossRef]
- Cséplo, A.; Sarkadi, N.; Horváth, A.; Schmeller, G.; Lemler, T. Fog climatology in Hungary. Idojárás (Q. J. Hung. Meteorol. Serv.) 2019, 123, 241–264. [Google Scholar] [CrossRef]
- Ilona, J.; Bartók, B.; Dumitrescu, A.; Cheval, S.; Gandhi, A.; Tordai, A.V.; Weidinger, T. Using long-term historical meteorological data for climate change analysis in the Carpathian region. Atmosphere 2022, 13, 1751. [Google Scholar] [CrossRef]
- Schneider, U.; Finger, P.; Meyer-Christoffer, A.; Rustemeier, E.; Ziese, M.; Becker, A. Evaluating the hydrological cycle over land using the newly-corrected precipitation climatology from the Global Precipitation Climatology Centre (GPCC). Atmosphere 2017, 8, 52. [Google Scholar] [CrossRef]
- Bartholy, J.; Pongrácz, R. Tendencies of extreme climate indices based on daily precipitation in the Carpathian Basin for the 20th century. Idojárás (Q. J. Hung. Meteorol. Serv.) 2005, 109, 1–20. Available online: https://www.met.hu/ismeret-tar/kiadvanyok/idojaras/index.php?id=238 (accessed on 4 May 2023).
- Bartholy, J.; Pongrácz, R. Analysis of precipitation conditions for the Carpathian Basin based on extreme indices in the 20th century and climate simulations for 2050 and 2100. Phys. Chem. Earth 2010, 35, 43–51. [Google Scholar] [CrossRef]
- Domonkos, P. Recent precipitation trends in Hungary in the context of larger scale climatic changes. Nat. Hazards 2003, 29, 255–271. [Google Scholar] [CrossRef]
- Lakatos, M.; Szentes, O.; Cindrić Kalin, K.; Nimac, I.; Kozjek, K.; Cheval, S.; Dumitrescu, A.; Irașoc, A.; Stepanek, P.; Farda, A.; et al. Analysis of sub-daily precipitation for the PannEx region. Atmosphere 2021, 12, 838. [Google Scholar] [CrossRef]
- Zólyomi, B.; Kéri, M.; Horváth, F. Spatial and temporal changes in the frequency of climatic year types in the Carpathian Basin. Coenoses 1997, 12, 33–41. Available online: https://www.jstor.org/stable/43461186 (accessed on 4 May 2023).
- Szinell, C.S.; Bussay, A.; Szentimrey, T. Drought tendencies in Hungary. Int. J. Climatol. 1998, 18, 1479–1491. [Google Scholar] [CrossRef]
- Gavrilov, M.B.; Radaković, M.G.; Sipos, G.; Mezősi, G.; Gavrilov, G.; Lukić, T.; Basarin, B.; Benyhe, B.; Fiala, K.; Kozák, P.; et al. Aridity in the central and southern Pannonian Basin. Atmosphere 2020, 11, 1269. [Google Scholar] [CrossRef]
- Ilyés, C.; Szűcs, P.; Turai, E. Appearance of climatic cycles and oscillations in Carpathian Basin precipitation data. Hung. Geogr. Bull. 2022, 71, 21–37. [Google Scholar] [CrossRef]
- Rottler, E.; Francke, T.; Bürger, G.; Bronstert, A. Long-term changes in central European river discharge for 1869–2016: Impact of changing snow covers, reservoir constructions and an intensified hydrological cycle. Hydrol. Earth Syst. Sci. 2020, 24, 1721–1740. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Parajka, J.; Perdigão, R.A.P.; Merz, B.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Bonacci, O.; Borga, M.; et al. Changing climate shifts timing of European floods. Science 2017, 357, 588–590. [Google Scholar] [CrossRef]
- Hall, J.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; Boháč, M.; Bonacci, O.; Borga, M.; Burlando, P.; Castellarin, A.; Chirico, G.B.; et al. A European Flood Database: Facilitating comprehensive flood research beyond administrative boundaries. Proc. Int. Assoc. Hydrol. Sci. 2015, 370, 89–95. [Google Scholar] [CrossRef]
- Kundzewicz, Z.W.; Pińskwar, I.; Brakenridge, G.R. Changes in river flood hazard in Europe: A review. Hydrol. Res. 2017, 49, 294–302. [Google Scholar] [CrossRef]
- Kettner, A.; Brakenridge, G.R.; Schumann, G.J.P.; Shen, X. Chapter 7: DFO—Flood Observatory. In Earth Observation for Flood Applications; Schumann, G.J.P., Ed.; Earth Observation; Elsevier: Amsterdam, The Netherlands, 2021; pp. 147–164. [Google Scholar] [CrossRef]
- Blöschl, G.; Hall, J.; Viglione, A.; Perdigão, R.A.P.; Parajka, J.; Merz, B.; Lun, D.; Arheimer, B.; Aronica, G.T.; Bilibashi, A.; et al. Changing climate both increases and decreases European river floods. Nature 2019, 573, 108–111. [Google Scholar] [CrossRef]
- Bertola, M.; Viglione, A.; Lun, D.; Hall, J.; Blöschl, G. Flood trends in Europe: Are changes in small and big floods different? Hydrol. Earth Syst. Sci. 2020, 24, 1805–1822. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Allen, S.T.; Harrigan, S.; Kirchner, J.W. Growing spatial scales of synchronous siver flooding in Europe. Geophys. Res. Lett. 2019, 46, 1423–1428. [Google Scholar] [CrossRef]
- Kemter, M.; Merz, B.; Marwan, N.; Vorogushyn, S.; Blöschl, G. Joint trends in flood magnitudes and spatial extents across Europe. Geophys. Res. Lett. 2020, 47, e2020GL087464. [Google Scholar] [CrossRef] [PubMed]
- Pekarova, P.; Skoda, P.; Miklanek, P.; Halmova, D.; Pekar, J. Detection of changes in flow variability of the upper Danube between 1876–2006. IOP Conf. Ser. Earth Environ. Sci. 2008, 4, 012028. [Google Scholar] [CrossRef]
- Nováky, B.; Bálint, G. Shifts and modification of the hydrological regime under climate change in Hungary. In Climate Change—Realities, Impacts Over Ice Cap, Sea Level and Risks; Singh, B.R., Ed.; InTechOpen: London, UK, 2013; pp. 163–190. [Google Scholar] [CrossRef]
- Konecsny, K.; Nagy, Z. Similarities and differences of the hydrological extremes on the Duna/Danube and Tisza/Tisa rivers (1921–2012). In Air and Water Components of the Environment; Serban, G., Horváth, C., Holobaca, I., Batinas, R., Tudose, T., Croitoru, A., Eds.; Cluj University Press: Cluj-Napoca, Romania, 2014; pp. 134–141. Available online: http://aerapa.conference.ubbcluj.ro/2014/PDF/18-Konecsny-Nagy.pdf (accessed on 4 May 2023).
- Tadić, L.; Tamás, E.A.; Mihaljević, M.; Janjić, J. Potential climate impacts of hydrological alterations and discharge variabilities of the Mura, Drava, and Danube rivers on the natural resources of the MDD UNESCO Biosphere Reserve. Climate 2022, 10, 139. [Google Scholar] [CrossRef]
- Illés, Z.; Nagy, L. Effect of climate change on earthworks of infrastructure: Statistical evaluation of the cause of dike pavement cracks. Geoenviron. Disasters 2022, 9, 20. [Google Scholar] [CrossRef]
- Nagy, L. Dike failures in the Carpathian Basin. Sci. Secur. 2022, 2, 510–518. [Google Scholar] [CrossRef]
- Merz, R.; Blöschl, G. A process typology of regional floods. Water Resour. Res. 2003, 39, 1340. [Google Scholar] [CrossRef]
- Blöschl, G.; Bierkens, M.F.; Chambel, A.; Cudennec, C.; Destouni, G.; Fiori, A.; Kirchner, J.W.; McDonnell, J.J.; Savenije, H.H.; Sivapalan, M.; et al. Twenty-three unsolved problems in hydrology (UPH)—A community perspective. Hydrol. Sci. J. 2019, 64, 1141–1158. [Google Scholar] [CrossRef]
- Hall, J.; Arheimer, B.; Borga, M.; Brázdil, R.; Claps, P.; Kiss, A.; Kjeldsen, T.R.; Kriaučiūnienė, J.; Kundzewicz, Z.W.; Lang, M.; et al. Understanding flood regime changes in Europe: A state-of-the-art assessment. Hydrol. Earth Syst. Sci. 2014, 18, 2735–2772. [Google Scholar] [CrossRef]
- Hall, J.; Blöschl, G. Spatial patterns and characteristics of flood seasonality in Europe. Hydrol. Earth Syst. Sci. 2018, 22, 3883–3901. [Google Scholar] [CrossRef]
- Borsos, B.; Sendzimir, J. The Tisza river: Managing a lowland river in the Carpathian Basin. In Riverine Ecosystem Management: Science for Governing Towards a Sustainable Future; Schmutz, S., Sendzimir, J., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 541–560. [Google Scholar] [CrossRef]
- Press, W.H.; Rybicki, G.B. Fast algorithm for spectral analysis of unevenly sampled data. Astrophys. J. 1989, 338, 277–280. Available online: https://adsabs.harvard.edu/full/1989ApJ...338..277P (accessed on 4 May 2023). [CrossRef]
- VanderPlas, J.T. Understanding the Lomb–Scargle Periodogram. Astrophys. J. Suppl. Ser. 2018, 236, 16. [Google Scholar] [CrossRef]
- Virtanen, P.; Gommers, R.; Oliphant, T.E.; Haberland, M.; Reddy, T.; Cournapeau, D.; Burovski, E.; Peterson, P.; Weckesser, W.; Bright, J.; et al. SciPy 1.0: Fundamental algorithms for scientific computing in Python. Nat. Methods 2020, 17, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Taylor, R.G.; Scanlon, B.; Döll, P.; Rodell, M.; van Beek, R.; Wada, Y.; Longuevergne, L.; Leblanc, M.; Famiglietti, J.S.; Edmunds, M.; et al. Ground water and climate change. Nat. Clim. Chang. 2013, 3, 322–329. [Google Scholar] [CrossRef]
- Reinecke, R.; Müller Schmied, H.; Trautmann, T.; Andersen, L.S.; Burek, P.; Flörke, M.; Gosling, S.N.; Grillakis, M.; Hanasaki, N.; Koutroulis, A.; et al. Uncertainty of simulated groundwater recharge at different global warming levels: A global-scale multi-model ensemble study Hydrol. Earth Syst. Sci. 2021, 25, 787–810. [Google Scholar] [CrossRef]
- Bogardi, J.J.; Fekete, B.M. Water: A unique phenomenon and resource. In Handbook of Water Resources Management: Discourses, Concepts and Examples; Bogardi, J.J., Gupta, J., Nandalal, K.D.W., Salamé, L., van Nooijen, R.R., Kumar, N., Tingsanchali, T., Bhaduri, A., Kolechkina, A.G., Eds.; Springer International Publishing: Cham, Switzerland, 2021; pp. 9–40. [Google Scholar] [CrossRef]
- Allan, R.P.; Barlow, M.; Byrne, M.P.; Cherchi, A.; Douville, H.; Fowler, H.J.; Gan, T.Y.; Pendergrass, A.G.; Rosenfeld, D.; Swann, A.L.S.; et al. Advances in understanding large-scale responses of the water cycle to climate change. Ann. N. Y. Acad. Sci. 2020, 1472, 49–75. [Google Scholar] [CrossRef]
- Xanke, J.; Liesch, T. Quantification and possible causes of declining groundwater resources in the Euro-Mediterranean region from 2003 to 2020. Hydrogeol. J. 2022, 30, 379–400. [Google Scholar] [CrossRef]
- Chao, N.; Luo, Z.; Wang, Z.; Jin, T. Retrieving groundwater depletion and drought in the Tigris-Euphrates Basin between 2003 and 2015. Groundwater 2018, 56, 770–782. [Google Scholar] [CrossRef]
- Frappart, F.; Ramillien, G. Monitoring groundwater storage changes using the Gravity Recovery and Climate Experiment (GRACE) satellite mission: A review. Remote Sens. 2018, 10, 829. [Google Scholar] [CrossRef]
- Szalai, J. Changes in groundwater-table on the Great Hungarian Plain (in Hungarian). In Environmental changes and the Great Hungarian Plain (in Hungarian); Rakonczai, J., Ed.; Nagyalföld Alapítvány (Great Plain Foundation): Békéscsaba, Hungary, 2011; pp. 99–110. Available online: https://acta.bibl.u-szeged.hu/62614/ (accessed on 4 May 2023).
- Rakonczai, J. Effects and consequences of global climate change in the Carpathian Basin. In Climate Change—Geophysical Foundations and Ecological Effects; Blanco, J.A., Kheradmand, H., Eds.; IntechOpen: Rijeka, Croatia, 2011; pp. 297–322. [Google Scholar] [CrossRef]
- Rakonczai, J.; Fehér, Z. The role of climate change in the temporal changes of the groundwater resources of the Hungarian Great Plain (in Hungarian). Hidrológiai Közlöny (Hung. J. Hydrol.) 2015, 95, 1–15. Available online: https://library.hungaricana.hu/hu/view/HidrologiaiKozlony_2015/?pg=2&layout=s (accessed on 4 May 2023).
- Garamhegyi, T.; Kovács, J.; Pongrácz, R.; Tanos, P.; Hatvani, I.G. Investigation of the climate-driven periodicity of shallow groundwater level fluctuations in a Central-Eastern European agricultural region. Hydrogeol. J. 2018, 26, 677–688. [Google Scholar] [CrossRef]
- Garamhegyi, T.; Hatvani, I.G.; Szalai, J.; Kovács, J. Delineation of hydraulic flow regime areas based on the statistical analysis of semicentennial shallow groundwater table time series. Water 2020, 12, 828. [Google Scholar] [CrossRef]
- Liebe, P.; Kumánovics, G.; Rózsa, A.; Szongoth, G.; Tahy, A.; Szöllősi-Nagy, A.; Csiszár, E.; Pump, J.; Lénárt, L. Problems related to wells in the field of sustainable management of underground water resources and water protection (in Hungarian). Vízügyi Közlöny (Hung. Water Bull.) 2021, 1022, 33–67. Available online: https://library.hungaricana.hu/hu/view/VizugyiKozlemenyek_2021/?pg=206&layout=s (accessed on 4 May 2023).
- Tran, H.Q.; Fehér, Z.Z.; Túri, N.; Rakonczai, J. Climate change as an environmental threat on the central plains of the Carpathian Basin based on regional water balances. Geogr. Pannonica 2022, 26, 184–199. [Google Scholar] [CrossRef]
- Trásy, B.; Kovács, J.; Hatvani, I.; Havril, T.; Németh, T.; Scharek, P.; Szabó, C. Assessment of the interaction between surface- and groundwater after the diversion of the inner delta of the River Danube (Hungary) using multivariate statistics. Anthropocene 2018, 22, 51–65. [Google Scholar] [CrossRef]
- Kubacki, M.; Tran, H. Non-iterative partitioned methods for uncoupling evolutionary groundwater-surface water flows. Fluids 2017, 2, 3. [Google Scholar] [CrossRef]
- Beliaev, A.; Krichevets, G. Qualitative effects of hydraulic conductivity distribution on groundwater flow in heterogeneous soils. Fluids 2018, 3, 102. [Google Scholar] [CrossRef]
- Syvitski, J.; Ángel, J.R.; Saito, Y.; Overeem, I.; Vörösmarty, C.J.; Wang, H.; Olago, D. Earth’s sediment cycle during the Anthropocene. Nat. Rev. Earth Environ. 2022, 3, 179–196. [Google Scholar] [CrossRef]
- Kalocsa, B.; Zsuffa, I. Changes in the water level of the Hungarian section of the Danube (in Hungarian). Hidrológiai Közlöny (Hung. J. Hydrol.) 1997, 77, 183–192. Available online: https://library.hungaricana.hu/hu/view/HidrologiaiKozlony_1997/?pg=188&layout=s (accessed on 4 May 2023).
- Goda, L.; Kalocsa, B.; Tamás, E.A. River bed erosion on the Hungarian section of the Danube. J. Environ. Sci. Sustain. Soc. 2007, 1, 47–54. [Google Scholar] [CrossRef]
- Habersack, H.; Jäger, E.; Hauer, C. The status of the Danube River sediment regime and morphology as a basis for future basin management. Int. J. River Basin Manag. 2013, 11, 153–166. [Google Scholar] [CrossRef]
- Habersack, H.; Hein, T.; Stanica, A.; Liska, I.; Mair, R.; Jäger, E.; Hauer, C.; Bradley, C. Challenges of river basin management: Current status of, and prospects for, the River Danube from a river engineering perspective. Sci. Total Environ. 2016, 543, 828–845. [Google Scholar] [CrossRef] [PubMed]
- Bonacci, O.; Oskoruš, D. The changes in the lower Drava River water level, discharge and suspended sediment regime. Environ. Earth. Sci. 2010, 59, 1661–1670. [Google Scholar] [CrossRef]
- Tomsett, C.; Leyland, J. Remote sensing of river corridors: A review of current trends and future directions. River Res. Appl. 2019, 35, 779–803. [Google Scholar] [CrossRef]
- Lewicka, O.; Specht, M.; Stateczny, A.; Specht, C.; Dardanelli, G.; Brčić, D.; Szostak, B.; Halicki, A.; Stateczny, M.; Widźgowski, S. Integration data model of the bathymetric monitoring system for shallow waterbodies using UAV and USV platforms. Remote Sens. 2022, 14, 4075. [Google Scholar] [CrossRef]
- Rentier, E.; Cammeraat, L. The environmental impacts of river sand mining. Sci. Total Environ. 2022, 838, 155877. [Google Scholar] [CrossRef]
- Pandey, S.; Kumar, G.; Kumari, N.; Pandey, R. Assessment of causes and impacts of sand mining on river ecosystem. In Hydrogeochemistry of Aquatic Ecosystems; John Wiley & Sons: Hoboken, NJ, USA, 2023; Chapter 16, pp. 357–379. [Google Scholar] [CrossRef]
- Borics, G.; Lukács, B.A.; Grigorszky, I.; Zsolt, L.-N.; László, G.-T.; Sándor, S.; Görgényi, J.; Várbíró, G. Phytoplankton-based shallow lake types in the Carpathian basin: Steps towards a bottom-up typology. Fundam. Appl. Limnol. 2014, 184, 23–34. [Google Scholar] [CrossRef]
- Kiss, A. Floods and Long-Term Water-Level Changes in Medieval Hungary; Springer International Publishing: Cham, Switzerland, 2019; pp. 1–896. [Google Scholar] [CrossRef]
- Kutics, K. Evolution of water quality of Lake Balaton. Ecocycles 2019, 5, 44–73. [Google Scholar] [CrossRef]
- Kutics, K.; Kravinszkaja, G. Lake Balaton hydrology and climate change. Ecocycles 2020, 6, 88–97. [Google Scholar] [CrossRef]
- Kutics, K. Peculiarities and problems of shallow lakes (in Hungarian). Acta Scientiarum Socialium 2013, 39, 11–34. Available online: http://journal.ke.hu/index.php/asc/article/view/313 (accessed on 4 May 2023).
- Nagy-Szijártó, B.C.; Szalmáné Csete, M. Investigating sustainable settlement development in the Lake Velence area. (In Hungarian). Modern Geográfia 2023, 18, 1–26. [Google Scholar] [CrossRef]
- Kiss, A. Historical climatology in Hungary: Role of documentary evidence in the study of past climates and hydrometeorological extremes. Idojárás (Q. J. Hung. Meteorol. Serv.) 2009, 113, 315–339. Available online: https://www.met.hu/ismeret-tar/kiadvanyok/idojaras/index.php?id=146 (accessed on 4 May 2023).
- Lóczy, D.; Dezso, J.; Gyenizse, P.; Czigány, S.; Tóth, G. Oxbow lakes: Hydromorphology. In The Drava River: Environmental Problems and Solutions; Lóczy, D., Ed.; Springer International Publishing: Cham, Switzerland, 2019; pp. 177–198. [Google Scholar] [CrossRef]
- Pálfai, I. (Ed.) Oxbow Lakes in Hungary (Magyarország Holtágai, in Hungarian); Ministry of Transport, Public Works and Water Management: Budapest, Hungary, 2001; pp. 1–232. ISBN 963 009156 9. [Google Scholar]
- Borics, G.; Ács, É.; Boda, P.; Boros, E.; Erős, T.; Grigorszky, I.; Kiss, K.T.; Lengyel, S.; Nagy, M.R.; Somogyi, B.; et al. Water bodies in Hungary—An overview of their management and present state (in Hungarian). Hidrológiai Közlöny (Hung. J. Hydrol.) 2016, 96, 57–67. Available online: https://library.hungaricana.hu/hu/view/HidrologiaiKozlony_2016/?pg=232&layout=s (accessed on 4 May 2023).
- Singh, K.P.; Stall, J.B. Derivation of base flow recession curves and parameters. Water Res. Res. 1971, 7, 292–303. [Google Scholar] [CrossRef]
- Wittenberg, H. Baseflow recession and recharge as nonlinear storage processes. Hydrol. Proc. 1999, 13, 715–726. [Google Scholar] [CrossRef]
- Guo, J. Application of general unit hydrograph model for baseflow separation from rainfall and streamflow data. J. Hydrol. Eng. 2022, 27, 04022027. [Google Scholar] [CrossRef]
- Giorgi, F. Thirty years of regional climate modeling: Where are we and where are we going next? J. Geophys. Res. Atmos. 2019, 124, 5696–5723. [Google Scholar] [CrossRef]
- Carter, J.; Leeson, A.; Orr, A.; Kittel, C.; van Wessem, J.M. Variability in Antarctic surface climatology across regional climate models and reanalysis datasets. Cryosphere 2022, 16, 3815–3841. [Google Scholar] [CrossRef]
- Saharwardi, M.S.; Kumar, P. Future drought changes and associated uncertainty over the homogenous regions of India: A multimodel approach. Int. J. Climatol. 2022, 42, 652–670. [Google Scholar] [CrossRef]
- Gallardo, V.; Sánchez-Gómez, E.; Riber, E.; Boé, J.; Terray, L. Evolution of high-temperature extremes over the main Euro-Mediterranean airports. Clim. Dyn. 2023, online first. [CrossRef]
- Hakala, K.; Addor, N.; Teutschbein, C.; Vis, M.; Dakhlaoui, H.; Seibert, J. Hydrological modeling of climate change impacts. In Encyclopedia of Water: Science, Technology, and Society; Maurice, P., Ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2019; pp. 2337–22356. [Google Scholar] [CrossRef]
- Gelybó, G.; Tóth, E.; Farkas, C.; Horel, A.; Kása, I.; Bakacsi, Z. Potential impacts of climate change on soil properties. Agrokémia Talajtan (Agrochem. Soil Sci.) 2018, 67, 121–141. [Google Scholar] [CrossRef]
- Meyer, J.; Neuper, M.; Mathias, L.; Zehe, E.; Pfister, L. Atmospheric conditions favouring extreme precipitation and flash floods in temperate regions of Europe. Hydrol. Earth Syst. Sci. 2022, 26, 6163–6183. [Google Scholar] [CrossRef]
- Steirou, E.; Gerlitz, L.; Sun, X.; Apel, H.; Agarwal, A.; Totz, S.; Merz, B. Towards seasonal forecasting of flood probabilities in Europe using climate and catchment information. Sci. Rep. 2022, 12, 13514. [Google Scholar] [CrossRef]
- Burrell, B.C.; Beltaos, S.; Turcotte, B. Effects of climate change on river-ice processes and ice jams. Int. J. River Basin Manag. 2022, online first. [CrossRef]
- Huokuna, M.; Morris, M.; Beltaos, S.; Burrell, B.C. Ice in reservoirs and regulated rivers. Int. J. River Basin Manag. 2022, 20, 1–16. [Google Scholar] [CrossRef]
- Lindenschmidt, K.-E.; Alfredsen, K.; Carstensen, D.; Choryński, A.; Gustafsson, D.; Halicki, M.; Hentschel, B.; Karjalainen, N.; Kögel, M.; Kolerski, T.; et al. Assessing and mitigating ice-jam flood hazards and risks: A European perspective. Water 2023, 15, 76. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jánosi, I.M.; Bíró, T.; Lakatos, B.O.; Gallas, J.A.C.; Szöllosi-Nagy, A. Changing Water Cycle under a Warming Climate: Tendencies in the Carpathian Basin. Climate 2023, 11, 118. https://doi.org/10.3390/cli11060118
Jánosi IM, Bíró T, Lakatos BO, Gallas JAC, Szöllosi-Nagy A. Changing Water Cycle under a Warming Climate: Tendencies in the Carpathian Basin. Climate. 2023; 11(6):118. https://doi.org/10.3390/cli11060118
Chicago/Turabian StyleJánosi, Imre Miklós, Tibor Bíró, Boglárka O. Lakatos, Jason A. C. Gallas, and András Szöllosi-Nagy. 2023. "Changing Water Cycle under a Warming Climate: Tendencies in the Carpathian Basin" Climate 11, no. 6: 118. https://doi.org/10.3390/cli11060118
APA StyleJánosi, I. M., Bíró, T., Lakatos, B. O., Gallas, J. A. C., & Szöllosi-Nagy, A. (2023). Changing Water Cycle under a Warming Climate: Tendencies in the Carpathian Basin. Climate, 11(6), 118. https://doi.org/10.3390/cli11060118