From Past to Present: Decoding Precipitation Patterns in a Complex Mediterranean River Basin
Abstract
:1. Introduction
2. Data and Methods
2.1. Pluviometric Network and Reference Stations
2.2. Climate and Seasonal Regime Patterns
2.3. Mean Areal Annual Precipitation (AMAP) Data
2.4. Model Development
3. Results and Discussion
3.1. Model Parameterisation and Evaluation
3.2. Reconstructed Rainfall Variability
4. Conclusions and Perspectives
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abatzoglou, J.T.; Dobrowski, S.Z.; Parks, S.A.; Hegewisch, K.C. TerraClimate, a high-resolution global dataset of monthly climate and climatic water balance from 1958–2015. Sci. Data 2018, 5, 170191. [Google Scholar] [CrossRef] [Green Version]
- Korell, L.; Auge, H.; Chase, J.M.; Harpole, W.S.; Knight, T.M. Responses of plant diversity to precipitation change are strongest at local spatial scales and in drylands. Nat. Commun. 2021, 12, 2489. [Google Scholar] [CrossRef] [PubMed]
- Wang, D.; Alimohammadi, N. Responses of annual runoff, evaporation, and storage change to climate variability at the watershed scale. Water Resour. Res. 2012, 48, W05546. [Google Scholar] [CrossRef] [Green Version]
- Pavlovic, S.; Perica, S.; St Laurent, M.; Mejia, A.; Knight, T.M. Intercomparison of selected fixed-area areal reduction factor methods. J. Hydrol. 2016, 537, 419–430. [Google Scholar] [CrossRef]
- Kim, J.; Lee, J.; Kim, D.; Kang, B. The role of rainfall spatial variability in estimating areal reduction factors. J. Hydrol. 2019, 568, 416–426. [Google Scholar] [CrossRef]
- Guo, B.; Zhang, J.; Meng, X.; Xu, T.; Song, Y. Long-term spatio-temporal precipitation variations in China with precipitation surface interpolated by ANUSPLIN. Sci. Rep. 2020, 10, 81. [Google Scholar] [CrossRef] [Green Version]
- Wu, Z.; Dijkstra, P.; Koch, G.W.; Hungate, B.A. Biogeochemical and ecological feedbacks in grassland responses to warming. Nat. Clim. Chang. 2012, 2, 458–461. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Field, C.B. Changes in ecologically critical terrestrial climate conditions. Science 2013, 341, 486–492. [Google Scholar] [CrossRef] [Green Version]
- Jung, M.; Reichstein, M.; Ciais, P.; Seneviratne, S.I.; Sheffield, J.; Goulden, M.L.; Bonan, G.; Cescatti, A.; Chen, J.; de Jeu, R.; et al. Recent decline in the global land evapotranspiration trend due to limited moisture supply. Nature 2010, 467, 951–954. [Google Scholar] [CrossRef] [Green Version]
- Good, S.P.; Noone, D.; Bowen, G. Hydrologic connectivity constrains partitioning of global terrestrial water fluxes. Science 2015, 349, 175–177. [Google Scholar] [CrossRef] [Green Version]
- Duffy, C.J. The terrestrial hydrologic cycle: An historical sense of balance. Wires Water 2017, 4, e1216. [Google Scholar] [CrossRef] [Green Version]
- Zeng, Q.; Chen, H.; Xu, C.-Y.; Jie, M.-X.; Chen, J.; Guo, S.-L.; Liu, J. The effect of rain gauge density and distribution on runoff simulation using a lumped hydrological modelling approach. J. Hydrol. 2018, 563, 106–122. [Google Scholar] [CrossRef]
- Kursinski, A.L.; Zeng, X. Areal estimation of intensity and frequency of summertime precipitation over a midlatitude region. Geophys. Res. Lett. 2006, 33, L22401. [Google Scholar] [CrossRef]
- Price, K.; Purucker, S.T.; Kraemer, S.R.; Babendreier, J.E.; Knightes, C.D. Comparison of radar and gauge precipitation data in watershed models across varying spatial and temporal scales. Hydrol. Process. 2014, 28, 3505–3520. [Google Scholar] [CrossRef]
- Donnelly, C.; Ernst, K.; Arheimer, B. A comparison of hydrological climate services at different scales by users and scientists. Clim. Serv. 2018, 11, 24–35. [Google Scholar] [CrossRef]
- Abatzoglou, J.T. Development of gridded surface meteorological data for ecological applications and modelling. Int. J. Climatol. 2011, 33, 121–131. [Google Scholar] [CrossRef]
- Easterling, D.R.; Kunkel, K.E.; Wehner, M.F.; Sun, L. Detection and attribution of climate extremes in the observed record. Weather Clim. Extrem. 2016, 11, 17–27. [Google Scholar] [CrossRef] [Green Version]
- Wainwright, J.; Mulligan, M. Environmental Modelling: Finding Simplicity in Complexity, 2nd ed.; John Wiley & Sons, Ltd.: Hoboken, NJ, USA, 2013. [Google Scholar]
- Okkan, U. Assessing the effects of climate change on monthly precipitation: Proposing of a downscaling strategy through a case study in Turkey. KSCE J. Civ. Eng. 2015, 19, 1150–1156. [Google Scholar] [CrossRef]
- Harvey, L.D.D. Upscaling in global change research. Clim. Chang. 2000, 44, 225–263. [Google Scholar] [CrossRef]
- Piras, M.; Mascaro, G.; Deidda, R.; Vivoni, E.R. Impacts of climate change on precipitation and discharge extremes through the use of statistical downscaling approaches in a Mediterranean basin. Sci. Total Environ. 2016, 543, 952–964. [Google Scholar] [CrossRef] [PubMed]
- Ashouri, H.; Hsu, K.-L.; Sorooshian, S.; Braithwaite, D.K.; Knapp, K.R.; Cecil, K.D.; Nelson, B.R.; Prat, O.P. PERSIANN-CDR: Daily precipitation climate data record from multisatellite observations for hydrological and climate studies. Bull. Am. Meteorol. Soc. 2015, 96, 69–83. [Google Scholar] [CrossRef] [Green Version]
- Tang, Q.; Gao, H.; Lu, H.; Lettenmaier, D.P. Remote sensing: Hydrology. Prog. Phys. Geogr. 2009, 33, 490–509. [Google Scholar] [CrossRef]
- Sood, A.; Smakhtin, V. Global hydrological models: A review. Hydrol. Sci. J. 2015, 60, 6667. [Google Scholar] [CrossRef]
- Karger, D.K.; Conrad, O.; Böhner, J.; Kawohl, T.; Kreft, H.; Soria-Auza, R.W.; Zimmermann, N.E.; Linder, H.P.; Kessler, M. Climatologies at high resolution for the earth’s land surface areas. Sci. Data 2017, 4, 170122. [Google Scholar] [CrossRef] [Green Version]
- Breinl, K.; Di Baldassarre, G.; Lopez, M.G.; Hagenlocher, M.; Vico, G.; Rutgersson, A. Can weather generation capture precipitation patterns across different climates, spatial scales and under data scarcity? Sci. Rep. 2017, 7, 5449. [Google Scholar] [CrossRef] [Green Version]
- Ali, G.; Sajjad, M.; Kanwal, S.; Xiao, T.; Khalid, S.; Shoaib, F.; Gul, H.N. Spatial–temporal characterization of rainfall in Pakistan during the past half-century (1961–2020). Sci. Rep. 2021, 11, 6935. [Google Scholar] [CrossRef] [PubMed]
- Merz, R.; Parajka, J.; Blöschl, G. Scale effects in conceptual hydrological modelling. Water Resour. Res. 2009, 45, W09405. [Google Scholar] [CrossRef]
- Del Giudice, D.; Albert, C.; Rieckermann, J.; Reichert, P. Describing the catchment-averaged precipitation as a stochastic process improves parameter and input estimation. Water Resour. Res. 2016, 52, 3162–3186. [Google Scholar] [CrossRef] [Green Version]
- Zhang, A.; Shi, H.; Li, T.; Fu, X. Analysis of the influence of rainfall spatial uncertainty on hydrological simulations using the bootstrap method. Atmosphere 2018, 9, 71. [Google Scholar] [CrossRef] [Green Version]
- Diodato, N. Ricostruzione storica dei rilevamenti pluviometrici nell’Italia peninsulare: Il caso dell’Osservatorio Meteorologico di Benevento—Centro Storico (1869–1999). Boll. Geofis. 2002, 25, 27–44. (In Italian) [Google Scholar]
- Diodato, N. Climatic fluctuations in Southern Italy since the 17th century: Reconstruction with precipitation records at Benevento. Clim. Chang. 2007, 80, 411–431. [Google Scholar] [CrossRef]
- Diodato, N. Montevergine: Unica vedetta storica dell’Appennino fondata per mezzo di Padre Francesco Denza. Boll. Geofis. 1995, 18, 47–51. (In Italian) [Google Scholar]
- Capozzi, V.; Budillon, G. Time series analysis of climatological records from a high altitude observatory in Southern Italy (Montevergine, AV). In Proceedings of the First Annual Conference “Climate Change and Its Implications on Ecosystem Services and Society”, Lecce, Italy, 22–23 September 2013; Società Italiana per le Scienze del Clima: Lecce, Italy, 2013; pp. 1–25. [Google Scholar]
- Buzzi, A.; Tosi, E. Statistica dei transienti atmosferici in area Mediterranea. Boll. Geofis. 1991, 14, 87–93. (In Italian) [Google Scholar]
- Diodato, N.; Ceccarelli, M.; Bellocchi, G. Decadal and century-long changes in the reconstruction of erosive rainfall anomalies at a Mediterranean fluvial basin. Earth Surf. Process. Landf. 2008, 33, 2078–2093. [Google Scholar] [CrossRef]
- Thiessen, A.H. Precipitation averages for large areas. Mon. Weather Rev. 1911, 39, 1082–1089. [Google Scholar] [CrossRef]
- Zeiger, S.; Hubbart, J. An assessment of mean areal precipitation methods on simulated stream flow: A SWAT model performance assessment. Water 2017, 9, 459. [Google Scholar] [CrossRef] [Green Version]
- Salas, J.D.; Govindaraju, R.S.; Anderson, M.; Arabi, M.; Francés, F.; Suarez, W.; Lavado-Casimiro, W.S.; Green, T.R. Handbook of Environmental Engineering, Volume 15: Modern Water Resources Engineering; Wang, L.K., Yang, C.T., Eds.; Springer Science & Business Media: New York, NY, USA, 2014; pp. 1–126. [Google Scholar]
- Pardoe, I. Applied Regression Modelling; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2012. [Google Scholar]
- Nash, J.E.; Sutcliffe, J.V. River flow forecasting through conceptual models part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Smirnov, N. Table for estimating the goodness of fit of empirical distributions. Ann. Mat. Stat. 1948, 19, 279–281. [Google Scholar] [CrossRef]
- Durbin, J.; Watson, G.S. Testing for serial correlation in least squares regression. III. Biometrika 1971, 58, 1–19. [Google Scholar] [CrossRef]
- Student, B. The probable error of a mean. Biometrika 1908, 6, 1–25. [Google Scholar] [CrossRef]
- Wilcoxon, F. Individual comparisons by ranking methods. Biom. Bull. 1945, 1, 80–83. [Google Scholar] [CrossRef]
- Kendall, M. A new measure of rank correlation. Biometrika 1938, 30, 81–89. [Google Scholar] [CrossRef]
- Buishand, T.A. Some methods for testing homogeneity of rainfall records. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Štěpánek, P. AnClim—Software for Time Series Analysis; Faculty of Natural Sciences, Masaryk University: Brno, Czechia, 2005. [Google Scholar]
- Royston, P.; Sauerbrei, W. Multivariate Model-Building; John Wiley & Sons, Ltd.: Chichester, UK, 2008. [Google Scholar]
- Mazzarela, A.; Tranfaglia, G.; Di Donna, G. Il contributo della geometria frattale alla stima del deficit risolutivo di una rete di pluviometri e del rischio di piogge intense. Boll. Geofis. 1999, 22, 61–71. (In Italian) [Google Scholar]
Statistics | MAPMod | MAPObs | MAPMod | MAPObs |
---|---|---|---|---|
Stnd. skewness | −0.29 | 0.28 | 1.68 | 1.97 |
Stnd. kurtosis | −1.73 | −1.52 | 0.09 | 0.67 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Diodato, N.; Bellocchi, G. From Past to Present: Decoding Precipitation Patterns in a Complex Mediterranean River Basin. Climate 2023, 11, 141. https://doi.org/10.3390/cli11070141
Diodato N, Bellocchi G. From Past to Present: Decoding Precipitation Patterns in a Complex Mediterranean River Basin. Climate. 2023; 11(7):141. https://doi.org/10.3390/cli11070141
Chicago/Turabian StyleDiodato, Nazzareno, and Gianni Bellocchi. 2023. "From Past to Present: Decoding Precipitation Patterns in a Complex Mediterranean River Basin" Climate 11, no. 7: 141. https://doi.org/10.3390/cli11070141
APA StyleDiodato, N., & Bellocchi, G. (2023). From Past to Present: Decoding Precipitation Patterns in a Complex Mediterranean River Basin. Climate, 11(7), 141. https://doi.org/10.3390/cli11070141