Exploring Low-Carbon Design and Construction Techniques: Lessons from Vernacular Architecture
Abstract
:1. Introduction
1.1. Research Motivation
1.2. Vernacular Architecture
2. Research Methodology and Materials
3. Use of Bio-Based (Low-Carbon) Materials in Vernacular Architecture
3.1. Primary Raw Materials
3.1.1. Adobe Block (Mud Brick)
3.1.2. Rammed Earth
3.1.3. Cob Construction or (Unburnt) Clay Masonry
3.1.4. Sod Block
3.1.5. Thatch
3.1.6. Bamboo
3.2. Secondary Natural Raw Materials
3.2.1. Straw Bale
3.2.2. Cordwood
4. Low-Carbon Design and Construction Techniques
4.1. Design for Disassembly
4.2. Design for Modularity and Tectonics
5. Discussion
6. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Ruiz, L.A.L.; Ramón, X.R.; Domingo, S.G. The circular economy in the construction and demolition waste sector–A review and an integrative model approach. J. Clean. Prod. 2020, 248, 119238. [Google Scholar]
- Munaro, M.R.; Tavares, S.F.; Bragança, L. Towards circular and more sustainable buildings: A systematic literature review on the circular economy in the built environment. J. Clean. Prod. 2020, 260, 121134. [Google Scholar]
- Gallego-Schmid, A.; Chen, H.-M.; Sharmina, M.; Mendoza, J.M.F. Links between circular economy and climate change mitigation in the built environment. J. Clean. Prod. 2020, 260, 121115. [Google Scholar]
- Fernandes, J.; Peixoto, M.; Mateus, R.; Gervásio, H. Life cycle analysis of environmental impacts of earthen materials in the Portuguese context: Rammed earth and compressed earth blocks. J. Clean. Prod. 2019, 241, 118286. [Google Scholar]
- Pierzchalski, M. Straw Bale Building as a Low-Tech Solution: A Case Study in Northern Poland. Sustainability 2022, 14, 16511. [Google Scholar]
- Snep, R.P.; Voeten, J.G.; Mol, G.; Van Hattum, T. Nature based solutions for urban resilience: A distinction between no-tech, low-tech and high-tech solutions. Front. Environ. Sci. 2020, 8, 599060. [Google Scholar]
- Sommese, F.; Ausiello, G. From Nature to Architecture for Low Tech Solutions: Biomimetic Principles for Climate-Adaptive Building Envelope; Springer: Berlin/Heidelberg, Germany, 2022; pp. 429–438. [Google Scholar]
- Curran, M.A. Biobased Materials. In Kirk-Othmer Encyclopedia of Chemical Technology; John Wiley & Sons: Hoboken, NJ, USA, 2010; ISBN 978-0-471-23896-6. [Google Scholar]
- Pomponi, F.; Hart, J.; Arehart, J.H.; D’Amico, B. Buildings as a Global Carbon Sink? A Reality Check on Feasibility Limits. One Earth 2020, 3, 157–161. [Google Scholar]
- Lal, R.; Negassa, W.; Lorenz, K. Carbon sequestration in soil. Curr. Opin. Environ. Sustain. 2015, 15, 79–86. [Google Scholar]
- Göswein, V.; Arehart, J.; Pittau, F.; Pomponi, F.; Lamb, S.; Zea Escamilla, E.; Freire, F.; Silvestre, J.D.; Habert, G. Wood in buildings: The right answer to the wrong question. IOP Conf. Ser. Earth Environ. Sci. 2022, 1078, 012067. [Google Scholar]
- Churkina, G.; Organschi, A.; Reyer, C.P.O.; Ruff, A.; Vinke, K.; Liu, Z.; Reck, B.K.; Graedel, T.E.; Schellnhuber, H.J. Buildings as a global carbon sink. Nat. Sustain. 2020, 3, 269–276. [Google Scholar]
- Hamiltton, I.; Rapf, O.; Kockat, D.; Zuhaib, D. 2021 Global Status Report for Buildings and Construction. Available online: https://www.unep.org/resources/report/2021-global-status-report-buildings-and-construction (accessed on 10 June 2023).
- Pei, S.; van de Lindt, J.W.; Popovski, M.; Berman, J.W.; Dolan, J.D.; Ricles, J.; Sause, R.; Blomgren, H.; Rammer, D.R. Cross-Laminated Timber for Seismic Regions: Progress and Challenges for Research and Implementation. J. Struct. Eng. 2016, 142, E2514001. [Google Scholar]
- Oliver, P. Built to Meet Needs: Cultural Issues in Vernacular Architecture; Routledge: Oxfordshire, UK, 2007; ISBN 978-0-08-047630-8. [Google Scholar]
- Chandel, S.; Sharma, V.; Marwah, B.M. Review of energy efficient features in vernacular architecture for improving indoor thermal comfort conditions. Renew. Sustain. Energy Rev. 2016, 65, 459–477. [Google Scholar]
- Dabaieh, M.; Maguid, D.; El-Mahdy, D. Circularity in the New Gravity—Re-Thinking Vernacular Architecture and Circularity. Sustainability 2021, 14, 328. [Google Scholar]
- Fernandes, J.E.P.; Mateus, R.; Bragança, L. The Potential of Vernacular Materials to the Sustainable Building Design. In Vernacular Heritage and Earthen Architecture: Contributions for Sustainable Development; Taylor & Francis Group: London, UK, 2014. [Google Scholar]
- Getty Research Institute International Style (Modern European Architecture Style). Available online: https://www.getty.edu/vow/AATFullDisplay?find=international+style&logic=AND¬e=&page=1&subjectid=300021472 (accessed on 10 June 2023).
- Mota, L.; Mateus, R.; Bragança, L. The Contribution of the Maintenance Phase for the Environmental Life-Cycle Impacts of a Residential Building. In Proceedings of the BSA 2012—1st International Conference on Sustainable Building, Porto, Portugal, 23–25 May 2012; Green Lines Institute for Sustainable Development: Porto, Portugal, 2012. [Google Scholar]
- Fatorić, S.; Seekamp, E. Are cultural heritage and resources threatened by climate change? A systematic literature review. Clim. Chang. 2017, 142, 227–254. [Google Scholar]
- Jigyasu, R. Does Cultural Heritage Make More Resilient Cities? Available online: https://www.urbanet.info/does-cultural-heritage-make-more-resilient-cities/ (accessed on 22 November 2022).
- Ashtari, M.N. Facing Climate Change: The Importance of Protecting Earthen Heritage Traditional Knowledge. In Proceedings of the 2020 ICOMOS 6 ISCs Joint Meeting Proceedings, Taiwan, China, 17 October–17 October 2020; Volume 68. [Google Scholar]
- Zhai, Z.J.; Previtali, J.M. Ancient vernacular architecture: Characteristics categorization and energy performance evaluation. Energy Build. 2010, 42, 357–365. [Google Scholar]
- De Dear, R.; Brager, G.S. Developing an adaptive model of thermal comfort and preference. ASHRAE Trans. 1998, 104, 145. [Google Scholar]
- Aktürk, G.; Fluck, H. Vernacular Heritage as a Response to Climate: Lessons for Future Climate Resilience from Rize, Turkey. Land 2022, 11, 276. [Google Scholar]
- Milgram, P.; Kishino, F. A taxonomy of mixed reality visual displays. IEICE Trans. Inf. Syst. 1994, 77, 1321–1329. [Google Scholar]
- Starostin, S.A. The Evolution of the Human Language Project. Available online: https://starling.rinet.ru/intrab.php?lan=en (accessed on 24 November 2022).
- Previtali, J.M.; Zhai, Z. A taxonomy of vernacular architecture. Energy Build. 2016, 110, 71–78. [Google Scholar]
- Qu, J.-J.; Cheng, G.-D.; Zhang, K.-C.; Wang, J.-C.; Zu, R.-P.; Fang, H.-Y. An experimental study of the mechanisms of freeze/thaw and wind erosion of ancient adobe buildings in northwest China. Bull. Eng. Geol. Environ. 2007, 66, 153–159. [Google Scholar]
- Silveira, D.; Varum, H.; Costa, A.; Martins, T.; Pereira, H.; Almeida, J. Mechanical properties of adobe bricks in ancient constructions. Constr. Build. Mater. 2012, 28, 36–44. [Google Scholar]
- Bahobail, M.A. The mud additives and their effect on thermal conductivity of adobe bricks. JES J. Eng. Sci. 2012, 40, 21–34. [Google Scholar]
- Morris, J.; Blier, S.P. Butabu: Adobe Architecture of West Africa; Princeton Architectural Press: New York, NY, USA, 2004; ISBN 1-56898-413-8. [Google Scholar]
- El-Derby, A.; Elyamani, A. The adobe barrel vaulted structures in ancient Egypt: A study of two case studies for conservation purposes. Mediterr. Archaeol. Archaeom. 2016, 16, 295–315. [Google Scholar]
- Tunali, S. Adobe Structures As Our Cultural Heritage and Their Features. Eur. Sci. J. 2015. [Google Scholar]
- Uğuryol, M.; Kulakoğlu, F. A preliminary study for the characterization of Kültepe’s adobe soils with the purpose of providing data for conservation and archaeology. J. Cult. Herit. 2013, 14, e117–e124. [Google Scholar]
- Ramakrishnan, S.; Loganayagan, S.; Kowshika, G.; Ramprakash, C.; Aruneshwaran, M. Adobe blocks reinforced with natural fibres: A review. Mater. Today Proc. 2021, 45, 6493–6499. [Google Scholar]
- Bouguerra, A.; Ledhem, A.; de Barquin, F.; Dheilly, R.M.; Quéneudec, M. Effect of microstructure on the mechanical and thermal properties of lightweight concrete prepared from clay, cement, and wood aggregates. Cem. Concr. Res. 1998, 28, 1179–1190. [Google Scholar]
- Webster, F.A.; Tolles, E.L. Earthquake Damage to Historic and Older Adobe Buildings during the 1994 Northridge, California Earthquake. In Proceedings of the 12th World Conference on Earthquake Engineering, Auckland, New Zealand, 30 January–4 February 2000. [Google Scholar]
- Obonyo, E.; Exelbirt, J.; Baskaran, M. Durability of Compressed Earth Bricks: Assessing Erosion Resistance Using the Modified Spray Testing. Sustainability 2010, 2, 3639–3649. [Google Scholar]
- Fabbri, A.; Morel, J.-C.; Aubert, J.-E.; Bui, Q.-B.; Gallipoli, D.; Reddy, B. Testing and Characterisation of Earth-based Building Materials and Elements. Rilem State Art Rep. 2022, 35, 296. [Google Scholar]
- Tang, X.; Shen, S.; Su, X. From rammed earth to stone wall: Chronological insight into the settlement change of the Lower Xiajiadian culture. PLoS ONE 2022, 17, e0273161. [Google Scholar]
- Hall, M.; Allinson, D. Assessing the effects of soil grading on the moisture content-dependent thermal conductivity of stabilised rammed earth materials. Appl. Therm. Eng. 2009, 29, 740–747. [Google Scholar]
- Azil, A.; Le Guern, M.; Touati, K.; Sebaibi, N.; Boutouil, M.; Streiff, F.; Goodhew, S.; Gomina, M. Earth construction: Field variabilities and laboratory reproducibility. Constr. Build. Mater. 2022, 314, 125591. [Google Scholar]
- Ben-Alon, L.; Loftness, V.; Harries, K.A.; DiPietro, G.; Hameen, E.C. Cradle to site Life Cycle Assessment (LCA) of natural vs conventional building materials: A case study on cob earthen material. Build. Environ. 2019, 160, 106150. [Google Scholar]
- Miccoli, L.; Müller, U.; Fontana, P. Mechanical behaviour of earthen materials: A comparison between earth block masonry, rammed earth and cob. Constr. Build. Mater. 2014, 61, 327–339. [Google Scholar]
- Hamard, E.; Cazacliu, B.; Razakamanantsoa, A.; Morel, J.-C. Cob, a vernacular earth construction process in the context of modern sustainable building. Build. Environ. 2016, 106, 103–119. [Google Scholar]
- Fodde, E. Traditional earthen building techniques in Central Asia. Int. J. Archit. Herit. 2009, 3, 145–168. [Google Scholar]
- Akinwumi, I.I.; Awoyera, P.O.; Bello, O.O. Indigenous Earth Building Construction Technology in Ota, Nigeria. Indian J. Tradit. Knowl. 2015, 14, 206–212. [Google Scholar]
- Niroumand, H.; Zain, M.F.M.; Jamil, M. Various Types of Earth Buildings. Procedia-Soc. Behav. Sci. 2013, 89, 226–230. [Google Scholar]
- Keefe, L. Earth Building: Methods and Materials, Repair and Conservation; Taylor & Francis: London, UK; New York, NY, USA, 2005; ISBN 978-0-415-32322-2. [Google Scholar]
- Quagliarini, E.; Stazi, A.; Pasqualini, E.; Fratalocchi, E. Cob Construction in Italy: Some Lessons from the Past. Sustainability 2010, 2, 3291–3308. [Google Scholar]
- Forster, A.M.; Medero, G.M.; Morton, T.; Buckman, J. Traditional cob wall: Response to flooding. Struct. Surv. 2008, 26, 302–321. [Google Scholar]
- Panneton, D.; Sod Houses. The Canadian Encyclopedia. Available online: https://www.thecanadianencyclopedia.ca/en/article/sod-houses (accessed on 12 July 2022).
- Bateman, S.; Turner, K.; Bateman, I. Socio-Economic Impact of the Change in the Quality of Thatching Reed; University of East Anglia: Norwich, UK, 1990. [Google Scholar]
- Dabaieh, M.; Sakr, M. Building with Reeds: Revitalizing a Building Tradition for Low Carbon Building Practice. In Proceedings of the International Conference CIAV+ ICTC, Jeju Island, Republic of Korea, 28–30 October 2015; pp. 72–88. [Google Scholar]
- Kimura, K.; Yamazaki, K. Passive Cooling Performance of Thatched Roofs in Traditional Japanese Vernacular Houses. In Passive and Low Energy Alternatives I; Elsevier: Amsterdam, The Netherlands, 1982; pp. 3-1–3-7. ISBN 978-0-08-029405-6. [Google Scholar]
- Juwono, I.L.; Susanto, D. The Reeds Performance Study on Traditional Architecture as Building Material in Wae Rebo Village. E3S Web Conf. 2018, 67, 04015. [Google Scholar]
- Manandhar, R.; Kim, J.-H.; Kim, J.-T. Environmental, social and economic sustainability of bamboo and bamboo-based construction materials in buildings. J. Asian Archit. Build. Eng. 2019, 18, 49–59. [Google Scholar]
- Agyekum, K.; Kissi, E.; Danku, J.C. Vengala. Sci. Afr. 2020, 8, e00424. [Google Scholar]
- Vengala, J.; Mohanthy, B.; Raghunath, S. Seismic Performance of Bamboo Housing–An overview. In Proceedings of the World Bamboo Congress 2015, Damyang, Republic of Korea, 17–22 September 2015; Volume 1, pp. 389–407. [Google Scholar]
- Sassu, M.; De Falco, A.; Giresini, L.; Puppio, M. Structural Solutions for Low-Cost Bamboo Frames: Experimental Tests and Constructive Assessments. Materials 2016, 9, 346. [Google Scholar]
- Yadav, M.; Mathur, A. Bamboo as a sustainable material in the construction industry: An overview. Mater. Today Proc. 2021, 43, 2872–2876. [Google Scholar]
- Amede, E.A.; Hailemariama, E.K.; Hailemariam, L.M.; Nuramo, D.A. A Review of Codes and Standards for Bamboo Structural Design. Adv. Mater. Sci. Eng. 2021, 2021, 1–9. [Google Scholar]
- Kyakula, M.; Gombya, I. Suitability of Bamboo for Construction and Environmental Preservation. J. Civ. Eng. Res. Pract. 2008, 5, 43–51. [Google Scholar]
- Disén, K.; Clouston, P.L. Building with bamboo: A review of culm connection technology. J. Green Build. 2013, 8, 83–93. [Google Scholar]
- Nath, A.J.; Lal, R.; Das, A.K. Ethnopedology and soil properties in bamboo (Bambusa sp.) based agroforestry system in North East India. CATENA 2015, 135, 92–99. [Google Scholar]
- Onyegiri, I.; Ugochukwu, I.B. Traditional building materials as a sustainable resource and material for low cost housing in Nigeria: Advantages, challenges and the way forward. Int. J. Res. Chem. Metall. Civ. Eng. 2016, 3, 247–252. [Google Scholar]
- Ejiga, O.; Paul, O.; Cordelia, O. Sustainability in Traditional African Architecture: A Springboard for Sustainable Urban Cities. In Proceedings of the Sustainable Futures: Architecture and Urbanism in the Global South, Kampala, Uganda, 27–30 June 2012; pp. 27–30. Available online: http://sfc2012.org/opaluwa_obi_osasona.pdf (accessed on 10 June 2023).
- Kubba, S. Green Building Materials and Products. In Handbook of Green Building Design and Construction; Butterworth-Heinemann: Oxford, UK, 2017. [Google Scholar] [CrossRef]
- Tlaiji, G.; Biwole, P.; Ouldboukhitine, S.; Pennec, F. A Mini-Review on Straw Bale Construction. Energies 2022, 15, 7859. [Google Scholar]
- Goodhew, S.; Griffiths, R. Sustainable earth walls to meet the building regulations. Energy Build. 2005, 37, 451–459. [Google Scholar]
- Marques, B.; Tadeu, A.; Almeida, J.; António, J.; de Brito, J. Characterisation of sustainable building walls made from rice straw bales. J. Build. Eng. 2020, 28, 101041. [Google Scholar]
- Alcorn, A.; Donn, M. Life Cycle Potential of Strawbale and Timber for Carbon Sequestration in House Construction. In Proceedings of the 2nd International Conference on Sustainable Construction Materials and Technologies, Ancona, Italy, 28–30 June 2010; pp. 28–30. [Google Scholar]
- D’Alessandro, F.; Bianchi, F.; Baldinelli, G.; Rotili, A.; Schiavoni, S. Straw bale constructions: Laboratory, in field and numerical assessment of energy and environmental performance. J. Build. Eng. 2017, 11, 56–68. [Google Scholar]
- Mouterde, R.; Morel, J.C.; Martinet, V.; Sallet, F. The mechanical performance of cordwood. Biosyst. Eng. 2011, 108, 237–243. [Google Scholar]
- Tishler, W.H. Stovewood construction in the Upper Midwest and Canada: A regional vernacular architectural tradition. Perspect. Vernac. Archit. 1982, 1, 125–136. [Google Scholar]
- Roy, R. Cordwood Building: The State of the Art; New Society Publishers: Gabriola Island, BC, Canada, 2003. [Google Scholar]
- Hagman, O. A Technology in Permanent Transition: 200 Years of Cordwood Building with Consumers as Producers. Icon 2012, 18, 142–156. [Google Scholar]
- Magwood, C. Essential Hempcrete Construction: The Complete Step-by-Step Guide; New Society Publishers: Gabriola, BC, Canada, 2016; ISBN 0-86571-819-9. [Google Scholar]
- Thomas, S.C.; Martin, A.R. Carbon content of tree tissues: A synthesis. Forests 2012, 3, 332–352. [Google Scholar]
- Ávila, F.; Puertas, E.; Gallego, R. Characterization of the mechanical and physical properties of unstabilized rammed earth: A review. Constr. Build. Mater. 2021, 270, 121435. [Google Scholar]
- Welsch, R.L. Sod Construction on the Plains. Pioneer Am. 1969, 1, 13–17. [Google Scholar]
- Christoforou, E.; Kylili, A.; Fokaides, P.A.; Ioannou, I. Cradle to site Life Cycle Assessment (LCA) of adobe bricks. J. Clean. Prod. 2016, 112, 443–452. [Google Scholar]
- Esteves, A.; Ganem, C.; Fernández, E.; Mitchell, J. Thermal Insulating Material for Low-Income Housing. In Proceedings of the 20th Conference on passive and Low Energy Architecture, Santiago, Chile, 9–12 November 2003. [Google Scholar]
- Pervaiz, M.; Sain, M.M. Carbon storage potential in natural fiber composites. Resour. Conserv. Recycl. 2003, 39, 325–340. [Google Scholar]
- Shah, D.U.; Bock, M.C.D.; Mulligan, H.; Ramage, M.H. Thermal conductivity of engineered bamboo composites. J. Mater. Sci. 2016, 51, 2991–3002. [Google Scholar]
- Guine, R.d.P.F.; dos Reis Correia, P.M. Engineering Aspects of Cereal and Cereal-Based Products; CRC Press: Boca Raton, FL, USA, 2013; ISBN 1-4398-8702-0. [Google Scholar]
- Brics, A.; Serdjuks, D.; Gravit, M.; Buka-Vaivade, K.; Goremikins, V.; Vatin, N.I.; Podkoritovs, A. The Behaviour of Load-Carrying Members from Cordwood. Buildings 2022, 12, 1702. [Google Scholar]
- Dick, K.; Chaput, L. Thermal Monitoring of Stackwall/Cordwood Walls in a Northern Temperate Climate. In Proceedings of the Continental Cordwood Conference, Koksijde, Belgium, 4 January 2005. [Google Scholar]
- Watson, L.; McCabe, K. La técnica constructiva del cob. Pasado, presente y futuro. Inf. Constr. 2011, 63, 59–70. [Google Scholar]
- Saxton, R. Performance of cob as a building material. Struct. Eng. 1995, 73, 111–115. [Google Scholar]
- Bigfoot Turf. How to Measure How Much Sod You Need and How to Install It. Available online: https://bigfootturf.com/how-to-measure-how-much-sod-you-need-and-how-to-install-it/#:~:text=Sod%20consists%20of%20grass%20and,golf%20courses%2C%20and%20sports%20stadiums (accessed on 5 January 2023).
- Rahim, N.L.; Ibrahim, N.M.; Salehuddin, S.; Mohammed, S.A.; Othman, M.Z. Investigation of bamboo as concrete reinforcement in the construction for low-cost housing industry. IOP Conf. Ser. Earth Environ. Sci. 2020, 476, 012058. [Google Scholar]
- Sinha, A.; Way, D.; Mlasko, S. Structural Performance of Glued Laminated Bamboo Beams. J. Struct. Eng. 2014, 140, 04013021. [Google Scholar]
- Li, H.; Su, J.; Xiong, Z.; Ashraf, M.; Corbi, I.; Corbi, O. Evaluation on the Ultimate Bearing Capacity for Laminated Bamboo Lumber Columns under Eccentric Compression; Elsevier: Amsterdam, The Netherlands, 2020; Volume 28, pp. 1572–1579. [Google Scholar]
- Varela, S.; Correal, J.; Yamin, L.; Ramirez, F. Cyclic performance of glued laminated Guadua bamboo-sheathed shear walls. J. Struct. Eng. 2013, 139, 2028–2037. [Google Scholar]
- Koh, C.H.A.; Kraniotis, D. A review of material properties and performance of straw bale as building material. Constr. Build. Mater. 2020, 259, 120385. [Google Scholar]
- Szewczyk, J. Cordwood Heritage. In Urban Heritage: Research, Interpretation, Education; Vilnius Gediminas Technical University Publishing House Technika: Vilnius, Lithuania, 2007; pp. 120–128. [Google Scholar] [CrossRef]
- The Center for Resourceful Building Technology. Indigenous Building Materials: An Overview; The Center for Resourceful Building Technology: Gaithersburg, MD, USA, 1995. [Google Scholar]
- Minunno, R.; O’Grady, T.; Morrison, G.M.; Gruner, R.L. Investigating the embodied energy and carbon of buildings: A systematic literature review and meta-analysis of life cycle assessments. Renew. Sustain. Energy Rev. 2021, 143, 110935. [Google Scholar]
- Knaack, A.M.; Kurama, Y.C. Behavior of Reinforced Concrete Beams with Recycled Concrete Coarse Aggregates. J. Struct. Eng. 2015, 141, B4014009. [Google Scholar]
- Bogue, R. Design for disassembly: A critical twenty-first century discipline. Assem. Autom. 2007, 27, 285–289. [Google Scholar]
- Srour, I.; Chong, W.K.; Zhang, F. Sustainable recycling approach: An understanding of designers’ and contractors’ recycling responsibilities throughout the life cycle of buildings in two US cities: Sustainable Recycling Approach. Sustain. Dev. 2012, 20, 350–360. [Google Scholar]
- Peters, T.F. Building the Nineteenth Century; MIT Press: Cambridge, MA, USA, 1996; ISBN 978-0-262-16160-2. [Google Scholar]
- Fukuda, M. “Repair by Disassembly” (Jap. Kaitai Shūri) in Japan. In Authenticity in Architectural Heritage Conservation; Springer: Berlin/Heidelberg, Germany, 2017; pp. 247–260. [Google Scholar]
- Jang, H.; Ahn, Y.; Roh, S. Comparison of the Embodied Carbon Emissions and Direct Construction Costs for Modular and Conventional Residential Buildings in South Korea. Buildings 2022, 12, 51. [Google Scholar]
- Crowther, P. Historic Trends in Building Disassebly. In Proceedings of the Technology in Transition: Mastering the Impacts-ACSA/CIB 1999 International Science and Technology Conference, Montreal, QC, Canada, 25–29 June 1999. [Google Scholar]
- Zhang, S. Analysis of the Modified Materials System in Construction Methods. Southeast Univ. Press 1990, 20, 8–14. [Google Scholar]
- Knapp, R.G. China’s Old Dwellings; University of Hawaii Press: Honolulu, HI, USA, 2000; ISBN 0-8248-2214-5. [Google Scholar]
- Rashid, M.; Ara, D.R. Modernity in tradition: Reflections on building design and technology in the Asian vernacular. Front. Archit. Res. 2015, 4, 46–55. [Google Scholar]
- Bergdoll, B.; Dickerman, L. Bauhaus 1919–1933: Workshops for Modernity; The Museum of Modern Art: New York, NY, USA, 2009; ISBN 0-87070-758-2. [Google Scholar]
Material | Reference | Region/Country |
---|---|---|
Adobe | [30] | China |
[31] | Portugal | |
[32] | Middle East | |
[33] | Africa | |
[34] | Egypt | |
[35] | Egypt | |
[36] | Egypt | |
[37] | Global | |
[38] | France | |
[39] | United States | |
[40] | Tanzania | |
Rammed earth | [41] [42] | Fertile Crescent China |
[4] | Portugal | |
[1] | Global | |
[43] | British Isles | |
Cob | [44] | France |
[45] | United States | |
[46] | Global | |
[47] | Europe | |
[48] | Central Asia | |
[49] | Nigeria | |
[50] | Yemen | |
[51] | Britain | |
[52] | Italy | |
[53] | Britain | |
Sod | [54] | North America |
Thatch (reed) | [55] | Middle East |
[56] | Global | |
[57] | Japan | |
[58] | Indonesia | |
Bamboo | [59] | South Korea |
[60] | Ghana | |
[61] | India | |
[62] | Italy | |
[63] | India | |
[64] | Global | |
[65] | Global | |
[66] | Global | |
[67] | India | |
Straw bale | [68] | Nigeria |
[69] | Africa | |
[70] | Middle East | |
[71] | Global | |
[72] | Britain | |
[73] | Portugal | |
[74] | New Zealand | |
[75] | Italy | |
Cordwood | [76] | France |
[77] | Poland, Scandinavia, Central Europe, Eastern Canada, and Northern United States | |
[78] | Scandinavia, Canada, Northern United States | |
[79] | North America, Europe | |
[80] | Canada |
Categories | Materials | Sample | Embodied Carbon (kg CO2eq/kg) | Compressive Strength (Mpa) | Tensile Strength (Mpa) | Conductivity (W/mk) | References |
---|---|---|---|---|---|---|---|
Wood | 0.5 | [81] | |||||
Primary natural raw material | Rammed earth | 0.26 (only A1–A3) | 1.0–2.5 | 0.1–0.35 | 0.833–1.4 | [4,82] | |
Sod block | NA | NA | NA | NA | [54,83] | ||
Adobe block | 0.0018–0.013 | 0.66–3.04 | 0.12–0.4 | 0.516 | [31,84] | ||
Cob | NA | 0.24–0.4 | 2.5 kN/m2 | NA | [45,46] | ||
Thatch | 0.48 | 0.67 | 0.32 | 0.063 | [85,86] | ||
Bamboo | 0.5 | 4.1–38 | 7.6–35 | 0.21–0.34 | [66,86,87] | ||
Secondary natural raw material | Straw bale | 0.4 | NA | 0.15–0.35 | 0.03–0.19 | [71,75,88] | |
Cordwood masonry | 130 MJ/kg | 0.43–2.14 0.9–1.8 | 0.128–0.161 | [73,76,89,90] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hu, M. Exploring Low-Carbon Design and Construction Techniques: Lessons from Vernacular Architecture. Climate 2023, 11, 165. https://doi.org/10.3390/cli11080165
Hu M. Exploring Low-Carbon Design and Construction Techniques: Lessons from Vernacular Architecture. Climate. 2023; 11(8):165. https://doi.org/10.3390/cli11080165
Chicago/Turabian StyleHu, Ming. 2023. "Exploring Low-Carbon Design and Construction Techniques: Lessons from Vernacular Architecture" Climate 11, no. 8: 165. https://doi.org/10.3390/cli11080165
APA StyleHu, M. (2023). Exploring Low-Carbon Design and Construction Techniques: Lessons from Vernacular Architecture. Climate, 11(8), 165. https://doi.org/10.3390/cli11080165