Impact of Climate Change on the Bioclimatological Conditions Evolution of Peninsular and Balearic Spain During the 1953–2022 Period
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.3. Database
2.4. Data Processing and Graphical Representation
2.5. Study Period
3. Results
3.1. Macrobioclimates
3.2. Bioclimates
4. Discussion
4.1. Macrobioclimates
4.2. Bioclimates
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Bednar-Friedl, B.; Biesbroek, R.; Schmidt, D.N.; Alexander, P.; Børsheim, K.Y.; Carnicer, J.; Georgopoulou, E.; Haasnoot, M.; Le Cozannet, G.; Lionello, P.; et al. Europe. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 1817–1927. [Google Scholar]
- Cano, E.; Piñar Fuentes, J.C.; Cano-Ortiz, A.; Leiva Gea, F.; Ighbareyeh, J.M.H.; Quinto Canas, R.J.; Pinto Gomes, C.J.; Spampinato, G.; del Río González, S.; Musarella, C.M. Bioclimatology and botanical resources for sustainable development. In Natural Resources Conservation and Advances for Sustainability; Jhariya, M.K., Meena, R.S., Banerjee, A., Meena, S.N., Eds.; Elsevier: Amsterdam, The Netherlands, 2022; pp. 377–388. ISBN 9780128229767. [Google Scholar]
- Cano-Ortiz, A.; Fuentes, J.C.P.; Gea, F.L.; Ighbareyeh, J.M.H.; Quinto Canas, R.J.; Meireles, C.I.R.; Raposo, M.; Gomes, C.J.P.; Spampinato, G.; del Río González, S.; et al. Climatology, Bioclimatology and Vegetation Cover: Tools to Mitigate Climate Change in Olive Groves. Agronomy 2022, 12, 2707. [Google Scholar] [CrossRef]
- González-Pérez, A.; Álvarez-Esteban, R.; Penas, Á.; del Río, S. Bioclimatic characterisation of specific native Californian Pinales and their future suitability under climate change. Plants 2023, 12, 1966. [Google Scholar] [CrossRef] [PubMed]
- Rivas-Martínez, S.; Rivas Sáenz, S.; Penas, A. Worldwide bioclimatic classification system. Glob. Geobot. 2011, 1, 1–634. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Cantó, P.; Pizarro, J.; Izquierdo, J.L.; Rivas-Sáenz, S.; Molero, J.; Marfil, J.M.; Penas, Á.; Herrero, L.; Díaz, T.E.; et al. Advances in geobotany and new tools in biogeographic and bioclimatic maps: Sierra de Guadarrama National Park. Int. J. Geobot. Res. 2021, 10, 91–110. [Google Scholar] [CrossRef]
- Jeschke, J.M.; Strayer, D.L. Usefulness of bioclimatic models for studying climate change and invasive species. Ann. N. Y. Acad. Sci. 2008, 1134, 1–24. [Google Scholar] [CrossRef] [PubMed]
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Chang. 2012, 114, 813–822. [Google Scholar] [CrossRef]
- Sandonís, L.; González-Hidalgo, J.C.; Peña-Angulo, D.; Beguería, S. Mean temperature evolution on the Spanish mainland 1916−2015. Clim. Res. 2021, 82, 177–189. [Google Scholar] [CrossRef]
- Peña-Angulo, D.; González-Hidalgo, J.C.; Sandonís, L.; Beguería, S.; Tomas-Berguera, M.; López-Bustins, J.A.; Lemus-Canovas, M.; Martin-Vide, J. Seasonal temperature trends on the Spanish mainland: A secular study (1916–2015). Int. J. Climatol. 2021, 41, 3071–3084. [Google Scholar] [CrossRef]
- Moratiel, R.; Soriano, B.; Centeno, A.; Spano, D.; Snyder, R.I. Wet-bulb, dew point, and air temperature trends in Spain. Theor. Appl. Climatol. 2017, 130, 419–434. [Google Scholar] [CrossRef]
- Martínez, M.D.; Serra, C.; Burgueño, A.; Lana, X. Time trends of daily maximum and minimum temperatures in Catalonia (ne Spain) for the period 1975–2004. Int. J. Climatol. 2010, 30, 267–290. [Google Scholar] [CrossRef]
- El Kenawy, A.; López-Moreno, J.I.; Serrano, S.M. Trend and variability of surface air temperature in northeastern Spain (1920–2006): Linkage to atmospheric circulation. Atmos. Res. 2012, 106, 159–180. [Google Scholar] [CrossRef]
- Miró, J.J.; Estrela, M.J.; Caselles, V.; Olcina-Cantos, J. Fine-scale estimations of bioclimatic change in the Valencia region, Spain. Atmos. Res. 2016, 180, 150–164. [Google Scholar] [CrossRef]
- Serrano-Notivoli, R.; Beguería, S.; Ángel Saz, M.; De Luis, M. Recent trends reveal decreasing intensity of daily precipitation in Spain. Int. J. Climatol. 2018, 38, 4211–4224. [Google Scholar] [CrossRef]
- De Luis, M.; González-Hidalgo, J.C.; Brunetti, M.; Longares, M.A. Precipitation concentration changes in Spain 1946–2005. Nat. Hazards Earth Syst. Sci. 2011, 11, 1259–1265. [Google Scholar] [CrossRef]
- De Luis, M.; Longares, M.A.; Stepanek, P.; González-Hidalgo, J.C. Tendencias estacionales de la precipitación en la cuenca del Ebro 1951–2000. Geographicalia 2007, 52, 53–78. [Google Scholar] [CrossRef]
- Miró, J.J.; Estrela, M.J.; Corell, D.; Gómez, I.; Luna, M.Y. Precipitation and drought trends (1952–2021) in a key hydrological recharge area of the eastern Iberian Peninsula. Atmos. Res. 2023, 286, 106695. [Google Scholar] [CrossRef]
- Estrela, M.J.; Corell, D.; Miró, J.J.; Niclós, R. Analysis of precipitation and drought in the main southeastern Iberian river headwaters (1952–2021). Atmosphere 2024, 15, 166. [Google Scholar] [CrossRef]
- Miró, J.J.; Estrela, M.J.; Caselles, V.; Gómez, I. Spatial and temporal rainfall changes in the Júcar and Segura basins (1955–2016): Fine-scale trends. Int. J. Climatol. 2018, 38, 4699–4722. [Google Scholar] [CrossRef]
- Ali, E.; Cramer, W.; Carnicer, J.; Georgopoulou, E.; Hilmi, N.J.M.; Le Cozannet, G.; Lionello, P. Cross-Chapter Paper 4: Mediterranean Region. In Climate Change 2022: Impacts, Adaptation and Vulnerability. Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; pp. 2233–2272. [Google Scholar]
- Bellard, C.; Bertelsmeier, C.; Leadley, P.; Thuiller, W.; Courchamp, F. Impacts of climate change on the future of biodiversity. Ecol. Lett. 2012, 15, 365–377. [Google Scholar] [CrossRef]
- Peñuelas, J.; Sardans, J.; Estiarte, M.; Ogaya, R.; Carnicer, J.; Coll, M.; Barbeta, A.; Rivas-Ubach, A.; Llusià, J.; Garbulsky, M.; et al. Evidence of current impact of climate change on life: A walk from genes to the biosphere. Glob. Chang. Biol. 2013, 19, 2303–2338. [Google Scholar] [CrossRef]
- MedECC. Summary for Policymakers. In Climate and Environmental Change in the Mediterranean Basin—Current Situation and Risks for the Future. First Mediterranean Assessment Report; Cramer, W., Guiot, J., Marini, K., Eds.; Union for the Mediterranean, Plan Bleu, UNEP/MAP: Marseille, France, 2020; pp. 11–40. [Google Scholar] [CrossRef]
- Gordo, O.; Sanz, J.J. Impact of climate change on plant phenology in Mediterranean ecosystems. Glob. Chang. Biol. 2010, 16, 1082–1106. [Google Scholar] [CrossRef]
- Peñuelas, J.; Boada, M. A global change-induced biome shift in the Montseny mountains (NE Spain). Glob. Chang. Biol. 2003, 9, 131–140. [Google Scholar] [CrossRef]
- Pauli, H.; Gottfried, M.; Dullinger, S.; Abdaladze, O.; Akhalkatsi, M.; Alonso, J.L.B.; Grabherr, G.; Dick, J.; Erschbamer, B.; Calzado, R.F.; et al. Recent Plant Diversity Changes on Europe’s Mountain Summits. Science 2012, 336, 353–355. [Google Scholar] [CrossRef]
- Lamprecht, A.; Molero Mesa, J.; Pauli, H.; Steinbauer, K.; Fernández Calzado, M.R.; Winkler, M.; Lorite, J. Changes in plant diversity in a water-limited and isolated high-mountain range (Sierra Nevada, Spain). Alpine Bot. 2021, 131, 27–39. [Google Scholar] [CrossRef]
- Valladares, F.; Benavides, R.; Rabasa, S.G.; Díaz, M.; Pausas, J.G.; Paula, S.; Simonson, W.D. Global change and Mediterranean forests: Current impacts and potential responses. In Forests and Global Change; Coomes, D.A., Burslem, D.F.R.P., Simonson, W.D., Eds.; Cambridge University Press: Cambridge, UK, 2014; pp. 47–76. [Google Scholar]
- Giménez-Alfaro, B.; Granda, E.; Camarero, J.J.; Esteve-Selma, M.A. Climate change accelerates vegetation dynamics in Mediterranean ecosystems: A case study of Chamaerops humilis L. in southeastern Spain. Glob. Chang. Biol. 2016, 22, 3642–3656. [Google Scholar] [CrossRef]
- Del Río, S.; Álvarez-Esteban, R.; Cano, E.; Pinto-Gomes, C.; Penas, Á. Potential impacts of climate change on habitat suitability of Fagus sylvatica L. forests in Spain. Plant Biosyst. 2018, 152, 1205–1213. [Google Scholar] [CrossRef]
- Mendoza-Fernández, A.J.; Fernández-Ceular, Á.; Alcaraz-Segura, D.; Ballesteros, M.; Peñas, J. The Fate of Endemic Species Specialized in Island Habitat under Climate Change in a Mediterranean High Mountain. Plants 2022, 11, 3193. [Google Scholar] [CrossRef]
- Benito Garzón, M.; de Dios, R.D.; Ollero, H. Effects of climate change on the distribution of Iberian tree species. Ecol. Soc. Am. 2008, 11, 169–178. [Google Scholar] [CrossRef]
- Gallego-Fernández, J.; Mora, M.; Novo, F. Vegetation dynamics of Mediterranean shrublands in former cultural landscape at Grazalema Mountains, South Spain. Plant Ecol. 2004, 172, 83–94. [Google Scholar] [CrossRef]
- Dullinger, S.; Gattringer, A.; Thuiller, W.; Moser, D.; Zimmermann, N.E.; Guisan, A.; Willner, W.; Plutzar, C.; Leitner, M.; Mang, T.; et al. Extinction debt of high-mountain plants under twenty-first-century climate change. Nat. Clim. Chang. 2012, 2, 619–622. [Google Scholar] [CrossRef]
- Engler, R.; Randin, C.; Thuiller, W.; Dullinger, S.; Zimmermann, N.; Araújo, M.; Pearman, P.; Lay, G.; Piedallu, C.; Albert, C.; et al. 21st century climate change threatens mountain flora unequally across Europe. Glob. Chang. Biol. 2011, 17, 2330–2341. [Google Scholar] [CrossRef]
- Rivas-Martínez, S.; Penas, Á.; Díaz González, T.E.; Canto, P.; del Río, S.; Costa, J.C.; Herrero, L.; Molero, J. Biogeographic units of the Iberian Peninsula and Balearic Islands to district level. In The Vegetation of the Iberian Peninsula—Plant and Vegetation; Loidi, J., Ed.; Springer: Cham, Switzerland, 2017; Volume 12, pp. 131–188. ISBN 978-3-319-54784-8. [Google Scholar]
- Del Río, S.; Canas, R.; Cano, E.; Cano-Ortiz, A.; Musarella, C.; Pinto-Gomes, C.; Penas, A. Modelling the impacts of climate change on habitat suitability and vulnerability in deciduous forests in Spain. Ecol. Indic. 2021, 131, 108202. [Google Scholar] [CrossRef]
- Nunes, L.J.R. Effects of climate change on temperate forests in the Northwest Iberian Peninsula. Climate 2023, 11, 173. [Google Scholar] [CrossRef]
- Llorens, L.; Gil, L. The Balearic Islands. In The Vegetation of the Iberian Peninsula; Loidi, J., Ed.; Springer: Cham, Switzerland, 2017; Volume 2, pp. 3–33. ISBN 978-3-319-54784-8. [Google Scholar]
- Guardiola, M.; Sáez, L. Are Mediterranean Island Mountains Hotspots of Taxonomic and Phylogenetic Biodiversity? The Case of the Endemic Flora of the Balearic Islands. Plants 2023, 12, 1426. [Google Scholar] [CrossRef]
- Cardona, C.; Gil, L. Temporal analysis of climate change in the Balearic Islands, and its relationship with changes in biodiversity. Reg. Environ. Chang. 2015, 15, 559–571. [Google Scholar]
- Rivas-Martínez, S.; Penas, A.; del Río, S.; Díaz González, T.; Rivas-Sáenz, S. Bioclimatology of the Iberian Peninsula and the Balearic Islands. In The Vegetation of the Iberian Peninsula—Plant and Vegetation; Loidi, J., Ed.; Springer: Cham, Switzerland, 2017; Volume 12, pp. 29–80. ISBN 978-3-319-54784-8. [Google Scholar]
- Jump, A.S.; Mátyás, C.; Peñuelas, J. The altitude-for-latitude disparity in the range retractions of woody species. Trends Ecol. Evol. 2009, 24, 694–701. [Google Scholar] [CrossRef]
- Marfil, J.M.; Molero, J.; Cantó, P.; Rivas-Martínez, S. Bioindicators and bioclimatic data as essential tools towards a consistent biogeographic district typology of Sierra Nevada National Park (Spain). Lazaroa 2017, 38, 7–25. [Google Scholar] [CrossRef]
- Álvarez, A.; Ferreiro, G.B.; González, A.; Penas, Á.; Del Río González, S. Caracterización bioclimática del Principado de Asturias. In Proceedings of the XII Congreso Internacional de la Asociación Española de Climatología (AEC): Retos del Cambio Climático: Impactos, Mitigación y Adaptación, Santiago de Compostela, Spain, 19–21 October 2022; Asociación Española de Climatología: Madrid, Spain, 2022; pp. 551–552. [Google Scholar]
- Del Río, S.; González-Pérez, A.; Álvarez-Esteban, R.; Penas, A.; Alonso-Redondo, R.; Álvarez, R.; Rodríguez-Fernández, M.P. Applications of bioclimatology to assess effects of climate change on viticultural suitability in the DO León (Spain). Theor. Appl. Climatol. 2024, 155, 3387–3404. [Google Scholar] [CrossRef]
- López-Fernández, M.L.; Peña Angulo, D.; Marco, R.; López-Fernández, M.S.; González-Hidalgo, J.C. Variaciones entre Isobioclimas (1951–1980 y 1981–2010) en la España peninsular. In Proceedings of the X Congreso Internacional AEC: Clima, Sociedad, Riesgos y Ordenación del Territorio, Alicante, Spain, 5–8 October 2016; Universidad de Alicante: Alicante, Spain, 2016; pp. 205–214. [Google Scholar]
- López, M.L.; Peña-Angulo, D.; Marco, R.; López, M.S.; González-Hidalgo, J.C. Variaciones espaciales y temporales de las condiciones bioclimáticas en la España peninsular (1951–2010). Estud. Geogr. 2017, 78, 553–577. [Google Scholar] [CrossRef]
- Andrade, C.; Contente, J. Climate change projections for the Worldwide Bioclimatic Classification System in the Iberian Peninsula until 2070. Int. J. Climatol. 2020, 40, 5863–5886. [Google Scholar] [CrossRef]
- Miró, J.J.; Caselles, V.; Estrela, M.J. Multiple imputation of rainfall missing data in the Iberian Mediterranean context. Atmos. Res. 2017, 197, 313–330. [Google Scholar] [CrossRef]
- Domonkos, P. The ACMANT2 software package. In Proceedings of the Eighth Seminar for Homogenization and Quality Control in Climatological Databases and Third Conference on Spatial Interpolation Techniques in Climatology and Meteorology, Budapest, Hungary, 12–16 May 2014; World Meteorological Organization (WMO): Geneva, Switzerland, 2014; pp. 46–72. [Google Scholar]
- Domonkos, P. Homogenization of precipitation time series with ACMANT. Theor. Appl. Climatol. 2015, 122, 303–314. [Google Scholar] [CrossRef]
- Lionello, P.; Scarascia, L. The relation between climate change in the Mediterranean region and global warming. Reg. Environ. Chang. 2018, 18, 1481–1493. [Google Scholar] [CrossRef]
- Gottfried, M.; Pauli, H.; Futschik, A.; Akhalkatsi, M.; Barančok, P.; Benito Alonso, J.L.; Coldea, G.; Dick, J.; Erschbamer, B.; Fernández Calzado, M.R.; et al. Continent-wide response of mountain vegetation to climate change. Nat. Clim. Chang. 2012, 2, 111–115. [Google Scholar] [CrossRef]
- Pausas, J.G.; Millán, M.M. Greening and Browning in a Climate Change Hotspot: The Mediterranean Basin. BioScience 2019, 69, 143–151. [Google Scholar] [CrossRef]
- Ruiz-Labourdette, D.; Nogués-Bravo, D.; Ollero, H.S.; Schmitz, M.F.; Pineda, F.D. Forest composition in Mediterranean mountains is projected to shift along the entire elevational gradient under climate change. J. Biogeogr. 2011, 39, 162–176. [Google Scholar] [CrossRef]
- Smith, W.K.; Germino, M.J.; Johnson, D.M.; Reinhardt, K. The altitude of alpine treeline: A bellwether of climate change effects. Bot. Rev. 2009, 75, 163–190. [Google Scholar] [CrossRef]
- Gorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Barredo, J.I.; Mauri, A.; Caudullo, G. Impacts of climate change in European mountains—Alpine tundra habitat loss and treeline shifts under future global warming. In Climate Change Impacts and Adaptation in Europe. JRC PESETA IV Final Report; Feyen, L., Ciscar, J.C., Gosling, S., Ibarreta, D., Soria, A., Eds.; Publications Office of the European Union: Luxembourg, 2020; pp. 1–66. [Google Scholar]
- Honrado, J.; Alves, P.; Lomba, A.; Torres, J.; Caldas, F.B. Ecology, diversity and conservation of relict laurel-leaved mesophytic scrublands in mainland Portugal. Acta Bot. Gall. 2007, 154, 63–77. [Google Scholar] [CrossRef]
- García-Ruiz, J.M.; López-Moreno, J.I.; Vicente-Serrano, S.M.; Lasanta-Martínez, T.; Beguería, S. Mediterranean water resources in a global change scenario. Earth-Sci. Rev. 2011, 105, 121–139. [Google Scholar] [CrossRef]
- Cramer, W.; Guiot, J.; Fader, M.; Garrabou, J.; Gattuso, J.-P.; Iglesias, A.; Lange, M.A.; Lionello, P.; Llasat, M.C.; Paz, S.; et al. Climate change and interconnected risks to sustainable development in the Mediterranean. Nat. Clim. Chang. 2018, 8, 972–980. [Google Scholar] [CrossRef]
- Pereira, S.C.; Carvalho, D.; Rocha, A. Temperature and precipitation extremes over the Iberian Peninsula under climate change scenarios: A review. Climate 2021, 9, 139. [Google Scholar] [CrossRef]
- Iglesias, A.; Garrote, L.; Quiroga, S.; Moneo, M. A regional comparison of the effects of climate change on agricultural crops in Europe. Clim. Chang. 2011, 112, 29–46. [Google Scholar] [CrossRef]
- García-Romero, A.; Muñoz, J.; Andrés, N.; Palacios, D. Relationship between climate change and vegetation distribution in the Mediterranean mountains: Manzanares Head valley, Sierra de Guadarrama (Central Spain). Clim. Chang. 2010, 100, 645–666. [Google Scholar] [CrossRef]
Parameter | Description |
---|---|
Tmax | Average temperature (in °C) of the warmest month of the year. |
Tmin | Average temperature (in °C) of the coldest month of the year. |
Tp | Sum of the average temperature (in tenths of °C) of the months whose average temperature is above zero degrees Celsius. Tp = Σ Ti, for Ti > 0 °C. |
Ts | Sum of the average temperature (in tenths of °C) of the months of the summer quarter. |
Ts2 | Sum of the average temperature (in tenths of °C) of the two hottest months of the summer quarter. |
Tms | Sum of the average temperature (in tenths of °C) of the three months that make up the summer quarter plus the immediately preceding month. In the case of the Iberian Peninsula and the Balearic Islands, these months are May, June, July, and August. |
Pp | Positive precipitation, equivalent to the sum of the precipitation (in mm) of the months with a mean temperature above 0 °C. Pp = Σ Pi, for Ti > 0 °C. |
Ps | Summer precipitation, equivalent to the sum of the precipitation values (in mm) of the three months that make up the summer quarter. In the case of the Iberian Peninsula and the Balearic Islands, these months are June, July and August. |
Ps2 | Sum of precipitation (in mm) for the two hottest months of the summer quarter. |
Pms | Sum of the precipitation (in mm) of the three months that make up the summer quarter, plus the immediately preceding month. In the case of the Iberian Peninsula and the Balearic Islands, these months are May, June, July, and August. |
Bioclimatic Indices | Expression |
---|---|
Simple Continentality Index (Ic) | Ic = Tmax–Tmin |
Annual Ombrothermic Index (Io) | Io = (Pp/Tp) × 10 |
The Io of the two hottest months of the summer quarter (Ios2) | Ios2 = (Ps2/Ts2) × 10 |
The Io of the summer quarter (Ios3) | Ios3 = (Ps/Ts) × 10 |
The Io of the 4-month period resulting from adding the summer quarter and the month immediately preceding it (Ios4) | Ios4 = (Pms/Tms) × 10 |
Bioclimates | 1 (1953–1987) | 2 (1988–2022) | 3 * | 4 (1951–1980) | 5 (1981–2010) | 6 (1951–1980) | 7 (1981–2010) | 8 (1961–1990) | 9 (1981–2010) | 10 ** (2011–2040) | 11 ** (2041–2070) |
---|---|---|---|---|---|---|---|---|---|---|---|
Mepo | 53.74 | 52.13 | 74.20 | 77.71 | 79.44 | 77.70 | 79.40 | 58.60 | 58.20 | 48.50 | 47.00 |
Mexo | 7.85 | 10.88 | 4.22 | 3.72 | 4.11 | 3.70 | 4.10 | 16.50 | 18.80 | 30.30 | 32.00 |
Mepc | 0.38 | 3.74 | 1.06 | 0.13 | 0.47 | 0.10 | 0.50 | - | - | - | 0.70 |
Mexc | 0.05 | 1.80 | 0.01 | - | - | - | - | - | - | - | 2.30 |
Medo | 0.41 | 0.79 | 0.17 | - | - | - | - | 1.50 | 1.70 | 3.20 | 4.10 |
Medc | - | 0.03 | - | - | - | - | - | - | - | - | - |
Teoc | 26.96 | 27.70 | 17.66 | 14.97 | 13.93 | 15.00 | 14.00 | 22.71 | 20.80 | 17.60 | 14.33 |
Teho | 6.27 | 1.91 | 2.52 | 3.48 | 2.00 | 3.50 | 2.00 | 0.60 | 0.50 | 0.40 | 0.20 |
Texe | 4.33 | 0.98 | 0.16 | - | 0.04 | - | - | 0.09 | - | - | - |
Teco | - | 0.05 | - | - | - | - | - | - | - | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lorente, C.; Corell, D.; Estrela, M.J.; Miró, J.J.; Orgambides-García, D. Impact of Climate Change on the Bioclimatological Conditions Evolution of Peninsular and Balearic Spain During the 1953–2022 Period. Climate 2024, 12, 183. https://doi.org/10.3390/cli12110183
Lorente C, Corell D, Estrela MJ, Miró JJ, Orgambides-García D. Impact of Climate Change on the Bioclimatological Conditions Evolution of Peninsular and Balearic Spain During the 1953–2022 Period. Climate. 2024; 12(11):183. https://doi.org/10.3390/cli12110183
Chicago/Turabian StyleLorente, Christian, David Corell, María José Estrela, Juan Javier Miró, and David Orgambides-García. 2024. "Impact of Climate Change on the Bioclimatological Conditions Evolution of Peninsular and Balearic Spain During the 1953–2022 Period" Climate 12, no. 11: 183. https://doi.org/10.3390/cli12110183
APA StyleLorente, C., Corell, D., Estrela, M. J., Miró, J. J., & Orgambides-García, D. (2024). Impact of Climate Change on the Bioclimatological Conditions Evolution of Peninsular and Balearic Spain During the 1953–2022 Period. Climate, 12(11), 183. https://doi.org/10.3390/cli12110183