Species Distribution Modeling of Ixodes ricinus (Linnaeus, 1758) Under Current and Future Climates, with a Special Focus on Latvia and Ukraine
Abstract
:1. Introduction
2. Materials and Methods
2.1. Tick Input Data
2.2. Climate Data
2.3. Modeling Procedure
2.4. Feature Importance
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Román-Palacios, C.; Wiens, J.J. Recent responses to climate change reveal the drivers of species extinction and survival. Proc. Natl. Acad. Sci. USA 2020, 117, 4211–4217. [Google Scholar] [CrossRef] [PubMed]
- Weiskopf, S.R.; Rubenstein, M.A.; Crozier, L.G.; Gaichas, S.; Griffis, R.; Halofsky, J.E.; Hyde, K.J.; Morelli, T.L.; Morisette, J.T.; Muñoz, R.C.; et al. Climate change effects on biodiversity, ecosystems, ecosystem services, and natural resource management in the United States. Sci. Total. Environ. 2020, 733, 137782. [Google Scholar] [CrossRef] [PubMed]
- Parry, M.L.; Canziani, O.F.; Palutikof, J.P.; van der Linden, P.J.; Hanson, C.E. Contribution of Working Group II to the Fourth Assessment Report of the Intergovernmental; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Tytar, V.; Nekrasova, O.; Pupins, M.; Skute, A.; Kirjušina, M.; Gravele, E.; Mezaraupe, L.; Marushchak, O.; Čeirāns, A.; Kozynenko, I.; et al. Modeling the Distribution of the Chytrid Fungus Batrachochytrium dendrobatidis with Special Reference to Ukraine. J. Fungi 2023, 9, 607. [Google Scholar] [CrossRef] [PubMed]
- Cumming, G. Comparing climate and vegetation as limiting factors for species ranges of African ticks. Ecology 2002, 83, 255–268. [Google Scholar] [CrossRef]
- Sonenshine, D.; Roe, R.M. Biology of Ticks, 2nd ed.; Oxford University Press: Oxford, UK, 2013; 496p. [Google Scholar]
- Čeirāns, A.; Pupins, M.; Kirjusina, M.; Gravele, E.; Mezaraupe, L.; Nekrasova, O.; Tytar, V.; Marushchak, O.; Garkajs, A.; Petrov, I.; et al. Top-down and bottom-up effects and relationships with local environmental factors in the water frog–helminth systems in Latvia. Sci. Rep. 2023, 13, 8621. [Google Scholar] [CrossRef]
- Wormser, G.P.; Dattwyler, R.J.; Shapiro, E.D.; Halperin, J.J.; Steere, A.C.; Klempner, M.S.; Krause, P.J.; Bakken, J.S.; Strle, F.; Stanek, G.; et al. The clinical assessment, treatment, and prevention of Lyme disease, human granulocytic anaplasmosis, and babesiosis: Clinical practice guidelines by the Infectious Diseases Society of America. Clin. Infect. Dis. 2006, 43, 1089–1134. [Google Scholar] [CrossRef]
- Derdáková, M.; Lencakova, D. Association of genetic variability within the Borrelia burgdorferi sensu lato with the ecology, epidemiology of Lyme borreliosis in Europe. Ann. Agric. Environ. Med. 2005, 12, 165. [Google Scholar]
- Dong, Y.; Zhou, G.; Cao, W.; Xu, X.; Zhang, Y.; Ji, Z.; Yang, J.; Chen, J.; Liu, M.; Fan, X.; et al. Global seroprevalence and sociodemographic characteristics of Borrelia burgdorferi sensu lato in human populations: A systematic review and meta-analysis. BMJ Glob. Health 2022, 7, e007744. [Google Scholar] [CrossRef]
- Gray, J.S.; Dautel, H.; Estrada-Peña, A.; Kahl, O.; Lindgren, E. Effects of climate change on ticks and tick-borne diseases in Europe. Interdiscip. Perspect. Infect. Dis. 2009, 593232. [Google Scholar] [CrossRef]
- Estrada-Peña, A.; de la Fuente, J. The ecology of ticks and epidemiology of tick-borne viral diseases. Antivir. Res. 2014, 108, 104–128. [Google Scholar] [CrossRef]
- ECDC. Ixodes Ricinus—Factsheet for Experts. 2020. Available online: https://www.ecdc.europa.eu/en/disease-vectors/facts/tick-factsheets/ixodesricinus (accessed on 23 November 2022).
- Intergovernmental Panel on Climate Change (IPCC). Summary for Policymakers. In Global Warming of 1.5 °C: IPCC Special Report on Impacts of Global Warming of 1.5°C above Pre-Industrial Levels in Context of Strengthening Response to Climate Change, Sustainable Development, and Efforts to Eradicate Poverty; Cambridge University Press: Cambridge, UK, 2022; pp. 1–24. [Google Scholar] [CrossRef]
- Jore, S.; Vanwambeke, S.O.; Viljugrein, H.; Isaksen, K.; Kristoffersen, A.B.; Woldehiwet, Z.; Johansen, B.; Brun, E.; Brun-Hansen, H.; Westermann, S.; et al. Climate and environmental change drives Ixodes ricinus geographical expansion at the northern range margin. Parasites Vectors 2014, 7, 11. [Google Scholar] [CrossRef] [PubMed]
- Lindgren, E.; Talleklint, L.; Polfeldt, T. Impact of climatic change on the northern latitude limit and population density of the disease-transmitting European tick Ixodes ricinus. Environ. Health Perspect. 2000, 108, 119. [Google Scholar] [CrossRef] [PubMed]
- Tomkins, J.L.; Aungier, J.; Hazel, W.; Gilbert, L. Towards an evolutionary understanding of questing behaviour in the tick Ixodes ricinus. PLoS ONE 2014, 9, e110028. [Google Scholar] [CrossRef] [PubMed]
- Randolph, S.E.; Storey, K. Impact of microclimate on immature tick-rodent host interactions (Acari: Ixodidae): Implications for parasite transmission. J. Med. Èntomol. 1999, 36, 741–748. [Google Scholar] [CrossRef]
- Porretta, D.; Mastrantonio, V.; Amendolia, S.; Gaiarsa, S.; Epis, S.; Genchi, C.; Bandi, C.; Otranto, D.; Urbanelli, S. Effects of global changes on the climatic niche of the tick Ixodes ricinus inferred by species distribution modelling. Parasites Vectors 2013, 6, 271. [Google Scholar] [CrossRef]
- Gage, K.L.; Burkot, T.R.; Eisen, R.J.; Hayes, E.B. Climate and vector borne disease. Am. J. Prev. Med. 2008, 35, 436–450. [Google Scholar] [CrossRef]
- Levy, S. Ticking time bomb? Climate change and Ixodes scapularis. Environ. Health Perspect. 2014, 122, A168. [Google Scholar] [CrossRef]
- Curriero, F.C.; Wychgram, C.; Rebman, A.W.; Corrigan, A.E.; Kvit, A.; Shields, T.; Aucott, J.N. The Lyme and Tickborne Disease Dashboard: A map-based resource to promote public health awareness and research collaboration. PLoS ONE 2021, 16, e0260122. [Google Scholar] [CrossRef]
- Franklin, J. Mapping Species Distributions: Spatial Inference and Prediction; Cambridge University Press: Cambridge, UK, 2009; pp. 1–340. [Google Scholar]
- Patz, J.A.; Graczyk, T.K.; Geller, N.; Vittor, A.Y. Effects of environmental change on emerging parasitic diseases. Int. J. Parasitol. 2000, 30, 1395–1405. [Google Scholar] [CrossRef]
- Zhang, L.; Liu, S.; Sun, P.; Wang, T.; Wang, G.; Zhang, X.; Wang, L. Consensus forecasting of species distributions: The effects of niche model performance and niche properties. PLoS ONE 2015, 10, e0120056. [Google Scholar] [CrossRef]
- Zhang, L.; Ma, D.; Li, C.; Zhou, R.; Wang, J.; Liu, Q. Projecting the potential distribution areas of Ixodes scapularis (Acari: Ixodidae) driven by climate change. Biology 2022, 11, 107. [Google Scholar] [CrossRef] [PubMed]
- Ukrainian Crisis: Situational Analysis, 5 March 2024. Data Friendly Space. 2024. 49p. Available online: https://reliefweb.int/report/ukraine/ukrainian-crisis-situational-analysis-05-march-2024 (accessed on 5 March 2024).
- Ukrainian Refugee Crisis (2022–Present). Available online: https://w.wiki/A2Hi (accessed on 9 May 2024).
- Chamberlain, S.; Oldoni, D.; Barve, V.; Desmet, P.; Geffert, L.; Mcglinn, D.; Ram, K.; rOpenSci; Waller, J. rgbif: Interface to the Global Biodiversity Information Facility API. 2022. R Package Version 3.7.4. Available online: https://CRAN.R-project.org/package=rgbif (accessed on 9 March 2023).
- GBIF.org. GBIF Occurrence Download. Available online: https://www.gbif.org/occurrence/download/0031420-240506114902167 (accessed on 22 May 2024).
- Estrada-Peña, A. Distribution, Abundance, and Habitat Preferences of Ixodes ricinus (Acari: Ixodidae) in Northern Spain. J. Med. Èntomol. 2001, 38, 361–370. [Google Scholar] [CrossRef] [PubMed]
- Estrada-Pena, A.; Venzal, J.M.; Acedo, C.S. The tick Ixodes ricinus: Distribution and climate preferences in the western Palaearctic. Med. Vet. Èntomol. 2006, 20, 189–197. [Google Scholar] [CrossRef] [PubMed]
- Alkishe, A.A.; Peterson, A.T.; Samy, A.M. Climate change influences on the potential geographic distribution of the disease vector tick Ixodes ricinus. PLoS ONE 2017, 12, e0189092. [Google Scholar] [CrossRef] [PubMed]
- Noll, M.; Wall, R.; Makepeace, B.L.; Newbury, H.; Adaszek, L.; Bødker, R.; Estrada-Peña, A.; Guillot, J.; da Fonseca, I.P.; Probst, J.; et al. Predicting the distribution of Ixodes ricinus and Dermacentor reticulatus in Europe: A comparison of climate niche modelling approaches. Parasites Vectors 2023, 16, 384. [Google Scholar] [CrossRef]
- Yemchuk, Y.M. Fauna of Ukraine Ixodid Ticks; Academy of Sciences of the Ukrainian SSR Press: Kyiv, Ukraine, 1960; Volume 25, 168p. (In Ukrainian) [Google Scholar]
- Akimov, I.A.; Nebogatkin, I.V. Distribution of Ixodes ricinus (Arachnida, Ixodidae) in Ukraine in the context of tick hazard, and factors favoring its persistence in conditions of fast-going environmental change. Zoodiversity 2022, 56, 429–434. [Google Scholar] [CrossRef]
- Capligina, V.; Seleznova, M.; Akopjana, S.; Freimane, L.; Lazovska, M.; Krumins, R.; Kivrane, A.; Namina, A.; Aleinikova, D.; Kimsis, J.; et al. Large-scale countrywide screening for tick-borne pathogens in field-collected ticks in Latvia during 2017–2019. Parasites Vectors 2020, 13, 351. [Google Scholar] [CrossRef]
- Velazco, S.J.E.; Rose, M.B.; de Andrade, A.F.A.; Minoli, I.; Franklin, J. flexsdm: An r package for supporting a comprehensive and flexible species distribution modelling workflow. Methods Ecol. Evol. 2022, 13, 1661–1669. [Google Scholar] [CrossRef]
- Kriticos, D.J. Regional climate-matching to estimate current and future sources of biosecurity threats. Biol. Invasions 2012, 14, 1533–1544. [Google Scholar] [CrossRef]
- Nekrasova, O.D.; Tytar, V.M.; Kuybida, V.V. GIS Modeling of Climate Change Vulnerability of Amphibians and Reptiles in Ukraine. In NAS of Ukraine; Schmalhausen Institute of Zoology NAS: Kyiv, Ukraine, 2019; 204p, ISBN 978-966-02-8956-7. (In Ukrainian) [Google Scholar]
- Schrodt, F.; Santos, M.J.; Bailey, J.J.; Field, R. Challenges and opportunities for biogeography—What can we still learn from von Humboldt? J. Biogeogr. 2019, 46, 1631–1642. [Google Scholar] [CrossRef]
- Fick, S.E.; Hijmans, R.J. WorldClim 2: New 1-km spatial resolution climate surfaces for global land areas. Int. J. Climatol. 2017, 37, 4302–4315. [Google Scholar] [CrossRef]
- Title, P.O.; Bemmels, J.B. ENVIREM: An expanded set of bioclimatic and topographic variables increases flexibility and improves performance of ecological niche modeling. Ecography 2018, 41, 291–307. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Webber, B.L.; Leriche, A.; Ota, N.; Macadam, I.; Bathols, J.; Scott, J.K. CliMond: Global high-resolution historical and future scenario climate surfaces for bioclimatic modelling. Methods Ecol. Evol. 2012, 3, 53–64. [Google Scholar] [CrossRef]
- Kriticos, D.J.; Jarošik, V.; Ota, N. Extending the suite of bioclim variables: A proposed registry system and case study using principal components analysis. Methods Ecol. Evol. 2014, 5, 956–960. [Google Scholar] [CrossRef]
- Braunisch, V.; Coppes, J.; Arlettaz, R.; Suchant, R.; Schmid, H.; Bollmann, K. Selecting from correlated climate variables: A major source of uncertainty for predicting species distributions under climate change. Ecography 2013, 36, 971–983. [Google Scholar] [CrossRef]
- Leroy, B.; Meynard, C.N.; Bellard, C.; Courchamp, F. virtualspecies, an R package to generate virtual species distributions. Ecography 2016, 39, 599–607. [Google Scholar] [CrossRef]
- Feng, X.; Park, D.S.; Liang, Y.; Pandey, R.; Papeş, M. Collinearity in ecological niche modeling: Confusions and challenges. Ecol. Evol. 2019, 9, 10365–10376. [Google Scholar] [CrossRef]
- Shrestha, N. Detecting multicollinearity in regression analysis. Am. J. Appl. Math. Stat. 2020, 8, 39–42. [Google Scholar] [CrossRef]
- Araujo, M.; New, M. Ensemble forecasting of species distributions. Trends Ecol. Evol. 2007, 22, 42–47. [Google Scholar] [CrossRef]
- Peterson, A.T. Uses and requirements of ecological niche models and related distributional models. Biodivers. Informatics 2006, 3. [Google Scholar] [CrossRef]
- Peterson, A.T.; Soberón, J.; Pearson, R.G.; Anderson, R.P.; Martínez-Meyer, E.; Nakamura, M.; Araújo, M.B. Ecological Niches and Geographic Distributions; Princeton University Press: Oxford, UK, 2011; 314p. [Google Scholar]
- Allouche, O.; Tsoar, A.; Kadmon, R. Assessing the accuracy of species distribution models: Prevalence, kappa and the true skill statistic (TSS). J. Appl. Ecol. 2006, 43, 1223–1232. [Google Scholar] [CrossRef]
- Lobo, J.M.; Jimenez-Valverde, A.; Real, R. AUC: A misleading measure of the performance of predictive distribution models. Glob. Ecol. Biogeogr. 2008, 17, 145–151. [Google Scholar] [CrossRef]
- Boyce, M.S.; Vernier, P.R.; Nielsen, S.E.; Schmiegelow, F.K. Evaluating resource selection functions. Ecol. Model. 2002, 157, 281–300. [Google Scholar] [CrossRef]
- Hirzel, A.H.; Le Lay, G.; Helfer, V.; Randin, C.; Guisan, A. Evaluating the ability of habitat suitability models to predict species presences. Ecol. Model. 2006, 199, 142–152. [Google Scholar] [CrossRef]
- Medina, L.; Kreutzmann, A.-K.; Rojas-Perilla, N.; Castro, P. The R Package trafo for transforming linear regression models. R J. 2019, 11, 99–123. [Google Scholar] [CrossRef]
- Osorio, F.; Vallejos, R.; Cuevas, F. SpatialPack: Computing the association between two spatial processes. arXiv 2016, arXiv:1611.05289. [Google Scholar]
- Jenks, G.F.; Caspall, F.C. Error on choroplethic maps: Defnition, measurement, reduction. Ann. Assoc. Am. Geogr. 1971, 61, 217–244. [Google Scholar] [CrossRef]
- Lundberg, S.M.; Lee, S.I. A unified approach to interpreting model predictions. In Proceedings of the 31st International Conference on Machine Learning 2017, Long Beach, CA, USA, 4–9 December 2017; pp. 3547–3555. [Google Scholar]
- Lundberg, S.M.; Nair, B.; Vavilala, M.S.; Horibe, M.; Eisses, M.J.; Adams, T.; Liston, D.E.; Low, D.K.-W.; Newman, S.-F.; Kim, J.; et al. Explainable machine-learning predictions for the prevention of hypoxaemia during surgery. Nat. Biomed. Eng. 2018, 2, 749–760. [Google Scholar] [CrossRef]
- Lin, K.; Gao, Y. Model interpretability of financial fraud detection by group SHAP. Exp. Syst. Appl. 2022, 210, 118354. [Google Scholar] [CrossRef]
- Bhattacharyay, S.; Milosevic, I.; Wilson, L.; Menon, D.K.; Stevens, R.D.; Steyerberg, E.W.; Nelson, D.W.; Ercole, A.; the CENTER-TBI investigators participants. The leap to ordinal: Detailed functional prognosis after traumatic brain injury with a flexible modelling approach. PLoS ONE 2022, 17, e0270973. [Google Scholar] [CrossRef]
- Song, L.; Estes, L. itsdm: Isolation forest-based presence-only species distribution modelling and explanation in r. Methods Ecol. Evol. 2023, 14, 831–840. [Google Scholar] [CrossRef]
- Cha, Y.; Shin, J.; Go, B.; Lee, D.-S.; Kim, Y.; Kim, T.; Park, Y.-S. An interpretable machine learning method for supporting ecosystem management: Application to species distribution models of freshwater macroinvertebrates. J. Environ. Manag. 2021, 291, 112719. [Google Scholar] [CrossRef] [PubMed]
- Ghafarian, F.; Wieland, R.; Lüttschwager, D.; Nendel, C. Application of extreme gradient boosting and Shapley Additive explanations to predict temperature regimes inside forests from standard open-field meteorological data. Environ. Model. Softw. 2022, 156, 105466. [Google Scholar] [CrossRef]
- Bourhis, Y.; Bell, J.R.; Shortall, C.R.; Kunin, W.E.; Milne, A.E. Explainable neural networks for trait-based multispecies distribution modelling—A case study with butterflies and moths. Methods Ecol. Evol. 2023, 14, 1531–1542. [Google Scholar] [CrossRef]
- Lehnen, S.E.; Lombardi, J.V. Climate envelope modeling for ocelot conservation planning: Peering inside the black box. Ecosphere 2023, 14, e4477. [Google Scholar] [CrossRef]
- Scavuzzo, C.M.; Scavuzzo, J.M.; Campero, M.N.; Anegagrie, M.; Aramendia, A.A.; Benito, A.; Periago, V. Feature importance: Opening a soil-transmitted helminth machine learning model via SHAP. Infect. Dis. Model. 2022, 7, 262–276. [Google Scholar] [CrossRef]
- Conrad, O.; Bechtel, B.; Bock, M.; Dietrich, H.; Fischer, E.; Gerlitz, L.; Wehberg, J.; Wichmann, V.; Böhner, J. System for Automated Geoscientific Analyses (SAGA) v. 2.1.4. Geosci. Model Dev. 2015, 8, 1991–2007. [Google Scholar] [CrossRef]
- Hammer, C.C.; Brainard, J.; Hunter, P.R. Risk factors and risk factor cascades for communicable disease outbreaks in complex humanitarian emergencies: A qualitative systematic review. BMJ Glob. Health 2018, 3, e000647. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.T.; Ryan, P.D. PAST: Paleontological Statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. Available online: http://palaeo-electronica.org/2001_1/past/issue1_01.htm (accessed on 28 November 2022).
- R Core Team 2020. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: https://www.R-project.org/ (accessed on 28 November 2022).
- Cianfrani, C.; Le Lay, G.; Hirzel, A.H.; Loy, A. Do habitat suitability models reliably predict the recovery areas of threatened species? J. Appl. Ecol. 2010, 47, 421–430. [Google Scholar] [CrossRef]
- Manzoor, S.A.; Griffiths, G.; Lukac, M.; Manzoor, S.A.; Griffiths, G.; Lukac, M. Species distribution model transferability and model grain size—Finer may not always be better. Sci. Rep. 2018, 8, 7168. [Google Scholar] [CrossRef] [PubMed]
- Liu, C.; Berry, P.M.; Dawson, T.P.; Pearson, R.G. Selecting thresholds of occurrence in the prediction of species distributions. Ecography 2005, 28, 385–393. [Google Scholar] [CrossRef]
- Shabani, F.; Kumar, L.; Ahmadi, M. Assessing accuracy methods of species distribution models: AUC, specificity, sensitivity and the true skill statistic. Glob. J. Hum. -Soc. Sci. B Geogr. Geo-Sci. Environ. Sci. Disaster Manag. 2018, 18, 1–13. Available online: https://globaljournals.org/GJHSS_Volume18/2-Assessing-Accuracy-Methods.pdf (accessed on 28 November 2022).
- Macleod, J. Ixodes ricinus in relation to its physical environment: II. The factors governing survival and activity. Parasitology 1935, 27, 123–144. [Google Scholar] [CrossRef]
- Alasmari, S.; Wall, R. Metabolic rate and resource depletion in the tick Ixodes ricinus in response to temperature. Exp. Appl. Acarol. 2021, 83, 81–93. [Google Scholar] [CrossRef]
- Gethmann, J.; Hoffmann, B.; Kasbohm, E.; Süss, J.; Habedank, B.; Conraths, F.J.; Beer, M.; Klaus, C. Research paper on abiotic factors and their influence on Ixodes ricinus activity—Observations over a two-year period at several tick collection sites in Germany. Parasitol. Res. 2020, 119, 1455–1466. [Google Scholar] [CrossRef]
- Zając, Z.; Kulisz, J.; Bartosik, K.; Woźniak, A.; Dzierżak, M.; Khan, A. Environmental determinants of the occurrence and activity of Ixodes ricinus ticks and the prevalence of tick-borne diseases in eastern Poland. Sci. Rep. 2021, 11, 15472. [Google Scholar] [CrossRef]
- Wongnak, P.; Bord, S.; Jacquot, M.; Agoulon, A.; Beugnet, F.; Bournez, L.; Cèbe, N.; Chevalier, A.; Cosson, J.-F.; Dambrine, N.; et al. Meteorological and climatic variables predict the phenology of Ixodes ricinus nymph activity in France, accounting for habitat heterogeneity. Sci. Rep. 2022, 12, 7833. [Google Scholar] [CrossRef]
- Medlock, J.M.; Hansford, K.M.; Bormane, A.; Derdakova, M.; Estrada-Peña, A.; George, J.-C.; Golovljova, I.; Jaenson, T.G.T.; Jensen, J.-K.; Jensen, P.M.; et al. Driving forces for changes in geographical distribution of Ixodes ricinus ticks in Europe. Parasites Vectors 2013, 6, 1. [Google Scholar] [CrossRef]
- Fu, W.; Bonnet, C.; Septfons, A.; Figoni, J.; Durand, J.; Frey-Klett, P.; Rustand, D.; Jaulhac, B.; Métras, R. Spatial and seasonal determinants of Lyme borreliosis incidence in France, 2016 to 2021. Eurosurveillance 2023, 28, 2200581. [Google Scholar] [CrossRef]
- Qviller, L.; Grøva, L.; Viljugrein, H.; Klingen, I.; Mysterud, A. Temporal pattern of questing tick Ixodes ricinus density at differing elevations in the coastal region of western Norway. Parasites Vectors 2014, 7, 179. [Google Scholar] [CrossRef] [PubMed]
- Evstafiev, I.; Simferopol, U.C.S.-E.S. Results of a 30-years-long investigation of small mammals in Crimea. Part 3. Parasites and epizootiology. Proc. Thériol. Sch. 2017, 2017, 111–135. [Google Scholar] [CrossRef]
- Vasyliuk, O.V.; Nekrasova, O.D.; Shyriaieva, D.V.; Kolomytsev, G.O. A review of major impact factors of hostilities influencing biodiversity in the eastern Ukraine (modeled on selected animal species). Vestn. Zool. 2015, 49, 145–158. [Google Scholar] [CrossRef]
- Nekrasova, O.; Marushchak, O.; Redinov, K.; Pupins, M.; Čeirāns, A.; Skute, A.; Tytar, V.; Moysiyenko, I.; Theissinger, K.; Georges, J.-Y. Assessing ecocide impacts for developing a conservation strategy in Ukraine. In Proceedings of the World Biodiversity Forum, Davos, Switzerland, 16–21 June 2024; pp. 95–96. [Google Scholar]
- Marushchak, O.; Nekrasova, O.; Zinenko, O.; Drohvalenko, M.; Mykytynets, H.; Suriadna, N.; Kotserzhynska, I.; Kotserzhynska, S.; Brusentsova, N.; Kuzmenko, Y.; et al. Herpetofauna at the frontline: So many ways to die. Responsible Herpetoculture J. 2024, 14, 114–128. [Google Scholar]
- Moysiyenko, I.I.; Khodosovtsev, O.Y.; Vasyliuk, O.V.; Parkhomenko, V.V.; Rusin, M.Y.; Viter, S.H.; Kuzemko, A.A.; Drapalyuk, A.M.; Biatov, A.P.; Sadogurska, S.S.; et al. Consequences of the Russian terrorist attack on the Kakhovka HPP for wildlife. In Traditions of Reserve Management, Modern Problems of Conservation and Post-War Restoration of Protected Areas: Collection of Scientific Papers Based on the Materials of the All-Ukrainian Round Table Dedicated to the 160th Anniversary of Friedrich Falz-Fein; Shapoval, V.V., Ed.; “Hlyboki Balyky”, Balyko-Shchuchynka village, Ukraine; Series: “Conservation Biology in Ukraine”; Issue 32; Druk Art: Chernivtsi, Ukraine, 2023; pp. 158–163. (In Ukrainian) [Google Scholar]
- Tarnas, M.C.; Desai, A.N.; Lassmann, B.; Abbara, A. Increase in vector-borne disease reporting affecting humans and animals in Syria and neighboring countries after the onset of conflict: A ProMED analysis 2003–2018. Int. J. Infect. Dis. 2021, 102, 103–109. [Google Scholar] [CrossRef]
- Boeckmann, M.; Joyner, T.A. Old health risks in new places? An ecological niche model for I. ricinus tick distribution in Europe under a changing climate. Health Place 2014, 30, 70–77. [Google Scholar] [CrossRef]
- Li, S.; Gilbert, L.; Harrison, P.A.; Rounsevell, M.D.A. Modelling the seasonality of Lyme disease risk and the potential impacts of a warming climate within the heterogeneous landscapes of Scotland. J. R. Soc. Interface 2016, 13, 20160140. [Google Scholar] [CrossRef]
- Ogden, N.H.; Ben Beard, C.; Ginsberg, H.S.; Tsao, J.I. Possible effects of climate change on Ixodid ticks and the pathogens they transmit: Predictions and observations. J. Med. Èntomol. 2021, 58, 1536–1545. [Google Scholar] [CrossRef]
- Voyiatzaki, C.; Papailia, S.I.; Venetikou, M.S.; Pouris, J.; Tsoumani, M.E.; Papageorgiou, E.G. Climate changes exacerbate the spread of Ixodes ricinus and the occurrence of Lyme Borreliosis and tick-borne encephalitis in Europe-How climate models are used as a risk assessment approach for tick-borne diseases. Int. J. Environ. Res. Public Health 2022, 19, 6516. [Google Scholar] [CrossRef]
- Bisanzio, D.; Amore, G.; Ragagli, C.; Tomassone, L.; Bertolotti, L.; Mannelli, A. Temporal variations in the usefulness of normalized difference vegetation index as a predictor for Ixodes ricinus (Acari: Ixodidae) in a Borrelia lusitaniae focus in Tuscany, Central Italy. J. Med. Èntomol. 2008, 45, 547–555. [Google Scholar] [CrossRef]
- Bouchard, C.; Dibernardo, A.; Koffi, J.; Wood, H.; Leighton, P.A.; Lindsay, L.R. Increased risk of tick-borne diseases with climate and environmental changes. Can. Commun. Dis. Rep. 2019, 45, 83–89. [Google Scholar] [CrossRef] [PubMed]
- Tsoumani, M.E.; Papailia, S.I.; Papageorgiou, E.G.; Voyiatzaki, C. Climate change impacts on the prevalence of tick-borne diseases in Europe. Environ. Sci. Proc. 2023, 26, 18. [Google Scholar] [CrossRef]
Predictor Dataset | Selected Subsets of Predictors |
---|---|
WorldClim v.2 | Annual mean temperature (bio1), Mean diurnal range (bio2), Temperature seasonality (bio4), Maximum temperature of warmest month (bio5), Annual precipitation (bio12), Precipitation seasonality (bio15), Precipitation of driest quarter (bio17) |
ENVIREM | Annual PET *, Continentality, Emberger’s pluviothermic quotient, mean monthly PET of coldest quarter, mean monthly PET of driest quarter, PET seasonality, mean monthly PET of wettest quarter, terrain roughness index |
CliMond v.1.2 | Mean diurnal temperature range (bio2), Minimum temperature of coldest week (bio6), Annual temperature range (bio7), Mean temperature of driest quarter (bio9), Annual precipitation (bio12), Precipitation of driest week (bio14), Precipitation seasonality (bio15), Precipitation of warmest quarter (bio18), Radiation of wettest quarter (bio24), Radiation of warmest quarter (bio26), Radiation of coldest quarter (bio27), Highest weekly moisture index (bio29) |
Predictor Dataset/Subset | Evaluation Metrics | |||||
---|---|---|---|---|---|---|
Area Under Curve (AUC) | SD * of AUC | True Skill Statistic (TSS) | SD of TSS | Continuous Boyce Index (BOYCE) | SD of BOYCE | |
WorldClim v.2 | 0.84 | 0.01 | 0.59 | 0.02 | 0.91 | 0.07 |
ENVIREM | 0.84 | 0.01 | 0.56 | 0.02 | 0.92 | 0.06 |
CliMond v.1.2 current | 0.79 | 0.06 | 0.50 | 0.12 | 0.91 | 0.07 |
CliMond v.1.2 A1B scenario for 2030 | 0.76 | 0.06 | 0.46 | 0.13 | 0.87 | 0.18 |
CliMond v.1.2 A1B scenario for 2050 | 0.74 | 0.08 | 0.41 | 0.12 | 0.69 | 0.16 |
Variable | Percent Contribution % | Permutation Importance % |
---|---|---|
bio7 Annual temperature range (Bio05-Bio06) (°C) | 34.6 | 21.8 |
bio14 Precipitation of driest week (mm) | 15.6 | 2.1 |
bio24 Radiation of wettest quarter (W m−2) | 9.1 | 8.6 |
bio1 Annual mean temperature (°C) | 7.7 | 1.7 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tytar, V.; Kozynenko, I.; Pupins, M.; Škute, A.; Čeirāns, A.; Georges, J.-Y.; Nekrasova, O. Species Distribution Modeling of Ixodes ricinus (Linnaeus, 1758) Under Current and Future Climates, with a Special Focus on Latvia and Ukraine. Climate 2024, 12, 184. https://doi.org/10.3390/cli12110184
Tytar V, Kozynenko I, Pupins M, Škute A, Čeirāns A, Georges J-Y, Nekrasova O. Species Distribution Modeling of Ixodes ricinus (Linnaeus, 1758) Under Current and Future Climates, with a Special Focus on Latvia and Ukraine. Climate. 2024; 12(11):184. https://doi.org/10.3390/cli12110184
Chicago/Turabian StyleTytar, Volodymyr, Iryna Kozynenko, Mihails Pupins, Arturs Škute, Andris Čeirāns, Jean-Yves Georges, and Oksana Nekrasova. 2024. "Species Distribution Modeling of Ixodes ricinus (Linnaeus, 1758) Under Current and Future Climates, with a Special Focus on Latvia and Ukraine" Climate 12, no. 11: 184. https://doi.org/10.3390/cli12110184
APA StyleTytar, V., Kozynenko, I., Pupins, M., Škute, A., Čeirāns, A., Georges, J. -Y., & Nekrasova, O. (2024). Species Distribution Modeling of Ixodes ricinus (Linnaeus, 1758) Under Current and Future Climates, with a Special Focus on Latvia and Ukraine. Climate, 12(11), 184. https://doi.org/10.3390/cli12110184