Spatiotemporal Assessment of Surface Solar Dimming in India: Impacts of Multi-Level Clouds and Atmospheric Aerosols
Abstract
:1. Introduction
2. Materials and Methods
2.1. Reanalysis and Satellite Datasets
2.1.1. European Centre for Medium-Range Weather Forecasting Reanalysis Version 5 (ERA-5)
2.1.2. Modern-Era Retrospective Analysis for Research and Applications Version 2 (MERRA-2)
2.1.3. Clouds and the Earth’s Radiant Energy System (CERES)
2.1.4. Moderate Resolution Imaging Spectroradiometer (MODIS)
2.2. Methodology
3. Results and Discussion
3.1. Variability of SSR, TCC, and AOD in India
3.2. Variability of Cimpact and Aimpact on SSR
3.3. Analysis of Regional Cimpact on SSR
3.4. Analysis of Regional Aimpact on SSR
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ang, T.-Z.; Salem, M.; Kamarol, M.; Das, H.S.; Nazari, M.A.; Prabaharan, N. A Comprehensive Study of Renewable Energy Sources: Classifications, Challenges and Suggestions. Energy Strategy Rev. 2022, 43, 100939. [Google Scholar] [CrossRef]
- Dey, S.; Sreenivasulu, A.; Veerendra, G.T.N.; Rao, K.V.; Babu, P.S.S.A. Renewable Energy Present Status and Future Potentials in India: An Overview. Innov. Green Dev. 2022, 1, 100006. [Google Scholar] [CrossRef]
- Beer, C.; Reichstein, M.; Tomelleri, E.; Ciais, P.; Jung, M.; Carvalhais, N.; Rödenbeck, C.; Arain, M.A.; Baldocchi, D.; Bonan, G.B.; et al. Terrestrial Gross Carbon Dioxide Uptake: Global Distribution and Covariation with Climate. Science 2010, 329, 834–838. [Google Scholar] [CrossRef]
- Dumka, U.C.; Kosmopoulos, P.G.; Ningombam, S.S.; Masoom, A. Impact of Aerosol and Cloud on the Solar Energy Potential over the Central Gangetic Himalayan Region. Remote Sens. 2021, 13, 3248. [Google Scholar] [CrossRef]
- Dumka, U.C.; Kosmopoulos, P.G.; Patel, P.N.; Sheoran, R. Can Forest Fires Be an Important Factor in the Reduction in Solar Power Production in India? Remote Sens. 2022, 14, 549. [Google Scholar] [CrossRef]
- Hasnain, S.M.; Alawaji, S.H.; Elani, U.A. Solar Energy Education—A Viable Pathway for Sustainable Development. Renew. Energy 1998, 14, 387–392. [Google Scholar] [CrossRef]
- Solangi, K.H.; Islam, M.R.; Saidur, R.; Rahim, N.A.; Fayaz, H. A Review on Global Solar Energy Policy. Renew. Sustain. Energy Rev. 2011, 15, 2149–2163. [Google Scholar] [CrossRef]
- Anandh, T.S.; Gopalakrishnan, D.; Mukhopadhyay, P. Analysis of Future Wind and Solar Potential over India Using Climate Models. Curr. Sci. 2022, 122, 1268. [Google Scholar] [CrossRef]
- Tsoutsos, T.; Frantzeskaki, N.; Gekas, V. Environmental Impacts from the Solar Energy Technologies. Energy Policy 2005, 33, 289–296. [Google Scholar] [CrossRef]
- Wild, M.; Gilgen, H.; Roesch, A.; Ohmura, A.; Long, C.N.; Dutton, E.G.; Forgan, B.; Kallis, A.; Russak, V.; Tsvetkov, A. From Dimming to Brightening: Decadal Changes in Solar Radiation at Earth’s Surface. Science 2005, 308, 847–850. [Google Scholar] [CrossRef]
- Allen, R.J.; Norris, J.R.; Wild, M. Evaluation of Multidecadal Variability in CMIP5 Surface Solar Radiation and Inferred Underestimation of Aerosol Direct Effects over Europe, China, Japan, and India. JGR Atmos. 2013, 118, 6311–6336. [Google Scholar] [CrossRef]
- Stanhill, G.; Cohen, S. Solar Radiation Changes in Japan during the 20th Century: Evidence from Sunshine Duration Measurements. J. Meteorol. Soc. Jpn. 2008, 86, 57–67. [Google Scholar] [CrossRef]
- Liepert, B.G. Observed Reductions of Surface Solar Radiation at Sites in the United States and Worldwide from 1961 to 1990. Geophys. Res. Lett. 2002, 29, 61-1–61-4. [Google Scholar] [CrossRef]
- Liang, F.; Xia, X.A. Long-Term Trends in Solar Radiation and the Associated Climatic Factors over China for 1961-2000. Ann. Geophys. 2005, 23, 2425–2432. [Google Scholar] [CrossRef]
- Stanhill, G.; Cohen, S. Global Dimming: A Review of the Evidence for a Widespread and Significant Reduction in Global Radiation with Discussion of Its Probable Causes and Possible Agricultural Consequences. Agric. For. Meteorol. 2001, 107, 255–278. [Google Scholar] [CrossRef]
- Wang, Y.W.; Yang, Y.H. China’s Dimming and Brightening: Evidence, Causes and Hydrological Implications. Ann. Geophys. 2014, 32, 41–55. [Google Scholar] [CrossRef]
- Meng, Q.; Liu, B.; Yang, H.; Chen, X. Solar Dimming Decreased Maize Yield Potential on the North China Plain. Food Energy Secur. 2020, 9, e235. [Google Scholar] [CrossRef]
- Padma Kumari, B.; Londhe, A.L.; Daniel, S.; Jadhav, D.B. Observational Evidence of Solar Dimming: Offsetting Surface Warming over India. Geophys. Res. Lett. 2007, 34, 2007GL031133. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Kaskaoutis, D.G.; Kharol, S.K.; Moorthy, K.K.; Satheesh, S.K.; Kalapureddy, M.C.R.; Badarinath, K.V.S.; Sharma, A.R.; Wild, M. Multi-decadal variation of the net downward shortwave radiation over south Asia: The solar dimming effect. Atmos. Environ. 2012, 50, 360–372. [Google Scholar] [CrossRef]
- Soni, V.K.; Pandithurai, G.; Pai, D.S. Is There a Transition of Solar Radiation from Dimming to Brightening over India? Atmos. Res. 2016, 169, 209–224. [Google Scholar] [CrossRef]
- Wild, M. Global Dimming and Brightening: A Review. J. Geophys. Res. 2009, 114, 2008JD011470. [Google Scholar] [CrossRef]
- Haywood, J.M.; Abel, S.J.; Barrett, P.A.; Bellouin, N.; Blyth, A.; Bower, K.N.; Brooks, M.; Carslaw, K.; Che, H.; Coe, H.; et al. The CLoud–Aerosol–Radiation Interaction and Forcing: Year 2017 (CLARIFY-2017) Measurement Campaign. Atmos. Chem. Phys. 2021, 21, 1049–1084. [Google Scholar] [CrossRef]
- Padma Kumari, B.; Goswami, B.N. Seminal Role of Clouds on Solar Dimming over the Indian Monsoon Region. Geophys. Res. Lett. 2010, 37, 2009GL042133. [Google Scholar] [CrossRef]
- Soni, V.K.; Pandithurai, G.; Pai, D.S. Evaluation of Long-term Changes of Solar Radiation in India. Intl. J. Climatol. 2012, 32, 540–551. [Google Scholar] [CrossRef]
- Wild, M. Enlightening Global Dimming and Brightening. Bull. Am. Meteorol. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- Ramanathan, V.; Vogelmann, A.M. Greenhouse Effect, Atmospheric Solar Absorption and the Earth’s Radiation Budget: From the Arrhenius-Langley Era to the 1990s. Ambio 1997, 26, 38–46. [Google Scholar]
- Solomon, A.A.; Faiman, D.; Meron, G. An Energy-Based Evaluation of the Matching Possibilities of Very Large Photovoltaic Plants to the Electricity Grid: Israel as a Case Study. Energy Policy 2010, 38, 5457–5468. [Google Scholar] [CrossRef]
- Solomon, S. Climate Change 2007: The Physical Science Basis: Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Intergovernmental Panel on Climate Change, Ed.; Cambridge University Press: Cambridge, NY, USA, 2007; ISBN 978-0-521-88009-1. [Google Scholar]
- Shi, G.-Y.; Hayasaka, T.; Ohmura, A.; Chen, Z.-H.; Wang, B.; Zhao, J.-Q.; Che, H.-Z.; Xu, L. Data Quality Assessment and the Long-Term Trend of Ground Solar Radiation in China. J. Appl. Meteorol. Climatol. 2008, 47, 1006–1016. [Google Scholar] [CrossRef]
- Streets, D.G.; Yu, C.; Wu, Y.; Chin, M.; Zhao, Z.; Hayasaka, T.; Shi, G. Aerosol Trends over China, 1980–2000. Atmos. Res. 2008, 88, 174–182. [Google Scholar] [CrossRef]
- Wang, K.C.; Dickinson, R.E.; Wild, M.; Liang, S. Atmospheric Impacts on Climatic Variability of Surface Incident Solar Radiation. Atmos. Chem. Phys. 2012, 12, 9581–9592. [Google Scholar] [CrossRef]
- Wang, W.; Huang, J.; Zhou, T.; Bi, J.; Lin, L.; Chen, Y.; Huang, Z.; Su, J. Estimation of Radiative Effect of a Heavy Dust Storm over Northwest China Using Fu–Liou Model and Ground Measurements. J. Quant. Spectrosc. Radiat. Transf. 2013, 122, 114–126. [Google Scholar] [CrossRef]
- Bonkaney, A.; Madougou, S.; Adamou, R. Impacts of Cloud Cover and Dust on the Performance of Photovoltaic Module in Niamey. J. Renew. Energy 2017, 2017, 9107502. [Google Scholar] [CrossRef]
- Suri, M.; Cebecauer, T. Satellite-Based Solar Resource Data: Model Validation Statistics Versus User’s Uncertainty. In Proceedings of the ASES SOLAR 2014 Conference, San Francisco, CA, USA, 6–10 July 2014. [Google Scholar]
- Ruosteenoja, K.; Räisänen, P.; Devraj, S.; Garud, S.S.; Lindfors, A.V. Future Changes in Incident Surface Solar Radiation and Contributing Factors in India in CMIP5 Climate Model Simulations. J. Appl. Meteorol. Climatol. 2019, 58, 19–35. [Google Scholar] [CrossRef]
- Yang, J.; Yi, B.; Wang, S.; Liu, Y.; Li, Y. Diverse Cloud and Aerosol Impacts on Solar Photovoltaic Potential in Southern China and Northern India. Sci. Rep. 2022, 12, 19671. [Google Scholar] [CrossRef] [PubMed]
- Agrios, G.N. Plant Pathology, 5th ed.; Elsevier Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2005; ISBN 978-0-12-044565-3. [Google Scholar]
- Hatfield, J.L.; Prueger, J.H. Temperature Extremes: Effect on Plant Growth and Development. Weather Clim. Extrem. 2015, 10, 4–10. [Google Scholar] [CrossRef]
- Poli, P.; Hersbach, H.; Dee, D.P.; Berrisford, P.; Simmons, A.J.; Vitart, F.; Laloyaux, P.; Tan, D.G.H.; Peubey, C.; Thépaut, J.-N.; et al. ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. J. Clim. 2016, 29, 4083–4097. [Google Scholar] [CrossRef]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Fang, W.; Yang, C.; Liu, D.; Huang, Q.; Ming, B.; Cheng, L.; Wang, L.; Feng, G.; Shang, J. Assessment of Wind and Solar Power Potential and Their Temporal Complementarity in China’s Northwestern Provinces: Insights from ERA5 Reanalysis. Energies 2023, 16, 7109. [Google Scholar] [CrossRef]
- Khalil, S.A.; Rahoma, U.A. Verification of Solar Energy Measurements by (ERA-5) and Its Impact on Electricity Costs in North Africa. IJAA Int. J. Astron. Astrophys. 2022, 12, 301–327. [Google Scholar] [CrossRef]
- Urraca, R.; Huld, T.; Gracia-Amillo, A.; Martinez-de-Pison, F.J.; Kaspar, F.; Sanz-Garcia, A. Evaluation of Global Horizontal Irradiance Estimates from ERA5 and COSMO-REA6 Reanalyses Using Ground and Satellite-Based Data. Sol. Energy 2018, 164, 339–354. [Google Scholar] [CrossRef]
- Zhang, X.; Dong, X.; Li, X. Study of China’s Optimal Concentrated Solar Power Development Path to 2050. Front. Energy Res. 2021, 9, 724021. [Google Scholar] [CrossRef]
- Gelaro, R.; McCarty, W.; Suárez, M.J.; Todling, R.; Molod, A.; Takacs, L.; Randles, C.A.; Darmenov, A.; Bosilovich, M.G.; Reichle, R.; et al. The Modern-Era Retrospective Analysis for Research and Applications, Version 2 (MERRA-2). J. Clim. 2017, 30, 5419–5454. [Google Scholar] [CrossRef] [PubMed]
- Che, H.; Gui, K.; Xia, X.; Wang, Y.; Holben, B.N.; Goloub, P.; Cuevas-Agulló, E.; Wang, H.; Zheng, Y.; Zhao, H.; et al. Large Contribution of Meteorological Factors to Inter-Decadal Changes in Regional Aerosol Optical Depth. Atmos. Chem. Phys. 2019, 19, 10497–10523. [Google Scholar] [CrossRef]
- Doelling, D.R.; Loeb, N.G.; Keyes, D.F.; Nordeen, M.L.; Morstad, D.; Nguyen, C.; Wielicki, B.A.; Young, D.F.; Sun, M. Geostationary Enhanced Temporal Interpolation for CERES Flux Products. J. Atmos. Ocean. Technol. 2013, 30, 1072–1090. [Google Scholar] [CrossRef]
- Rose, F.G.; Rutan, D.A.; Charlock, T.; Smith, G.L.; Kato, S. An Algorithm for the Constraining of Radiative Transfer Calculations to CERES-Observed Broadband Top-of-Atmosphere Irradiance. J. Atmos. Ocean. Technol. 2013, 30, 1091–1106. [Google Scholar] [CrossRef]
- Rutan, D.A.; Kato, S.; Doelling, D.R.; Rose, F.G.; Nguyen, L.T.; Caldwell, T.E.; Loeb, N.G. CERES Synoptic Product: Methodology and Validation of Surface Radiant Flux. J. Atmos. Ocean. Technol. 2015, 32, 1121–1143. [Google Scholar] [CrossRef]
- King, M.D.; Menzel, W.P.; Kaufman, Y.J.; Tanre, D.; Bo-Cai , G.; Platnick, S.; Ackerman, S.A.; Remer, L.A.; Pincus, R.; Hubanks, P.A. Cloud and Aerosol Properties, Precipitable Water, and Profiles of Temperature and Water Vapor from MODIS. IEEE Trans. Geosci. Remote Sens. 2003, 41, 442–458. [Google Scholar] [CrossRef]
- Gautam, S.; Gautam, A.S.; Singh, K.; James, E.J.; Brema, J. Investigations on the Relationship among Lightning, Aerosol Concentration, and Meteorological Parameters with Specific Reference to the Wet and Hot Humid Tropical Zone of the Southern Parts of India. Environ. Technol. Innov. 2021, 22, 101414. [Google Scholar] [CrossRef]
- Pfeifroth, U.; Sanchez-Lorenzo, A.; Manara, V.; Trentmann, J.; Hollmann, R. Trends and Variability of Surface Solar Radiation in Europe Based On Surface- and Satellite-Based Data Records. JGR Atmos. 2018, 123, 1735–1754. [Google Scholar] [CrossRef]
- Singh, J.; Kumar, M. Solar Radiation over Four Cities of India: Trend Analysis Using Mann-Kendall Test. Int. J. Renew. Energy Resour. 2016, 6, 1385–1395. [Google Scholar]
- Smadi, M.M.; Zghoul, A. A Sudden Change In Rainfall Characteristics In Amman, Jordan During The Mid 1950s. Am. J. Environ. Sci. 2006, 2, 84–91. [Google Scholar] [CrossRef]
- Wu, X.; Zhang, L.; Zhao, C.; Gegen, T.; Zheng, C.; Shi, X.; Geng, J.; Letu, H. Satellite-Based Assessment of Local Environment Change by Wind Farms in China. Earth Space Sci. 2019, 6, 947–958. [Google Scholar] [CrossRef]
- Aldabash, M.; Bektas Balcik, F.; Glantz, P. Validation of MODIS C6.1 and MERRA-2 AOD Using AERONET Observations: A Comparative Study over Turkey. Atmosphere 2020, 11, 905. [Google Scholar] [CrossRef]
- Khoir, A.N.; Siahaan, A.R.; Sopaheluwakan, A.; Se-tiawan, B.; Nahas, A.C.; Taryono; Kinanti, N.P.; Prih Waryatno, N.F.; Sucianingsih, C.; Nurhayati, H. Evaluation of MERRA-2 and MODIS C6.1 Aerosol Products over Indonesia. E3S Web Conf. 2024, 485, 06003. [Google Scholar] [CrossRef]
- Zhang, K.; Zhao, L.; Tang, W.; Yang, K.; Wang, J. Global and Regional Evaluation of the CERES Edition-4A Surface Solar Radiation and Its Uncertainty Quantification. IEEE J. Sel. Top. Appl. Earth Obs. Remote Sens. 2022, 15, 2971–2985. [Google Scholar] [CrossRef]
- Li, X.; Mauzerall, D.L.; Bergin, M.H. Global Reduction of Solar Power Generation Efficiency Due to Aerosols and Panel Soiling. Nat. Sustain. 2020, 3, 720–727. [Google Scholar] [CrossRef]
- Li, Z.; Yang, J.; Dezfuli, P.A.N. Study on the Influence of Light Intensity on the Performance of Solar Cell. Int. J. Photoenergy 2021, 2021, 6648739. [Google Scholar] [CrossRef]
- Matuszko, D. Influence of the Extent and Genera of Cloud Cover on Solar Radiation Intensity. Intl. J. Climatol. 2012, 32, 2403–2414. [Google Scholar] [CrossRef]
- Monteith, J.L.; Unsworth, M.H. Principles of Environmental Physics: Plants, Animals, and the Atmosphere, 4th ed.; Elsevier/Academic Press: Amsterdam, The Netherlands; Boston, MA, USA, 2013; ISBN 978-0-12-386910-4. [Google Scholar]
- Fountoulakis, I.; Kosmopoulos, P.; Papachristopoulou, K.; Raptis, P.-I.; Mamouri, R.-E.; Nisantzi, A.; Gkikas, A.; Witthuhn, J.; Bley, S.; Moustaka, A.; et al. Effects of Aerosols and Clouds on the Levels of Surface Solar Radiation and Solar Energy in Cyprus. Remote Sens. 2021, 13, 2319. [Google Scholar] [CrossRef]
- Papayannis, A.; Balis, D.; Amiridis, V.; Chourdakis, G.; Tsaknakis, G.; Zerefos, C.; Castanho, A.D.A.; Nickovic, S.; Kazadzis, S.; Grabowski, J. Measurements of Saharan Dust Aerosols over the Eastern Mediterranean Using Elastic Backscatter-Raman Lidar, Spectrophotometric and Satellite Observations in the Frame of the EARLINET Project. Atmos. Chem. Phys. 2005, 5, 2065–2079. [Google Scholar] [CrossRef]
- Qian, Y.; Wang, W.; Leung, L.R.; Kaiser, D.P. Variability of Solar Radiation under Cloud-free Skies in China: The Role of Aerosols. Geophys. Res. Lett. 2007, 34, 2006GL028800. [Google Scholar] [CrossRef]
Meteorological Parameters | Mean | Trend |
---|---|---|
SSR | 429 (Wm−2) | −0.11% year−1 (−0.40 Wm−2 year−1) |
TCC | 45% | 0.10% year−1 |
AOD | 0.41 (unitless) | 0.76% year−1 |
Impact | Region | Mean Impact (%) | Trend (% year−1) | ||
---|---|---|---|---|---|
1st Decade | 2nd Decade | 3rd Decade | |||
Cimpact | R1 | 40 | −0.34 | 0.09 | 0.41 |
R2 | 38 | −0.56 | 0.21 | 0.11 | |
R3 | 46 | −0.15 | −0.28 | 0.07 | |
R4 | 28 | −0.26 | 0.06 | 0.09 | |
Aimpact | R1 | 11 | − | 0.28 | 0.15 |
R2 | 13 | − | 0.16 | 0.08 | |
R3 | 17 | − | 0.37 | 0.25 | |
R4 | 13 | − | 0.11 | 0.07 |
Impact | Region | Regional Mean Impact (%) | Mean Impact (%) | Trend (% Year−1) | |||||
---|---|---|---|---|---|---|---|---|---|
1st Decade | Mean | 2nd Decade | Mean | 3rd Decade | Mean | ||||
HCimpact | R1 | 31 | 31 | −0.33 | −0.26 | 0.02 | −0.04 | 0.54 | 0.22 |
R2 | 28 | −0.36 | 0.10 | 0.15 | |||||
R3 | 37 | −0.10 | −0.21 | 0.07 | |||||
R4 | 29 | −0.24 | −0.04 | 0.12 | |||||
MCimpact | R1 | 44 | 40 | 0.05 | −0.19 | 0.02 | −0.08 | 0.38 | 0.13 |
R2 | 39 | −0.26 | 0.00 | 0.03 | |||||
R3 | 48 | −0.08 | −0.47 | 0.01 | |||||
R4 | 29 | −0.44 | 0.15 | 0.08 | |||||
LCimpact | R1 | 46 | 44 | −0.04 | −0.37 | 0.21 | 0.15 | 0.30 | −0.01 |
R2 | 51 | −1.10 | 0.51 | −0.14 | |||||
R3 | 53 | −0.25 | −0.17 | −0.12 | |||||
R4 | 28 | −0.07 | 0.05 | −0.05 |
Impact | Region | Regional Mean Impact (%) | Mean Impact (%) | Trend (% Year−1) | |||||
---|---|---|---|---|---|---|---|---|---|
1st Decade | Mean | 2nd Decade | Mean | 3rd Decade | Mean | ||||
Aimpact | R1 | 11 | 13 | − | − | 0.28 | 0.24 | 0.15 | 0.14 |
R2 | 13 | − | 0.16 | 0.08 | |||||
R3 | 17 | − | 0.38 | 0.26 | |||||
R4 | 13 | − | 0.11 | 0.08 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jadhav, A.V.; Rahul, P.R.C.; Kumar, V.; Dumka, U.C.; Bhawar, R.L. Spatiotemporal Assessment of Surface Solar Dimming in India: Impacts of Multi-Level Clouds and Atmospheric Aerosols. Climate 2024, 12, 48. https://doi.org/10.3390/cli12040048
Jadhav AV, Rahul PRC, Kumar V, Dumka UC, Bhawar RL. Spatiotemporal Assessment of Surface Solar Dimming in India: Impacts of Multi-Level Clouds and Atmospheric Aerosols. Climate. 2024; 12(4):48. https://doi.org/10.3390/cli12040048
Chicago/Turabian StyleJadhav, Ashwin Vijay, P. R. C. Rahul, Vinay Kumar, Umesh Chandra Dumka, and Rohini L. Bhawar. 2024. "Spatiotemporal Assessment of Surface Solar Dimming in India: Impacts of Multi-Level Clouds and Atmospheric Aerosols" Climate 12, no. 4: 48. https://doi.org/10.3390/cli12040048
APA StyleJadhav, A. V., Rahul, P. R. C., Kumar, V., Dumka, U. C., & Bhawar, R. L. (2024). Spatiotemporal Assessment of Surface Solar Dimming in India: Impacts of Multi-Level Clouds and Atmospheric Aerosols. Climate, 12(4), 48. https://doi.org/10.3390/cli12040048