Machine Learning Identification of Attributes and Predictors for a Flash Drought in Eastern Australia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Data Sources
2.2. Methods
3. Results
3.1. Exploratory Data Analysis
3.1.1. Precipitation Time Series
3.1.2. Box Plots
3.1.3. Permutation Testing
3.1.4. Machine Learning Attribution Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- New South Wales Department of Primary Industry. Combined Drought Indicator. Available online: https://edis.dpi.nsw.gov.au (accessed on 13 March 2024).
- Parker, T.; Gallant, A.; Hobbins, M.; Hoffmann, D. Flash drought in Australia and its relationship to evaporative demand. Environ. Res. Lett. 2021, 16, 064033. [Google Scholar] [CrossRef]
- NESP. National Environmental and Earth Systems Programme. Earth Systems and Climate Change Hub. Flash Drought in Australia. 30 June 2021. Available online: https://nespclimate.com.au/wp-content/uploads/2021/04/ESCC_Flash-drought_Factsheet.pdf (accessed on 13 March 2024).
- Koster, R.D.; Shubert, S.D.; Wang, H.; Mahanama, S.P.; DeAngelis, A.M. Flash drought as captured by reanalysis data: Disentangling the contributions of precipitation deficit and excess evapotranspiration. J. Hydrometeorol. 2019, 20, 1241–1258. [Google Scholar] [CrossRef]
- Tyagi, S.; Zhang, X.; Saraswat, D.; Sahany, S.; Mishra, S.K.; Niyogi, D. Flash drought: Review of concept, prediction and the potential for machine learning, deep learning methods. Earth’s Future 2022, 10, e2022EF002723. [Google Scholar] [CrossRef]
- Wang, L.; Yuan, X. Two types of flash drought and their connections with seasonal drought. Adv. Atmos. Sci. 2018, 35, 1478–1490. [Google Scholar] [CrossRef]
- Otkin, J.A.; Svoboda, M.; Hunt, E.D.; Ford, T.W.; Anderson, M.C.; Hain, C.; Basara, J.B. Flash droughts: A review and assessment of the challenges imposed by rapid-onset droughts in the United States. Bull. Am. Meteorol. Soc. 2018, 99, 911–919. [Google Scholar] [CrossRef]
- Jin, C.; Luo, X.; Xiao, X.; Dong, J.; Li, X.; Yang, J.; Zhao, D. The 2012 flash drought threatened US Midwest agroecosystems. Chin. Geogr. Sci. 2019, 29, 768–783. [Google Scholar] [CrossRef]
- Bubathi, V.; Leslie, L.; Speer, M.; Hartigan, J.; Wang, J.; Gupta, A. Impact of Accelerated Climate Change on Maximum Temperature Differences between Western and Coastal Sydney. Climate 2023, 11, 76. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2022: Impacts, Adaptation, and Vulnerability; Contribution of Working Group II to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Pörtner, H.-O., Roberts, D.C., Tignor, M., Poloczanska, E.S., Mintenbeck, K., Alegría, A., Craig, M., Langsdorf, S., Löschke, S., Möller, V., et al., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2022; p. 3056. Available online: https://www.ipcc.ch/report/ar6/wg2/ (accessed on 13 March 2024).
- Church, J.A.; White, N.J. Sea-level rise from the late 19th to the early 21st century. Surv. Geophys. 2017, 32, 585–602. Available online: http://www.cmar.csiro.au/sealevel/sl_data_cmar.html (accessed on 13 March 2024). [CrossRef]
- NOAA (National Oceanic and Atmospheric Administration). Laboratory for Satellite Altimetry: Sea Level Rise. Available online: www.star.nesdis.noaa.gov/sod/lsa/SeaLevelRise/LSA_SLR_timeseries_global.php (accessed on 13 March 2024).
- Cheng, L.J.; Abraham, J.; Trenberth, K.E.; Boyer, T.; Mann, M.E.; Zhu, J.; Wang, F.; Yu, F.; Locarnini, R.; Fasullo, J.; et al. New record ocean temperatures and related climate indicators in 2023. Adv. Atmos. Sci. 2024, 1–15. [Google Scholar] [CrossRef]
- Speer, M.; Hartigan, J.; Leslie, L. Machine Learning Assessment of the Impact of Global Warming on the Climate Drivers of Water Supply to Australia’s Northern Murray-Darling Basin. Water 2022, 14, 3073. [Google Scholar] [CrossRef]
- Canny, J. Combinatorics and Discrete Probability: Stats: Permutation Tests and Bootstrapping [Lecture Notes]; EECS: Berkeley, CA, USA, 2008; pp. 154+196. Available online: https://inst.eecs.berkeley.edu/~cs174/sp08/lecs/index.html (accessed on 13 March 2024).
- Wilcox, R.R. Introduction to Robust Estimation and Hypothesis Testing, 5th ed.; Elsevier: Amsterdam, The Netherlands, 2011. [Google Scholar]
- Richman, M.B.; Leslie, L.M. Attribution and Prediction of Maximum Temperature Extremes in SE Australia. Procedia Comput. Sci. 2014, 36, 612–617. [Google Scholar] [CrossRef]
- Richman, M.B.; Leslie, L.M. Machine Learning for Attribution of Heat and Drought in Southwestern Australia. Procedia Comput. Sci. 2020, 168, 3–10. [Google Scholar] [CrossRef]
- Hartigan, J.; MacNamara, S.; Leslie, L.M. Application of Machine Learning to Attribution and Prediction of Seasonal Precipitation and Temperature Trends in Canberra, Australia. Climate 2020, 8, 76. [Google Scholar] [CrossRef]
- McKay, R.C.; Boschat, G.; Rudeva, I.; Pepler, A.; Purich, A.; Dowdy, A.; Hope, P.; Gillett, Z.E.; Rauniyar, S. Can southern Australian rainfall decline be explained? A review of possible drivers. WIREs 2023, 14, e820. [Google Scholar] [CrossRef]
- Speer, M.S.; Leslie, L.M.; Hartigan, J. Jet Stream Changes over Southeast Australia during the Early Cool Season in Response to Accelerated Global Warming. Climate 2022, 10, 84. [Google Scholar] [CrossRef]
- Richman, M.B.; Leslie, L.M. Adaptive Machine Learning Approaches to Seasonal Prediction of Tropical Cyclones. Procedia Comput. Sci. 2012, 12, 276–281. [Google Scholar] [CrossRef]
- Funk, C.; Funk, C.; Fink, A.H.; Fink, A.H.; Harrison, L.; Harrison, L.; Segele, Z.; Segele, Z.; Endris, H.S.; Endris, H.S.; et al. Frequent but predictable droughts in East Africa driven by a Walker circulation intensification. Earth’s Future 2023, 11, e2022EF003454. [Google Scholar] [CrossRef]
- Tozer, C.R.; Risbey, J.S.; Monselesan, D.P.; Pook, M.J.; Irving, D.; Ramesh, N.; Reddy, J.; Squire, D.T. Impacts of ENSO on Australian rainfall: What not to expect. J. South. Hemisph. Earth Syst. Sci. 2023, 73, 77–81. [Google Scholar] [CrossRef]
- Speer, M.S.; Leslie, L.M.; Fierro, A.O. Australian east coast rainfall decline related to large scale climate drivers. Clim. Dyn. 2011, 36, 1419–1429. [Google Scholar] [CrossRef]
- McBride, J.L.; Nicholls, N. Seasonal Relationships between Australian Rainfall and the Southern oscillation. Mon. Weather Rev. 1983, 111, 1998–2004. [Google Scholar] [CrossRef]
- Arblaster, J.M.; Meehl, G.A. Contributions of external forcings to Southern Annular Mode trends. J. Clim. 2006, 19, 2896–2905. [Google Scholar] [CrossRef]
- Gillett, N.P.; Thompson, D.W.J. Simulation of recent Southern Hemisphere climate change. Science 2003, 302, 273–275. [Google Scholar] [CrossRef] [PubMed]
- Polvani, L.M.; Waugh, D.; Correa, G.J.P.; Son, S.-W. Stratospheric Ozone Depletion: The Main Driver of Twentieth-Century Atmospheric Circulation Changes in the Southern Hemisphere. J. Clim. 2011, 24, 795–812. [Google Scholar] [CrossRef]
- Thompson, D.W.J.; Solomon, S. Interpretation of Recent Southern Hemisphere Climate Change. Science 2002, 96, 895–899. [Google Scholar] [CrossRef] [PubMed]
- Zheng, F.; Liu, X.; Wang, H.; Li, Y.; Wang, R.; Yao, S.; Dong, W. Reversing seasonality of Southern Hemisphere Annular Mode trend in the 21st century. Int. J. Climatol. 2023, 43, 6783–6798. [Google Scholar] [CrossRef]
- Jiang, F.; Zhang, W.; Boucharel, J.; Jin, F.-F. Tropical origins of the Pacific Meridional Mode associated with the nonlinear interaction of ENSO with the annual cycle. Geophys. Res. Lett. 2023, 50, e2023GL106225. [Google Scholar] [CrossRef]
- Liu, B.; Gan, B.; Jia, F.; Wu, L. Impact of the North Pacific Meridional Mode on the Tropical Pacific Modulated by the Interdecadal Pacific Oscillation. J. Clim. 2024, 37, 2199–2216. [Google Scholar] [CrossRef]
Climate Driver | Climate Driver Acronym |
---|---|
Atlantic Multi-decadal Oscillation | AMO |
Indian Ocean Dipole or Dipole Mode Index | IOD |
Global Sea-surface temperature anomaly | GlobalSSTA |
Global Temperature | GlobalT |
Nino3 and Nino4 SST areas; equatorial central eastern Pacific Ocean | Niño3.4 |
Pacific Meridional Mode—SST anomaly component of index | PMM |
Southern Annular Mode | SAM |
Southern Oscillation Index | SOI |
Interdecadal Pacific Oscillation or Pacific Decadal Oscillation | IPO |
Tasman Sea-sea surface temperature anomaly | TSSSTA |
(a) | ||||||||||
MACHINE LEARNING TECHNIQUES | ||||||||||
ATTRIBUTES | LR F | SVM RBF F | SVM Poly F | RF F | LR B | SVM RBF B | SVM Poly B | RF B | Mean | Std. Dev. |
AMO | 9.76 | 17.07 | 53.66 | 21.95 | 31.71 | 12.20 | 19.51 | 95.12 | 32.62 | 28.83 |
IOD | 9.76 | 26.83 | 68.29 | 39.02 | 29.27 | 9.76 | 53.66 | 97.56 | 41.77 | 30.22 |
GlobalSSTA | 14.63 | 31.71 | 60.98 | 19.51 | 24.39 | 19.51 | 60.98 | 90.24 | 40.24 | 27.25 |
GlobalT | 2.44 | 36.59 | 70.73 | 34.15 | 31.71 | 19.51 | 48.78 | 95.12 | 42.38 | 29.18 |
Niño3.4 | 4.88 | 56.10 | 78.05 | 51.22 | 41.46 | 26.83 | 31.71 | 97.56 | 48.48 | 29.40 |
PMM | 4.88 | 34.15 | 58.54 | 29.27 | 39.02 | 21.95 | 63.41 | 97.56 | 43.60 | 28.81 |
SAM | 19.51 | 41.46 | 48.78 | 53.66 | 48.78 | 14.63 | 36.59 | 92.68 | 44.51 | 24.00 |
SOI | 9.76 | 58.54 | 75.61 | 31.71 | 26.83 | 12.20 | 60.98 | 92.68 | 46.04 | 30.39 |
IPO | 19.51 | 53.66 | 78.05 | 41.46 | 31.71 | 4.88 | 29.27 | 97.56 | 44.51 | 30.76 |
TSSSTA | 7.32 | 31.71 | 56.10 | 21.95 | 24.39 | 7.32 | 17.07 | 87.80 | 31.71 | 27.50 |
AMO*IOD | 4.88 | 17.07 | 70.73 | 43.90 | 17.07 | 9.76 | 48.78 | 95.12 | 38.41 | 32.19 |
AMO*GlobalSSTA | 17.07 | 4.88 | 36.59 | 17.07 | 36.59 | 2.44 | 58.54 | 85.37 | 32.32 | 28.41 |
AMO*GlobalT | 7.32 | 12.20 | 68.29 | 17.07 | 34.15 | 0.00 | 68.29 | 97.56 | 38.11 | 35.63 |
AMO*Niño3.4 | 12.20 | 34.15 | 68.29 | 29.27 | 21.95 | 12.20 | 43.90 | 92.68 | 39.33 | 28.31 |
AMO*PMM | 4.88 | 36.59 | 60.98 | 31.71 | 36.59 | 19.51 | 39.02 | 100.00 | 41.16 | 28.72 |
AMO*SAM | 34.15 | 24.39 | 39.02 | 31.71 | 36.59 | 21.95 | 68.29 | 97.56 | 44.21 | 25.79 |
AMO*SOI | 9.76 | 9.76 | 65.85 | 19.51 | 12.20 | 0.00 | 31.71 | 95.12 | 30.49 | 33.11 |
AMO*IPO | 19.51 | 34.15 | 60.98 | 39.02 | 24.39 | 2.44 | 34.15 | 97.56 | 39.02 | 29.01 |
AMO*TSSSTA | 4.88 | 19.51 | 73.17 | 29.27 | 21.95 | 7.32 | 43.90 | 97.56 | 37.20 | 32.79 |
IOD*GlobalSSTA | 41.46 | 19.51 | 73.17 | 41.46 | 53.66 | 2.44 | 36.59 | 95.12 | 45.43 | 29.12 |
IOD*GlobalT | 36.59 | 24.39 | 70.73 | 41.46 | 46.34 | 12.20 | 43.90 | 95.12 | 46.34 | 26.04 |
IOD*Niño3.4 | 0.00 | 60.98 | 63.41 | 60.98 | 9.76 | 29.27 | 46.34 | 97.56 | 46.04 | 31.89 |
IOD*PMM | 21.95 | 17.07 | 68.29 | 29.27 | 4.88 | 0.00 | 48.78 | 100.00 | 36.28 | 34.16 |
IOD*SAM | 14.63 | 65.85 | 70.73 | 48.78 | 12.20 | 39.02 | 43.90 | 97.56 | 49.09 | 28.72 |
IOD*SOI | 17.07 | 43.90 | 73.17 | 41.46 | 12.20 | 7.32 | 60.98 | 97.56 | 44.21 | 31.84 |
IOD*IPO | 4.88 | 36.59 | 63.41 | 48.78 | 4.88 | 9.76 | 70.73 | 90.24 | 41.16 | 32.68 |
IOD*TSSST | 2.44 | 24.39 | 56.10 | 46.34 | 4.88 | 4.88 | 24.39 | 92.68 | 32.01 | 31.46 |
GlobalSSTA*GlobalT | 4.88 | 31.71 | 56.10 | 29.27 | 7.32 | 26.83 | 51.22 | 95.12 | 37.80 | 29.38 |
GlobalSSTA*Niño3.4 | 4.88 | 58.54 | 58.54 | 68.29 | 17.07 | 43.90 | 36.59 | 100.00 | 48.48 | 30.00 |
GlobalSSTA*PMM | 31.71 | 19.51 | 41.46 | 48.78 | 26.83 | 4.88 | 46.34 | 92.68 | 39.02 | 26.14 |
GlobalSSTA*SAM | 14.63 | 14.63 | 48.78 | 29.27 | 19.51 | 0.00 | 43.90 | 97.56 | 33.54 | 30.46 |
GlobalSSTA*SOI | 9.76 | 48.78 | 56.10 | 36.59 | 2.44 | 41.46 | 53.66 | 97.56 | 43.29 | 29.49 |
GlobalSSTA*IPO | 9.76 | 51.22 | 60.98 | 46.34 | 14.63 | 29.27 | 34.15 | 90.24 | 42.07 | 26.20 |
GlobalSSTA*TSSSTA | 26.83 | 24.39 | 41.46 | 26.83 | 9.76 | 19.51 | 48.78 | 90.24 | 35.98 | 25.07 |
GlobalT*Niño3.4 | 7.32 | 58.54 | 48.78 | 63.41 | 2.44 | 29.27 | 48.78 | 95.12 | 44.21 | 30.56 |
GlobalT*PMM | 4.88 | 29.27 | 58.54 | 43.90 | 17.07 | 9.76 | 56.10 | 95.12 | 39.33 | 30.34 |
GlobalT*SAM | 34.15 | 31.71 | 48.78 | 46.34 | 2.44 | 36.59 | 41.46 | 97.56 | 42.38 | 26.49 |
GlobalT*SOI | 29.27 | 36.59 | 53.66 | 29.27 | 21.95 | 12.20 | 63.41 | 92.68 | 42.38 | 26.20 |
GlobalT*IPO | 4.88 | 56.10 | 63.41 | 58.54 | 12.20 | 31.71 | 46.34 | 97.56 | 46.34 | 29.90 |
GlobalT*TSSSTA | 21.95 | 14.63 | 51.22 | 9.76 | 2.44 | 12.20 | 63.41 | 87.80 | 32.93 | 30.77 |
Nino3.4*PMM | 12.20 | 46.34 | 68.29 | 29.27 | 7.32 | 17.07 | 34.15 | 90.24 | 38.11 | 28.92 |
Nino3.4*SAM | 26.83 | 58.54 | 63.41 | 48.78 | 0.00 | 29.27 | 43.90 | 92.68 | 45.43 | 27.81 |
Nino3.4*SOI | 21.95 | 60.98 | 78.05 | 34.15 | 9.76 | 31.71 | 58.54 | 97.56 | 49.09 | 29.83 |
Nino3.4*IPO | 17.07 | 73.17 | 73.17 | 46.34 | 7.32 | 41.46 | 63.41 | 97.56 | 52.44 | 30.38 |
Niño3.4*TSSSTA | 21.95 | 41.46 | 70.73 | 36.59 | 0.00 | 41.46 | 29.27 | 95.12 | 42.07 | 29.29 |
PMM*SAM | 21.95 | 29.27 | 58.54 | 26.83 | 0.00 | 9.76 | 34.15 | 97.56 | 34.76 | 30.71 |
PMM*SOI | 2.44 | 29.27 | 65.85 | 31.71 | 0.00 | 9.76 | 29.27 | 92.68 | 32.62 | 32.14 |
PMM*IPO | 17.07 | 46.34 | 70.73 | 24.39 | 0.00 | 24.39 | 53.66 | 95.12 | 41.46 | 31.18 |
PMM*TSSSTA | 14.63 | 26.83 | 60.98 | 31.71 | 0.00 | 34.15 | 34.15 | 100.00 | 37.80 | 30.60 |
SAM*SOI | 43.90 | 46.34 | 56.10 | 26.83 | 0.00 | 9.76 | 46.34 | 97.56 | 40.85 | 30.12 |
SAM*IPO | 14.63 | 53.66 | 73.17 | 48.78 | 0.00 | 21.95 | 53.66 | 95.12 | 45.12 | 31.51 |
SAM*TSSSTA | 39.02 | 24.39 | 53.66 | 31.71 | 0.00 | 26.83 | 48.78 | 97.56 | 40.24 | 28.44 |
SOI*IPO | 36.59 | 68.29 | 68.29 | 29.27 | 0.00 | 39.02 | 48.78 | 87.80 | 47.26 | 27.44 |
SOI*TSSSTA | 21.95 | 17.07 | 56.10 | 31.71 | 0.00 | 9.76 | 29.27 | 95.12 | 32.62 | 30.27 |
IPO*TSSSTA | 26.83 | 39.02 | 56.10 | 41.46 | 0.00 | 21.95 | 41.46 | 87.80 | 39.33 | 25.76 |
Mean | 16.36 | 36.54 | 61.69 | 36.67 | 16.36 | 18.09 | 45.76 | 94.86 | ||
Standard Deviation | 11.41 | 16.84 | 10.23 | 12.37 | 15.06 | 12.68 | 12.79 | 3.56 | ||
(b) | ||||||||||
MACHINE LEARNING TECHNIQUES | ||||||||||
ATTRIBUTES | LR F | SVM RBF F | SVM Poly F | RF F | LR B | SVM RBF B | SVM Poly B | RF B | Mean | Std. Dev. |
GlobalT | 9.09 | 27.27 | 90.91 | 9.09 | 81.82 | 0.00 | 45.45 | 100.00 | 45.45 | 40.36 |
SAM | 36.36 | 63.64 | 27.27 | 54.55 | 90.91 | 0.00 | 27.27 | 100.00 | 50.00 | 34.02 |
TPI | 27.27 | 18.18 | 100.00 | 18.18 | 72.73 | 0.00 | 27.27 | 100.00 | 45.45 | 39.48 |
IOD*GlobalT | 45.45 | 63.64 | 81.82 | 36.36 | 0.00 | 36.36 | 36.36 | 100.00 | 50.00 | 31.11 |
IOD*SAM | 0.00 | 81.82 | 72.73 | 45.45 | 0.00 | 54.55 | 27.27 | 100.00 | 47.73 | 36.93 |
GlobalSSTA*GlobalT | 9.09 | 72.73 | 36.36 | 54.55 | 0.00 | 63.64 | 36.36 | 90.91 | 45.45 | 31.11 |
GlobalT*SAM | 36.36 | 90.91 | 54.55 | 63.64 | 0.00 | 72.73 | 36.36 | 100.00 | 56.82 | 32.51 |
GlobalT*TPI | 0.00 | 63.64 | 63.64 | 63.64 | 0.00 | 54.55 | 45.45 | 90.91 | 47.73 | 32.14 |
Nino3.4*SAM | 18.18 | 90.91 | 54.55 | 90.91 | 0.00 | 54.55 | 27.27 | 100.00 | 54.55 | 37.32 |
Nino3.4*TPI | 9.09 | 72.73 | 72.73 | 45.45 | 0.00 | 45.45 | 36.36 | 100.00 | 47.73 | 33.58 |
SAM*TSSSTA | 45.45 | 72.73 | 54.55 | 9.09 | 0.00 | 63.64 | 63.64 | 100.00 | 51.14 | 32.93 |
SOI*TPI | 27.27 | 72.73 | 72.73 | 9.09 | 0.00 | 72.73 | 81.82 | 90.91 | 53.41 | 35.52 |
Mean | 21.96 | 65.91 | 65.15 | 41.66 | 20.45 | 43.18 | 40.90 | 97.72 | ||
Standard Deviation | 16.65 | 22.31 | 21.17 | 26.13 | 37.20 | 27.98 | 16.67 | 4.11 | ||
(c) | ||||||||||
MACHINE LEARNING TECHNIQUES | ||||||||||
ATTRIBUTES | LR F | SVM RBF F | SVM Poly F | RF F | LR B | SVM RBF B | SVM Poly B | RF B | Mean | Std. Dev. |
AMO | 9.09 | 18.18 | 72.73 | 63.64 | 54.55 | 0.00 | 54.55 | 90.91 | 45.45 | 32.60 |
IOD | 27.27 | 54.55 | 63.64 | 54.55 | 63.64 | 36.36 | 54.55 | 100.00 | 56.82 | 21.60 |
GlobalT | 0.00 | 36.36 | 81.82 | 54.55 | 45.45 | 0.00 | 63.64 | 90.91 | 46.59 | 33.82 |
Niño3.4 | 9.09 | 100.00 | 81.82 | 100.00 | 45.45 | 9.09 | 45.45 | 100.00 | 61.36 | 39.40 |
PMM | 9.09 | 54.55 | 72.73 | 63.64 | 81.82 | 0.00 | 100.00 | 90.91 | 59.09 | 36.69 |
SOI | 0.00 | 54.55 | 72.73 | 18.18 | 72.73 | 18.18 | 45.45 | 100.00 | 47.73 | 33.93 |
TPI | 9.09 | 90.91 | 81.82 | 45.45 | 72.73 | 9.09 | 45.45 | 100.00 | 56.82 | 35.29 |
TSSSTA | 27.27 | 18.18 | 81.82 | 36.36 | 63.64 | 27.27 | 27.27 | 100.00 | 47.73 | 30.25 |
AMO*IOD | 27.27 | 18.18 | 90.91 | 54.55 | 72.73 | 36.36 | 36.36 | 90.91 | 53.41 | 28.52 |
AMO*SAM | 0.00 | 45.45 | 72.73 | 36.36 | 36.36 | 0.00 | 81.82 | 100.00 | 46.59 | 36.51 |
AMO*TSSSTA | 27.27 | 18.18 | 63.64 | 63.64 | 9.09 | 9.09 | 72.73 | 100.00 | 45.45 | 34.02 |
IOD*GlobalT | 36.36 | 18.18 | 72.73 | 54.55 | 0.00 | 0.00 | 81.82 | 100.00 | 45.45 | 37.95 |
IOD*Niño3.4 | 18.18 | 54.55 | 72.73 | 54.55 | 0.00 | 36.36 | 63.64 | 90.91 | 48.86 | 29.53 |
IOD*SOI | 18.18 | 72.73 | 72.73 | 63.64 | 0.00 | 9.09 | 63.64 | 90.91 | 48.86 | 34.34 |
IOD*TPI | 27.27 | 27.27 | 81.82 | 54.55 | 0.00 | 9.09 | 72.73 | 100.00 | 46.59 | 36.18 |
GlobalSSTA*Niño3.4 | 0.00 | 100.00 | 72.73 | 45.45 | 0.00 | 90.91 | 27.27 | 100.00 | 54.55 | 42.36 |
GlobalT*Niño3.4 | 9.09 | 90.91 | 36.36 | 72.73 | 0.00 | 81.82 | 0.00 | 100.00 | 48.86 | 42.34 |
Nino3.4*PMM | 27.27 | 81.82 | 81.82 | 63.64 | 0.00 | 9.09 | 63.64 | 100.00 | 53.41 | 36.83 |
Nino3.4*TPI | 0.00 | 100.00 | 81.82 | 63.64 | 0.00 | 45.45 | 54.55 | 90.91 | 54.55 | 38.26 |
PMM*SOI | 0.00 | 81.82 | 72.73 | 63.64 | 0.00 | 9.09 | 45.45 | 100.00 | 46.59 | 39.31 |
PMM*TPI | 0.00 | 63.64 | 90.91 | 63.64 | 0.00 | 36.36 | 90.91 | 100.00 | 55.68 | 39.90 |
SAM*TPI | 72.73 | 36.36 | 72.73 | 54.55 | 0.00 | 9.09 | 54.55 | 100.00 | 50.00 | 33.67 |
Mean | 16.11 | 56.19 | 74.79 | 56.61 | 28.09 | 21.89 | 56.61 | 97.10 | ||
Standard Deviation | 17.50 | 29.90 | 11.19 | 15.60 | 32.22 | 25.35 | 27.78 | 4.33 |
Predictors 1963–2023 | Predictors 1963–1992 | Predictors 1993–2023 |
---|---|---|
Niño3.4*TPI } | GlobalT*SAM | Niño3.4 |
IOD*SAM } | Niño3.4*SAM | PMM |
Niño3.4*SOI | SOI*IPO | IOD } |
GlobalSSTA*Nino3.4 } | SAM*TSSSTA | IPO } |
Niño3.4 } | SAM } | PMM*IPO |
SOI*IPO | IOD*GlobalT } | GlobalSSTA*Niño3.4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Speer, M.; Hartigan, J.; Leslie, L.M. Machine Learning Identification of Attributes and Predictors for a Flash Drought in Eastern Australia. Climate 2024, 12, 49. https://doi.org/10.3390/cli12040049
Speer M, Hartigan J, Leslie LM. Machine Learning Identification of Attributes and Predictors for a Flash Drought in Eastern Australia. Climate. 2024; 12(4):49. https://doi.org/10.3390/cli12040049
Chicago/Turabian StyleSpeer, Milton, Joshua Hartigan, and Lance M. Leslie. 2024. "Machine Learning Identification of Attributes and Predictors for a Flash Drought in Eastern Australia" Climate 12, no. 4: 49. https://doi.org/10.3390/cli12040049
APA StyleSpeer, M., Hartigan, J., & Leslie, L. M. (2024). Machine Learning Identification of Attributes and Predictors for a Flash Drought in Eastern Australia. Climate, 12(4), 49. https://doi.org/10.3390/cli12040049