The Influence of Climate Variables on Malaria Incidence in Vanuatu
Abstract
:1. Introduction
2. Materials and Methods
µm = intercept + β1× maximum temperature + β2 × total precipitation
3. Results
3.1. Descriptive Analysis
3.2. Correlation Matrices
3.3. Generalised Linear Model Regression Analysis
3.4. Bayesian Modelling
4. Discussion
4.1. Malaria Incidence
4.2. Correlation and Regression Analysis
4.3. Bayesian Model for Malaria Prediction
4.4. Modelling an Early Warning System
4.5. Limitations and Future Directions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Climatic Variable | Mean | Standard Deviation | Minimum | Maximum |
---|---|---|---|---|
Max Temperature | 27.06 | 0.79 | 25.15 | 28.87 |
Min Temperature | 22.76 | 1.11 | 20.35 | 24.93 |
Med Temperature | 25.33 | 1.04 | 22.95 | 27.68 |
Peak Biting | 24.95 | 1.04 | 22.64 | 27.07 |
Diurnal Temperature | 4.42 | 0.57 | 3.60 | 5.76 |
Med Humidity | 79.77 | 3.97 | 67.83 | 86.19 |
Precipitation Anomaly | −17.24 | 113.28 | −336.15 | 336.07 |
Total Precipitation | 223.63 | 152.88 | 21.94 | 659.55 |
Appendix B
Month Lag | |||||||
---|---|---|---|---|---|---|---|
Variable | Zero | One | Two | Three | Four | Five | Six |
Max Temperature | 0.43 * | 0.52 * | 0.44 * | 0.27 * | 0.04 (0.67) | −0.20 * | −0.35 * |
Min Temperature | 0.34 * | 0.46 * | 0.42 * | 0.29 * | 0.07 (0.44) | −0.17 (0.06) | −0.35 * |
Med Temperature | 0.41 * | 0.50 * | 0.43 * | 0.27 * | 0.04 (0.69) | -0.19 * | −0.34 * |
Peak Biting | 0.39 * | 0.50 * | 0.43 * | 0.27 * | 0.05 (0.62) | -0.18 * | −0.34 * |
Diurnal Temperature | −0.14 (0.14) | −0.31 * | −0.40 * | −0.38 * | −0.22 * | 0.01 (0.95) | 0.20 * |
Med Humidity | 0.28 * | 0.33 * | 0.33 * | 0.21 * | 0.03 (0.77) | −0.17 (0.07) | −0.25 * |
Precipitation Anomaly | 0.05 (.59) | 0.05 (0.57) | 0.14 (0.12) | 0.09 (0.32) | 0.11 (0.23) | 0.04 (0.68) | 0.12 (0.21) |
Total Precipitation | 0.34 * | 0.35 * | 0.36 * | 0.21 * | 0.06 (0.50) | −0.15 (0.11) | −0.20 * |
References
- Calvin, K.; Dasgupta, D.; Krinner, G.; Mukherji, A.; Thorne, P.W.; Trisos, C.; Romero, J.; Aldunce, P.; Barrett, K.; Blanco, G.; et al. IPCC, 2023: Climate Change 2023: Synthesis Report. In Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, 1st ed.; Core Writing Team, Lee, H., Romero, J., Eds.; Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2023. [Google Scholar]
- Opeskin, B. Malaria in Pacific Populations: Seen but Not Heard? J. Pop. Res. 2009, 26, 175–199. [Google Scholar] [CrossRef]
- World Health Organization. Ending the Neglect to Attain the Sustainable Development Goals: A Road Map for Neglected Tropical Diseases 2021–2030. Available online: https://www.who.int/publications/i/item/9789240010352 (accessed on 31 October 2024).
- Hosking, R.; Smurthwaite, K.; Hales, S.; Richardson, A.; Batikawai, S.; Lal, A. Climate Variability and Water-Related Infectious Diseases in Pacific Island Countries and Territories, a Systematic Review. PLoS Clim. 2023, 2, e0000296. [Google Scholar] [CrossRef]
- United Nations Development Programme Annual Report 2023: A Malaria Free Vanuatu. Available online: https://www.undp.org/pacific/publications/annual-report-2023-malaria-free-vanuatu (accessed on 29 October 2024).
- State of Inequality HIV, Tuberculosis and Malaria; World Health Organization: Geneva, Switzerland, 2021.
- World Health Organization World Malaria Report. 2023. Available online: https://www.who.int/publications/i/item/9789240086173 (accessed on 2 October 2024).
- The Lancet Regional Health—Western Pacific Water, Climate Change, and Health in the Western Pacific Region. Lancet Reg. Health West. Pac. 2023, 32, 100753. [CrossRef]
- World Health Organization Health and Climate Change: Country Profile 2020: Vanuatu. Available online: https://www.who.int/publications/i/item/WHO-HEP-ECH-CCH-20.01.03 (accessed on 29 October 2024).
- Smith, K.R.; Woodward, A.; Campbell-Lendrum, D.; Chadee, D.D.; Honda, Y.; Liu, Q.; Olwoch, J.M.; Revich, B.; Sauerborn, S. Human Health: Impacts, Adaptation, and Co-Benefits. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part A: Global and Sectoral Aspects. Contribution of Working Group II to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Cambridge, UK; New York, NY, USA, 2014. [Google Scholar]
- Ebi, K.L.; Vanos, J.; Baldwin, J.W.; Bell, J.E.; Hondula, D.M.; Errett, N.A.; Hayes, K.; Reid, C.E.; Saha, S.; Spector, J.; et al. Extreme Weather and Climate Change: Population Health and Health System Implications. Annu. Rev. Public Health 2021, 42, 293–315. [Google Scholar] [CrossRef] [PubMed]
- McIver, L.; Kim, R.; Woodward, A.; Hales, S.; Spickett, J.; Katscherian, D.; Hashizume, M.; Honda, Y.; Kim, H.; Iddings, S.; et al. Health Impacts of Climate Change in Pacific Island Countries: A Regional Assessment of Vulnerabilities and Adaptation Priorities. Environ. Health Perspect. 2016, 124, 1707–1714. [Google Scholar] [CrossRef] [PubMed]
- Filho, W.L.; Scheday, S.; Boenecke, J.; Gogoi, A.; Maharaj, A.; Korovou, S. Climate Change, Health and Mosquito-Borne Diseases: Trends and Implications to the Pacific Region. Int. J. Environ. Res. Public Health 2019, 16, 5114. [Google Scholar] [CrossRef] [PubMed]
- Kuleshov, Y.; McGree, S.; Jones, D.; Charles, A.; Cottrill, A.; Prakash, B.; Atalifo, T.; Nihmei, S.; Seuseu, F.L.S.K. Extreme Weather and Climate Events and Their Impacts on Island Countries in the Western Pacific: Cyclones, Floods and Droughts. Atmos. Clim. Sci. 2014, 4, 803–818. [Google Scholar] [CrossRef]
- Vanuatu Ministry of Health National Strategic Plan for Malaria Elimination 2021–2026. Available online: https://www.nab.vu/sites/default/files/documents/Health%20-%20National%20Strategic%20Plan%20for%20Malaria%20Elimination%202021-2030NSP2020_final_281020.pdf (accessed on 3 November 2024).
- Lum, J.K.; Kaneko, A.; Taleo, G.; Amos, M.; Reiff, D.M. Genetic Diversity and Gene Flow of Humans, Plasmodium falciparum, and Anopheles farauti s.s. of Vanuatu: Inferred Malaria Dispersal and Implications for Malaria Control. Acta Trop. 2007, 103, 102–107. [Google Scholar] [CrossRef] [PubMed]
- Bugoro, H.; Hii, J.; Russell, T.L.; Cooper, R.D.; Chan, B.K.; Iro’ofa, C.; Butafa, C.; Apairamo, A.; Bobogare, A.; Chen, C.-C. Influence of Environmental Factors on the Abundance of Anopheles Farauti Larvae in Large Brackish Water Streams in Northern Guadalcanal, Solomon Islands. Malar. J. 2011, 10, 262. [Google Scholar] [CrossRef]
- Reiff, D.M.; Kaneko, A.; Taleo, G.; Amos, M.; Lum, J.K. Population Structure and Gene Flow of Anopheles farauti s.s. (Diptera: Culicidae) Among Ten Sites on Five Islands of Vanuatu: Implications for Malaria Control. J. Med. Entomol. 2007, 44, 601–607. [Google Scholar] [CrossRef]
- Sinka, M.E.; Bangs, M.J.; Manguin, S.; Chareonviriyaphap, T.; Patil, A.P.; Temperley, W.H.; Gething, P.W.; Elyazar, I.R.; Kabaria, C.W.; Harbach, R.E.; et al. The Dominant Anopheles Vectors of Human Malaria in the Asia-Pacific Region: Occurrence Data, Distribution Maps and Bionomic Précis. Parasites Vectors 2011, 4, 89. [Google Scholar] [CrossRef] [PubMed]
- Andrew, N.L.; Bright, P.; de la Rua, L.; Teoh, S.J.; Vickers, M. Coastal Proximity of Populations in 22 Pacific Island Countries and Territories. PLoS ONE 2019, 14, e0223249. [Google Scholar] [CrossRef]
- Idris, Z.M.; Chan, C.W.; Mohammed, M.; Kalkoa, M.; Taleo, G.; Junker, K.; Arcà, B.; Drakeley, C.; Kaneko, A. Serological Measures to Assess the Efficacy of Malaria Control Programme on Ambae Island, Vanuatu. Parasites Vectors 2017, 10, 204. [Google Scholar] [CrossRef]
- Watanabe, N.; Kaneko, A.; Yamar, S.; Leodoro, H.; Taleo, G.; Tanihata, T.; Lum, J.K.; Larson, P.S. Determinants of the Use of Insecticide-Treated Bed Nets on Islands of Pre- and Post-Malaria Elimination: An Application of the Health Belief Model in Vanuatu. Malar. J. 2014, 13, 441. [Google Scholar] [CrossRef] [PubMed]
- Vanuatu Ministry of Health; United Nations Development Programme Mid-Term Review of the Malaria Elimination Programme: Vanuatu. Available online: https://pirmccm.org/wp-content/uploads/member-files/Funding%20Requests/2024-2026%20Funding%20Request/Malaria%20Funding%20Request/11.3%20VAN%20MTR%20%20Malaria%20Programme%20Mid-Term%20Review.pdf (accessed on 3 November 2024).
- Chaves, L.F.; Kaneko, A.; Taleo, G.; Pascual, M.; Wilson, M.L. Malaria Transmission Pattern Resilience to Climatic Variability Is Mediated by Insecticide-Treated Nets. Malar. J. 2008, 7, 100. [Google Scholar] [CrossRef] [PubMed]
- Kaneko, A.; Taleo, G.; Kalkoa, M.; Yaviong, J.; Reeve, P.A.; Ganczakowski, M.; Shirakawa, C.; Palmer, K.; Kobayakawa, T.; Björkman, A. Malaria Epidemiology, Glucose 6-Phosphate Dehydrogenase Deficiency and Human Settlement in the Vanuatu Archipelago. Acta Trop. 1998, 70, 285–302. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, J.-A.M.; Fitzgerald, L.; Toaliu, H.; Taleo, G.; Tynan, A.; Whittaker, M.; Riley, I.; Vallely, A. Community Participation for Malaria Elimination in Tafea Province, Vanuatu: Part I. Maintaining Motivation for Prevention Practices in the Context of Disappearing Disease. Malar. J. 2010, 9, 93. [Google Scholar] [CrossRef] [PubMed]
- Vanuatu Malaria and Measles Situation Report 1 to 27 July 2022; Vanuatu Ministry of Health: Port Vila, Vanuatu, 2022; pp. 1–7.
- Case Study: Successful Elimination of Malaria, Tafea Province, Vanuatu; Vanuatu Ministry of Health: Port Vila, Vanuatu, 2019; pp. 1–14.
- Sekine, S.; Chan, C.W.; Kalkoa, M.; Yamar, S.; Iata, H.; Taleo, G.; Kc, A.; Kagaya, W.; Kido, Y.; Kaneko, A. Tracing the Origins of Plasmodium Vivax Resurgence after Malaria Elimination on Aneityum Island in Vanuatu. Commun. Med. 2024, 4, 91. [Google Scholar] [CrossRef] [PubMed]
- Wangdi, K.; Pasaribu, A.P.; Clements, A.C.A. Addressing Hard-to-Reach Populations for Achieving Malaria Elimination in the Asia Pacific Malaria Elimination Network Countries. Asia Pac. Policy Stud. 2021, 8, 176–188. [Google Scholar] [CrossRef]
- Beck-Johnson, L.M.; Nelson, W.A.; Paaijmans, K.P.; Read, A.F.; Thomas, M.B.; Bjørnstad, O.N. The Effect of Temperature on Anopheles Mosquito Population Dynamics and the Potential for Malaria Transmission. PLoS ONE 2013, 8, e79276. [Google Scholar] [CrossRef]
- Paaijmans, K.P.; Blanford, S.; Bell, A.S.; Blanford, J.I.; Read, A.F.; Thomas, M.B. Influence of Climate on Malaria Transmission Depends on Daily Temperature Variation. Proc. Natl. Acad. Sci. USA 2010, 107, 15135–15139. [Google Scholar] [CrossRef] [PubMed]
- Beck-Johnson, L.M.; Nelson, W.A.; Paaijmans, K.P.; Read, A.F.; Thomas, M.B.; Bjørnstad, O.N. The Importance of Temperature Fluctuations in Understanding Mosquito Population Dynamics and Malaria Risk. R. Soc. Open Sci. 2017, 4, 160969. [Google Scholar] [CrossRef]
- Ohm, J.R.; Baldini, F.; Barreaux, P.; Lefevre, T.; Lynch, P.A.; Suh, E.; Whitehead, S.A.; Thomas, M.B. Rethinking the Extrinsic Incubation Period of Malaria Parasites. Parasites Vectors 2018, 11, 178. [Google Scholar] [CrossRef] [PubMed]
- Cleary, E.; Hetzel, M.W.; Siba, P.M.; Lau, C.L.; Clements, A.C.A. Spatial Prediction of Malaria Prevalence in Papua New Guinea: A Comparison of Bayesian Decision Network and Multivariate Regression Modelling Approaches for Improved Accuracy in Prevalence Prediction. Malar. J. 2021, 20, 269. [Google Scholar] [CrossRef]
- Imai, C.; Cheong, H.-K.; Kim, H.; Honda, Y.; Eum, J.-H.; Kim, C.T.; Kim, J.S.; Kim, Y.; Behera, S.K.; Hassan, M.N.; et al. Associations between Malaria and Local and Global Climate Variability in Five Regions in Papua New Guinea. Trop. Med. Health 2016, 44, 23. [Google Scholar] [CrossRef]
- Gilbert, M.; Brindle, R. El Niño and Variations in the Prevalence of Plasmodium vivax and P. falciparum in Vanuatu. Trans. R. Soc. Trop. Med. Hyg. 2009, 103, 1285–1287. [Google Scholar] [CrossRef] [PubMed]
- Smith, J.; Tahani, L.; Bobogare, A.; Bugoro, H.; Otto, F.; Fafale, G.; Hiriasa, D.; Kazazic, A.; Beard, G.; Amjadali, A.; et al. Malaria Early Warning Tool: Linking Inter-Annual Climate and Malaria Variability in Northern Guadalcanal, Solomon Islands. Malar. J. 2017, 16, 472. [Google Scholar] [CrossRef]
- Pollard, E.J.M.; Russell, T.L.; Apairamo, A.; Burkot, T.R. Unique Fine Scale Village Spatial-Temporal Distributions of Anopheles Farauti Differ by Physiological State and Sex. Parasites Vectors 2019, 12, 558. [Google Scholar] [CrossRef] [PubMed]
- Chow, W.K.; Beebe, N.W.; Ambrose, L.; Pickering, P.; Cooper, R.D. Seasonal Assessment on the Effects of Time of Night, Temperature and Humidity on the Biting Profile of Anopheles farauti in North Queensland, Australia Using a Population Naive to Malaria Vector Control Pressures. Malar. J. 2023, 22, 85. [Google Scholar] [CrossRef]
- Mordecai, E.A.; Caldwell, J.M.; Grossman, M.K.; Lippi, C.A.; Johnson, L.R.; Neira, M.; Rohr, J.R.; Ryan, S.J.; Savage, V.; Shocket, M.S.; et al. Thermal Biology of Mosquito-Borne Disease. Ecol. Lett. 2019, 22, 1690–1708. [Google Scholar] [CrossRef] [PubMed]
- Parham, P.E.; Waldock, J.; Christophides, G.K.; Hemming, D.; Agusto, F.; Evans, K.J.; Fefferman, N.; Gaff, H.; Gumel, A.; LaDeau, S.; et al. Climate, Environmental and Socio-Economic Change: Weighing up the Balance in Vector-Borne Disease Transmission. Philos. Trans. R. Soc. Lond. B Biol. Sci. 2015, 370, 20130551. [Google Scholar] [CrossRef]
- Fouque, F.; Reeder, J.C. Impact of Past and On-Going Changes on Climate and Weather on Vector-Borne Diseases Transmission: A Look at the Evidence. Infect. Dis. Poverty 2019, 8, 51. [Google Scholar] [CrossRef]
- Reiner, R.C.; Geary, M.; Atkinson, P.M.; Smith, D.L.; Gething, P.W. Seasonality of Plasmodium Falciparum Transmission: A Systematic Review. Malar. J. 2015, 14, 343. [Google Scholar] [CrossRef] [PubMed]
- Santoso, A.; Mcphaden, M.J.; Cai, W. The Defining Characteristics of ENSO Extremes and the Strong 2015/2016 El Niño. Rev. Geophys. 2017, 55, 1079–1129. [Google Scholar] [CrossRef]
- World Bank Group Climate Risk Country Profile: Vanuatu. Available online: https://climateknowledgeportal.worldbank.org/sites/default/files/country-profiles/15825-WB_Vanuatu%20Country%20Profile-WEB.pdf (accessed on 31 October 2024).
- Gree, S.; Smith, G.; Chandler, E.; Harold, N.; Begg, Z.; Kuleshov, Y.; Malsale, P.; Rittman, M. Climate Change in the Pacific 2022 Historical and Recent Variability, Extremes and Change; Pacific Community (SPC): Suva, Fiji, 2022. [Google Scholar]
- Malaria and other Vector Borne Diseases Control Program Vanuatu: Annual Program Report. 2022. Available online: https://pirmccm.org/wp-content/uploads/member-files/Funding%20Requests/2024-2026%20Funding%20Request/Malaria%20Funding%20Request/11.4%20VAN%202022%20Malaria%20Program%20Annual%20Report_.pdf (accessed on 1 November 2024).
- Humanitarian Data Exchange Vanuatu—Subnational Administrative Boundaries—Humanitarian Data Exchange. Available online: https://data.humdata.org/dataset/cod-ab-vut (accessed on 5 November 2024).
- Paaijmans, K.P.; Read, A.F.; Thomas, M.B. Understanding the Link between Malaria Risk and Climate. Proc. Natl. Acad. Sci. USA 2009, 106, 13844–13849. [Google Scholar] [CrossRef] [PubMed]
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horányi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 Global Reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Bugoro, H.; Iro’ofa, C.; Mackenzie, D.O.; Apairamo, A.; Hevalao, W.; Corcoran, S.; Bobogare, A.; Beebe, N.W.; Russell, T.L.; Chen, C.-C.; et al. Changes in Vector Species Composition and Current Vector Biology and Behaviour Will Favour Malaria Elimination in Santa Isabel Province, Solomon Islands. Malar. J. 2011, 10, 287. [Google Scholar] [CrossRef]
- Beck, H.E.; Wood, E.F.; Pan, M.; Fisher, C.K.; Miralles, D.G.; van Dijk, A.I.J.M.; McVicar, T.R.; Adler, R.F. MSWEP V2 Global 3-Hourly 0.1° Precipitation: Methodology and Quantitative Assessment. Bull. Am. Meteorol. Soc. 2019, 100, 473–500. [Google Scholar] [CrossRef]
- Reid, H.; Vallely, A.; Taleo, G.; Tatem, A.J.; Kelly, G.; Riley, I.; Harris, I.; Henri, I.; Iamaher, S.; Clements, A.C. Baseline Spatial Distribution of Malaria Prior to an Elimination Programme in Vanuatu. Malar. J. 2010, 9, 150. [Google Scholar] [CrossRef] [PubMed]
- Jeanne, I.; Chambers, L.E.; Kazazic, A.; Russell, T.L.; Bobogare, A.; Bugoro, H.; Otto, F.; Fafale, G.; Amjadali, A. Mapping a Plasmodium Transmission Spatial Suitability Index in Solomon Islands: A Malaria Monitoring and Control Tool. Malar. J. 2018, 17, 381. [Google Scholar] [CrossRef] [PubMed]
- Chan, C.W.; Iata, H.; Yaviong, J.; Kalkoa, M.; Yamar, S.; Taleo, G.; Isozumi, R.; Fukui, M.; Aoyama, F.; Pomer, A.; et al. Surveillance for Malaria Outbreak on Malaria-Eliminating Islands in Tafea Province, Vanuatu after Tropical Cyclone Pam in 2015. Epidemiol. Infect. 2017, 145, 41–45. [Google Scholar] [CrossRef] [PubMed]
- Natuzzi, E.S.; Joshua, C.; Shortus, M.; Reubin, R.; Dalipanda, T.; Ferran, K.; Aumua, A.; Brodine, S. Defining Population Health Vulnerability Following an Extreme Weather Event in an Urban Pacific Island Environment: Honiara, Solomon Islands. Am. J. Trop. Med. Hyg. 2016, 95, 307–314. [Google Scholar] [CrossRef]
- Paaijmans, K.P.; Cator, L.J.; Thomas, M.B. Temperature-Dependent Pre-Bloodmeal Period and Temperature-Driven Asynchrony between Parasite Development and Mosquito Biting Rate Reduce Malaria Transmission Intensity. PLoS ONE 2013, 8, e55777. [Google Scholar] [CrossRef]
- Betuela, I.; Maraga, S.; Hetzel, M.W.; Tandrapah, T.; Sie, A.; Yala, S.; Kundi, J.; Siba, P.; Reeder, J.C.; Mueller, I. Epidemiology of Malaria in the Papua New Guinean Highlands. Trop. Med. Int. Health 2012, 17, 1181–1191. [Google Scholar] [CrossRef] [PubMed]
- Park, J.-W.; Cheong, H.-K.; Honda, Y.; Ha, M.; Kim, H.; Kolam, J.; Inape, K.; Mueller, I. Time Trend of Malaria in Relation to Climate Variability in Papua New Guinea. Environ. Health Toxicol. 2016, 31, e2016003. [Google Scholar] [CrossRef] [PubMed]
- Chase, J.M.; Knight, T.M. Drought-Induced Mosquito Outbreaks in Wetlands. Ecol. Lett. 2003, 6, 1017–1024. [Google Scholar] [CrossRef]
- Iese, V.; Kiem, A.S.; Mariner, A.; Malsale, P.; Tofaeono, T.; Kirono, D.G.C.; Round, V.; Heady, C.; Tigona, R.; Veisa, F.; et al. Historical and Future Drought Impacts in the Pacific Islands and Atolls. Clim. Change 2021, 166, 19. [Google Scholar] [CrossRef]
- Basáñez, M.-G.; Marshall, C.; Carabin, H.; Gyorkos, T.; Joseph, L. Bayesian Statistics for Parasitologists. Trends Parasitol. 2004, 20, 85–91. [Google Scholar] [CrossRef]
- Kim, Y.; Ratnam, J.V.; Doi, T.; Morioka, Y.; Behera, S.; Tsuzuki, A.; Minakawa, N.; Sweijd, N.; Kruger, P.; Maharaj, R.; et al. Malaria Predictions Based on Seasonal Climate Forecasts in South Africa: A Time Series Distributed Lag Nonlinear Model. Sci. Rep. 2019, 9, 17882. [Google Scholar] [CrossRef] [PubMed]
- Tynan, A.; Atkinson, J.-A.; Toaliu, H.; Taleo, G.; Fitzgerald, L.; Whittaker, M.; Riley, I.; Schubert, M.; Vallely, A. Community Participation for Malaria Elimination in Tafea Province, Vanuatu: Part Ii. Social and Cultural Aspects of Treatment-Seeking Behaviour. Malar. J. 2011, 10, 204. [Google Scholar] [CrossRef]
Variable | Data Type | Source | Resolution | Dates |
---|---|---|---|---|
Temperature (maximum, minimum, median, peak biting, diurnal) | Hourly 2 m air temperature | ERA5 | 0.25° | 1/7/2013–31/12/2023 |
Humidity (median) | Hourly relative humidity at 1000 hPa | ERA5 | 0.25° | 1/7/2013–31/12/2023 |
Precipitation (total, anomalous) | Three-hourly gauge-adjusted satellite re-analysis precipitation data | MSWEP V2 | 0.1° | 1/7/2013–31/12/2023 |
Variable | Med | IQR | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
---|---|---|---|---|---|---|---|---|---|---|
| 62 | 69.25 | ||||||||
| 27.14 | 1.25 | 0.52 * | |||||||
| 23.00 | 1.88 | 0.46 * | 0.96 * | ||||||
| 25.54 | 1.80 | 0.50 * | 0.99 * | 0.97 * | |||||
| 25.17 | 1.72 | 0.50 * | 0.98 * | 0.96 * | 0.99 * | ||||
| 4.20 | 0.84 | −0.31 * | −0.69 * | −0.83 * | −0.74 * | −0.75 * | |||
| 80.51 | 6.37 | 0.33 * | 0.70 * | 0.71 * | 0.72 * | 0.75 * | −0.65 * | ||
| −29.11 | 141.95 | 0.05 (0.57) | 0.09 (0.31) | 0.07 (0.45) | 0.09 (0.32) | 0.14 (0.12) | −0.14 (0.13) | 0.53 * | |
| 192.31 | 219.94 | 0.35 * | 0.65 * | 0.64 * | 0.66 * | 0.69* | −0.55 * | 0.86 * | 0.74 * |
Time Lag (Months) | Variables | Coefficient | 0.025 CI * | 0.975 CI | Standard Error | P > |z| | AIC ** |
---|---|---|---|---|---|---|---|
Zero | Max T | 31.75 | 17.28 | 46.22 | 7.38 | 0.00 | 1337.37 |
One | Max T | 42.51 | 28.94 | 56.08 | 6.92 | 0.00 | 1321.56 |
Two | Max T | 38.30 | 24.34 | 52.27 | 7.13 | 0.00 | 1328.56 |
Time Lag (Months) | Variables | Coefficient | 0.025 CI * | 0.975 CI | Standard Error | P > |z| | AIC ** | VIF *** |
---|---|---|---|---|---|---|---|---|
Zero | Max T | 27.47 | 9.33 | 45.62 | 9.26 | 0.00 | 1338.76 | 3.30 |
Precipitation | 0.04 | −0.06 | 0.13 | 0.05 | 0.44 | |||
One | Max T | 44.90 | 27.76 | 62.05 | 8.75 | 0.00 | 1323.35 | 3.32 |
Precipitation | −0.02 | −0.11 | 0.07 | 0.04 | 0.65 | |||
Two | Max T | 34.97 | 17.27 | 52.66 | 9.03 | 0.00 | 1330.19 | 3.38 |
Precipitation | 0.03 | −0.06 | 0.12 | 0.05 | 0.55 |
Time Lag (Months) | Variable | Mean | 94% HDI * | ESS ** Bulk | ESS Tail | LOO *** |
---|---|---|---|---|---|---|
Intercept | 0.07 | (−1.77, 1.96) | 2467.0 | 2313.0 | ||
Zero | Temperature | 1.68 | (1.12, 2.23) | 1661.0 | 1766.0 | −644.72 |
Precipitation | 0.16 | (0.08, 0.24) | 1595.0 | 1967.0 | ||
Intercept | 0.06 | (−1.77, 1.97) | 2051.0 | 2280.0 | ||
One | Temperature | 1.52 | (0.96, 2.12) | 1654.0 | 1904.0 | −642.69 |
Precipitation | 0.18 | (0.10, 0.27) | 1864.0 | 1826.0 | ||
Intercept | 0.03 | (−1.86, 1.94) | 2196.0 | 2346.0 | ||
Two | Temperature | 1.39 | (0.89, 1.93) | 1879.0 | 1957.0 | −640.77 |
Precipitation | 0.19 | (0.11, 0.28) | 1956.0 | 1587.0 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sorenson, J.; Watkins, A.B.; Kuleshov, Y. The Influence of Climate Variables on Malaria Incidence in Vanuatu. Climate 2025, 13, 22. https://doi.org/10.3390/cli13020022
Sorenson J, Watkins AB, Kuleshov Y. The Influence of Climate Variables on Malaria Incidence in Vanuatu. Climate. 2025; 13(2):22. https://doi.org/10.3390/cli13020022
Chicago/Turabian StyleSorenson, Jade, Andrew B. Watkins, and Yuriy Kuleshov. 2025. "The Influence of Climate Variables on Malaria Incidence in Vanuatu" Climate 13, no. 2: 22. https://doi.org/10.3390/cli13020022
APA StyleSorenson, J., Watkins, A. B., & Kuleshov, Y. (2025). The Influence of Climate Variables on Malaria Incidence in Vanuatu. Climate, 13(2), 22. https://doi.org/10.3390/cli13020022