Predicting Asthma Hospitalizations from Climate and Air Pollution Data: A Machine Learning-Based Approach
Abstract
:1. Introduction
2. Materials and Methods
2.1. Asthma Data
2.2. Pollution Data
2.3. Meteorological Data
2.4. Machine Learning Models
2.4.1. Random Forest
2.4.2. XGBoost
2.4.3. Multiple Linear Regression
2.4.4. Support Vector Regression Model
2.4.5. K-Nearest Neighbors
2.5. Evaluation Methods for ML Models
2.6. Autocorrelation Function
3. Results
3.1. Machine Learning Performance (More Data or More Variables?)
3.2. Importance of Variables in Tree Models
3.3. Random Forest Prediction
4. Summary and Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Khanam, U.A.; Gao, Z.; Adamko, D.; Kusalik, A.; Rennie, D.C.; Goodridge, D.; Chu, L.; Lawson, J.A. A scoping review of asthma and machine learning. J. Asthma 2023, 60, 213–226. [Google Scholar] [CrossRef] [PubMed]
- Tsang, K.C.H.; Pinnock, H.; Wilson, A.M.; SHAH, S.A. Application of Machine Learning Algorithms for Asthma Management with mHealth: A Clinical Review. J. Asthma Allergy 2022, 15, 855–873. [Google Scholar] [CrossRef]
- Anderson, H.R.; Gupta, R.; Kapetanakis, V.; Asher, M.I.; Clayton, T.; Robertson, C.F.; Strachan, D.P. International correlations between indicators of prevalence, hospital admissions and mortality for asthma in children. Int. J. Epidemiol. 2008, 37, 573–582. [Google Scholar] [CrossRef]
- Ebmeier, S.; Thayabaran, D.; Braithwaite, I.; Bénamara, C.; Weatherall, M.; Beasley, R. Trends in international asthma mortality: Analysis of data from the WHO Mortality Database from 46 countries (1993–2012). Lancet 2017, 390, 935–945. [Google Scholar] [CrossRef] [PubMed]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.M. Asthma-prone areas modeling using a machine learning model. Sci. Rep. 2021, 11, 1912. [Google Scholar] [CrossRef] [PubMed]
- Hwang, H.; Jang, J.H.; Lee, E.; Park, H.S.; Lee, J.Y. Prediction of the number of asthma patients using environmental factors based on deep learning algorithms. Respir. Res. 2023, 24, 302. [Google Scholar] [CrossRef]
- Chen, Y.; Kong, D.; Fu, J.; Zhang, Y.; Zhao, Y.; Liu, Y.; Chang, Z.; Liu, Y.; Liu, X.; Xu, K.; et al. Associations between ambient temperature and adult asthma hospitalizations in Beijing, China: A time-stratified case-crossover study. Respir. Res. 2022, 23, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Zhou, X.; Sampath, V.; Nadeau, K.C. Effect of air pollution on asthma. Ann. Allergy Asthma Immunol. 2024, 132, 426–432. [Google Scholar] [CrossRef]
- D’Amato, G.; Holgate, S.T.; Pawankar, R.; Ledford, D.K.; Cecchi, L.; Al-Ahmad, M.; Al-Enezi, F.; Al-Muhsen, S.; Ansotegui, I.; Baena-Cagnani, C.E.; et al. Meteorological conditions, climate change, new emerging factors, and asthma and related allergic disorders. A statement of the World Allergy Organization. World Allergy Organ. J. 2015, 8, 25. [Google Scholar] [CrossRef] [PubMed]
- D′Amato, G.; Liccardi, G.; D′Amato, M.; Holgate, S. Environmental risk factors and allergic bronchial asthma. Clin. Exp. Allergy 2005, 35, 1113–1124. [Google Scholar] [CrossRef]
- Menezes, A.M.B.; Wehrmeister, F.C.; Horta, B.; Szwarcwald, C.L.; Vieira, M.L.; Malta, D.C. Prevalence of asthma medical diagnosis among Brazilian adults: National Health Survey, 2013. Rev. Bras. Epidemiol. 2015, 18, 204–213. [Google Scholar] [CrossRef] [PubMed]
- Cardoso, T.A.; Roncada, C.; Silva, E.R.; Pinto, L.A.; Jones, M.H.; Stein, R.T.; Pitrez, P.M. Impacto da asma no Brasil: Análise longitudinal de dados extraídos de um banco de dados governamental brasileiro. J. Bras. Pneumol. 2017, 43, 163–168. [Google Scholar] [CrossRef]
- Pitrez, P.M.; Giavina-Bianchi, P.; Rizzo, J.Â.; Souza-Machado, A.; Garcia, G.F.; Pizzichini, M.M.M. An expert review on breaking barriers in severe asthma in Brazil: Time to act. Chronic Respir. Dis. 2021, 18, 14799731211028259. [Google Scholar] [CrossRef]
- Amorim, J.R.G.; Oliveira, A.M.; Neves, D.; Oliveira, G.P. Associação entre variáveis ambientais e doenças respiratórias (asma e bronquite) em crianças na cidade Macapá-AP no período de 2008 a 2012. Planeta Amaz. Rev. Int. Direito Ambient. Políticas Públicas 2013, 5, 141–153. [Google Scholar]
- Andrade, D.O.; Botelho, C.; Junior, J.L.R.S.; Faria, S.S.; Rabahi, M.F. Sazonalidade Climática E Hospitalizações Em Crianças Menores De Cinco Anos Anos Com Doença Respiratória, Goiânia/GO. Rev. Bras. Geogr. Médica Saúde 2015, 11, 99–105. [Google Scholar] [CrossRef]
- Savian, M.C.B.; Jacobi, L.F.; Zanini, R.R. A relação entre o número de internações por doenças respiratórias e variáveis climáticas em Santa Maria—RS. Ciência Nat. 2020, 42, e53. [Google Scholar] [CrossRef]
- Xavier, J.M.V.; Silva, F.D.S.; Olinda, R.A.; Querino, L.A.L.; Araujo, P.S.B.; Lima, L.F.C.; Sousa, R.S.; Rosado, B.N.C.L. Climate seasonality and lower respiratory tract diseases: A predictive model for pediatric hospitalizations. Rev. Bras. Enferm. 2022, 75, e20210680. [Google Scholar] [CrossRef]
- Marques, C.P.C.; Bloise, R.F.; Lopes, L.B.M.; Godói, L.F.; Souza, P.R.P.; Rosa, I.M.S.; Costa, S.S.; Barros, M.C.; Souza, A.C.L.; Carvalho, B.M.M. Epidemiologia da Asma no Brasil, no período de 2016 a 2020. Res. Soc. Dev. 2022, 11, e5211828825. [Google Scholar] [CrossRef]
- Santo, A.H. Mortalidade relacionada à asma, Brasil, 2000: Um estudo usando causas múltiplas de morte. Cad. Saúde Pública 2006, 22, 41–52. [Google Scholar] [CrossRef]
- Ribeiro-Silva, R.C.; Barreto, M.L.; Ramos, D.; Cruz, A.A.; Oliveira-Campos, M.O.; Malta, D.C. Asthma trend in adolescence in Brazil: Results of the National Adolescent Schoolbased Health Survey (PeNSE 2012-2015). Rev. Bras. Epidemiol. 2018, 21, e180017. [Google Scholar] [CrossRef] [PubMed]
- Jordan, M.I.; Mitchell, T.M. Machine learning: Trends, perspectives, and prospects. Science 2015, 349, 253–255. [Google Scholar] [CrossRef]
- IBGE—Instituto Brasileiro de Geografia e Estatística. Censo Brasileiro de 2012; IBGE: Rio de Janeiro, Brazil, 2022.
- DATASUS, Ministério da Saúde. Sistema de Informação Sobre Internação, 1979–1997. Available online: http://www.datasus.gov.br/ (accessed on 1 September 2024).
- Inness, A.; Blechschmidt, A.M.; Bouarar, I.; Chabrillat, S.; Crepulja, M.; Engelen, R.J.; Eskes, H.; Flemming, J.; Gaudel, A.; Hendrick, F.; et al. Data assimilation of satellite-retrieved ozone, carbon monoxide and nitrogen dioxide with ECMWF’s Composition-IFS. Atmos. Chem. Phys. 2015, 15, 5275–5303. [Google Scholar] [CrossRef]
- Flemming, J.; Benedetti, A.; Inness, A.; Engelen, R.J.; Jones, L.; Huijnen, V.; Remy, S.; Parrington, M.; Suttie, M.; Bozzo, A.; et al. The CAMS interim Reanalysis of Carbon Monoxide, Ozone and Aerosol for 2003–2015. Atmos. Chem. Phys. 2017, 17, 1945–1983. [Google Scholar] [CrossRef]
- Inness, A.; Ades, M.; Agustí-Panareda, A.; Barré, J.; Benedictow, A.; Blechschmidt, A.-M.; Dominguez, J.J.; Engelen, R.; Eskes, H.; Flemming, J.; et al. The CAMS reanalysis of atmospheric composition. Atmos. Chem. Phys. 2019, 19, 3515–3556. [Google Scholar] [CrossRef]
- Agustí-Panareda, A.; Barré, J.; Massart, S.; Inness, A.; Absen, I.; Ades, M.; Baier, B.C.; Balsamo, G.; Borsdorff, T.; Bousserez, N.; et al. Technical note: The CAMS greenhouse gas reanalysis from 2003 to 2020. Atmos. Chem. Phys. 2023, 23, 3829–3859. [Google Scholar] [CrossRef]
- Breiman, L. Random Forests. Mach. Learn. 2001, 45, 5–32. [Google Scholar] [CrossRef]
- Ho, T.K. Random decision forest. In Proceedings of the 3rd International Conference on Document Analysis and Recognition, Montreal, QC, Canada, 14–16 August 1995; pp. 278–282. [Google Scholar]
- Kansara, D.; Singh, R.; Sanghvi, D.; Kanani, P. Improving Accuracy of Real Estate Valuation Using Stacked Regression. Int. J. Eng. Dev. Res. 2018, 6, 571–577. [Google Scholar]
- Chahboun, S.; Maaroufi, M. Principal Component Analysis and Machine Learning Approaches for Photovoltaic Power Prediction: A Comparative Study. Appl. Sci. 2021, 11, 7943. [Google Scholar] [CrossRef]
- Pal, M. Random forest classifier for remote sensing classification. Int. J. Remote Sens. 2005, 26, 217–222. [Google Scholar] [CrossRef]
- Farhangi, F.; Sadeghi-Niaraki, A.; Nahvi, A.; Razavi-Termeh, S.V. Spatial modelling of accidents risk caused by driver drowsiness with data mining algorithms. Geocarto Int. 2022, 37, 2698–2716. [Google Scholar] [CrossRef]
- Chen, T.; Guestrin, C. XGBoost: A scalable tree boosting system. In Proceedings of the ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, San Francisco, CA, USA, 13–17 August 2016; pp. 785–794. [Google Scholar]
- Aaron, S.D.; Boulet, L.P.; Reddel, H.K.; Gershon, A.S. Underdiagnosis and Overdiagnosis of Asthma. Am. J. Respir. Crit. Care Med. 2018, 198, 1012–1020. [Google Scholar] [CrossRef] [PubMed]
- Tomita, K.; Yamasaki, A.; Katou, R.; Ikeuchi, T.; Touge, H.; Sano, H.; Tohda, Y. Construction of a Diagnostic Algorithm for Diagnosis of Adult Asthma Using Machine Learning with Random Forest and XGBoost. Diagnostics 2023, 13, 3069. [Google Scholar] [CrossRef]
- Maulud, D.; Abdulazeez, A.M. A Review on Linear Regression Comprehensive in Machine Learning. J. Appl. Sci. Technol. Trends 2020, 1, 140–147. [Google Scholar] [CrossRef]
- Cortes, C.; Vapnik, V. Support-vector networks. Mach. Learn. 1995, 20, 273–297. [Google Scholar] [CrossRef]
- Burges, C.J.C. A Tutorial on Support Vector Machines for Pattern Recognition. Data Min. Knowl. Discov. 1998, 2, 121–167. [Google Scholar] [CrossRef]
- Clarke, S.M.; Griebsch, J.H.; Simpson, T.W. Analysis of Support Vector Regression for Approximation of Complex Engineering Analyses. J. Mech. Des. 2005, 127, 1077–1087. [Google Scholar] [CrossRef]
- Noble, W.S. What is a support vector machine? Nat. Biotechnol. 2006, 24, 1565–1567. [Google Scholar] [CrossRef]
- Alpaydin, E. Voting over Multiple Condensed Nearest Neighbors. Artif. Intell. Rev. 1997, 11, 115–132. [Google Scholar] [CrossRef]
- Shouman, M.; Turner, T.; Stocker, R. Applying k-Nearest Neighbour in Diagnosing Heart Disease Patients. Int. J. Inf. Educ. Technol. 2012, 2, 220–223. [Google Scholar] [CrossRef]
- Botchkarev, A. Evaluating Performance of Regression Machine Learning Models Using Multiple Error Metrics in Azure Machine Learning Studio. Available online: https://www.academia.edu/36631457/Evaluating_performance_of_regression_machine_learning_models_using_multiple_error_metrics_in_Azure_Machine_Learning_Studio, (accessed on 10 October 2024).
- Botchkarev, A. A New Typology Design of Performance Metrics to Measure Errors in Machine Learning Regression Algorithms. Interdiscip. J. Inf. Knowl. Manag. 2019, 14, 45–76. [Google Scholar] [CrossRef]
- Li, X.; Zhang, X. A comparative study of statistical and machine learning models on carbon dioxide emissions prediction of China. Environ. Sci. Pollut. Res. 2023, 30, 117485–117502. [Google Scholar] [CrossRef] [PubMed]
- Alizamir, M.; Kim, S.; Kisi, O.; Zounemat-Kermani, M. A comparative study of several machine learning based non-linear regression methods in estimating solar radiation: Case studies of the USA and Turkey regions. Energy 2020, 197, 117239. [Google Scholar] [CrossRef]
- Doreswamy, K.S.H.; Yogesh, K.M.; Gad, I. Forecasting Air Pollution Particulate Matter (PM2.5) Using Machine Learning Regression Models. Procedia Comput. Sci. 2020, 171, 2057–2066. [Google Scholar] [CrossRef]
- Chicco, D.; Warrens, M.J.; Jurman, G. The coefficient of determination R-squared is more informative than SMAPE, MAE, MAPE, MSE and RMSE in regression analysis evaluation. PeerJ Comput. Sci. 2021, 7, e623. [Google Scholar] [CrossRef]
- Box, G.E.P.; Pierce, D.A. Distribution of Residual Autocorrelations in Autoregressive-Integrated Moving Average Time Series Models. J. Am. Stat. Assoc. 1970, 65, 1509–1526. [Google Scholar] [CrossRef]
- Brockwell, P.J.; Davis, R.A. Time Series: Theory and Methods; Springer: New York, NY, USA, 1991. [Google Scholar]
- Hassani, H.; Royer-Carenzi, M.; Mashhad, L.M.; Yarmohammadi, M.; Yeganegi, M.R. Exploring the Depths of the Autocorrelation Function: Its Departure from Normality. Information 2024, 15, 449. [Google Scholar] [CrossRef]
- Achakulwisut, P.; Brauer, M.; Hystad, P.; Anenberg, S.C. Global, national, and urban burdens of paediatric asthma incidence attributable to ambient NO 2 pollution: Estimates from global datasets. Lancet Planet. Health 2019, 3, e166–e178. [Google Scholar] [CrossRef]
- Ding, L.; Zhu, D.; Peng, D.; Zhao, Y. Air pollution and asthma attacks in children: A case e crossover analysis in the city of Chongqing, China. Environ. Pollut. 2017, 220, 348–353. [Google Scholar] [CrossRef]
- Razavi-Termeh, S.V.; Sadeghi-Niaraki, A.; Choi, S.M. Effects of air pollution in Spatio-temporal modeling of asthma-prone areas using a machine learning model. Environ. Res. 2021, 200, 111344. [Google Scholar] [CrossRef]
- World Health Organization (WHO). Policies, Regulations & Legislation Promoting Healthy Housing: A Review; WHO: Geneva, Switzerland, 2021.
- Chen, B.-Y.; Chen, C.-H.; Chuang, Y.-C.; Wu, Y.-H.; Pan, S.-C.; Guo, Y.L. Changes in the relationship between childhood asthma and ambient air pollution in Taiwan: Results from a nationwide survey repeated 5 years apart. Pediatr. Allergy Immunol. 2019, 30, 188–194. [Google Scholar] [CrossRef] [PubMed]
- Deng, Q.; Deng, L.; Lu, C.; Li, Y.; Norbäck, D. Parental stress and air pollution increase childhood asthma in China. Environ. Res. 2018, 165, 23–31. [Google Scholar] [CrossRef]
- Hwang, B.-F. Traffic related air pollution as a determinant of asthma among Taiwanese school children. Thorax 2005, 60, 467–473. [Google Scholar] [CrossRef]
- Laurent, O.; Pedrono, G.; Segala, C.; Filleul, L.; Havard, S.; Deguen, S.; Schillinger, C.; Rivière, E.; Bard, D. Air pollution, asthma attacks, and socioeconomic deprivation: A small-area case-crossover study. Am. J. Epidemiol. 2008, 168, 58–65. [Google Scholar] [CrossRef] [PubMed]
- Li, S.; Batterman, S.; Wasilevich, E.; Wahl, R.; Wirth, J.; Su, F.-C.; Mukherjee, B. Association of daily asthma emergency department visits and hospital admissions with ambient air pollutants among the pediatric Medicaid population in Detroit: Time-series and time-stratified case-crossover analyses with threshold effects. Environ. Res. 2011, 111, 1137–1147. [Google Scholar] [CrossRef]
- Lovinsky-Desir, S.; Acosta, L.M.; Rundle, A.G.; Miller, R.L.; Goldstein, I.F.; Jacobson, J.S.; Chillrud, S.N.; Perzanowski, M.S. Air pollution, urgent asthma medical visits and the modifying effect of neighborhood asthma prevalence. Pediatr. Res. 2019, 85, 36–42. [Google Scholar] [CrossRef] [PubMed]
- Samoli, E.; Nastos, P.T.; Paliatsos, A.G.; Katsouyanni, K.; Priftis, K.N. Acute effects of air pollution on pediatric asthma exacerbation: Evidence of association and effect modification. Environ. Res. 2011, 111, 418–424. [Google Scholar] [CrossRef]
- Santus, P.; Russo, A.; Madonini, E.; Allegra, L.; Blasi, F.; Centanni, S.; Miadonna, A.; Schiraldi, G.; Amaducci, S. How air pollution influences clinical management of respiratory diseases. A case-crossover study in Milan. Respir. Res. 2012, 13, 95. [Google Scholar] [CrossRef]
- Son, J.-Y.; Lee, J.-T.; Park, Y.H.; Bell, M.L. Short-Term Effects of Air Pollution on Hospital Admissions in Korea. Epidemiology 2013, 24, 545–554. [Google Scholar] [CrossRef]
Model | Experiment | MSE | RMSE | MAE | R2 |
---|---|---|---|---|---|
MLR | exp1 | 298.21 | 17.27 | 13.06 | 0.566 |
exp2 | 582.29 | 24.13 | 18.54 | 0.310 | |
RF | exp1 | 179.07 | 13.38 | 10.62 | 0.552 |
exp2 | 267.70 | 16.36 | 13.28 | 0.582 | |
XGBoost | exp1 | 341.61 | 18.48 | 14.34 | 0.331 |
exp2 | 402.35 | 20.06 | 15.14 | 0.552 | |
KNN | exp1 | 291.30 | 17.07 | 12.87 | 0.460 |
exp2 | 362.01 | 19.03 | 15.44 | 0.629 | |
SVR | exp1 | 295.88 | 18.92 | 13.17 | 0.557 |
exp2 | 339.66 | 19.25 | 13.80 | 0.611 |
Variables | % Increase in Mean Squared Error | Increase in Node Purity | ||
---|---|---|---|---|
exp1 | exp2 | exp1 | exp2 | |
Evaporation | 10.10 | 11.10 | 6341.92 | 15,129.60 |
Evapotranspiration | 4.67 | 11.85 | 2069.43 | 10,105.40 |
Insolation | 14.60 | 8.01 | 9912.74 | 11,661.47 |
Cloudiness | 2.92 | 12.59 | 2909.33 | 12,526.92 |
Days with precipitation | 4.24 | 8.41 | 1808.69 | 6677.03 |
Precipitation | 2.29 | 5.68 | 2367.85 | 8299.80 |
Atmospheric pressure | 8.75 | 20.68 | 6430.07 | 27,068.95 |
Maximum temperature | 2.53 | 8.90 | 1708.85 | 8371.45 |
Average temperature | 4.75 | 14.94 | 4537.50 | 16,793.87 |
Minimum temperature | 36.03 | 46.17 | 36,416.31 | 78,485.94 |
Relative humidity | 7.10 | 11.72 | 3712.47 | 12,971.09 |
Wind speed | 0.92 | 6.02 | 1404.11 | 7181.92 |
CO (kg kg−1) | 4.63 | - | 3788.71 | - |
NO2 (kg kg−1) | 7.35 | - | 4386.75 | - |
O3 (kg kg−1) | 1.10 | - | 2647.99 | - |
SO2 (kg kg−1) | 20.82 | - | 13,113.98 | - |
PM10 (kg m−3) | 3.83 | - | 3269.54 | - |
PM2.5 (kg m−3) | 3.43 | - | 2511.66 | - |
Model | MSE | RMSE | MAE | R2 |
---|---|---|---|---|
RF1 | 233.584 | 15.283 | 11.854 | 0.527 |
RF2 | 256.768 | 16.024 | 12.384 | 0.480 |
RF3 | 142.158 | 11.923 | 8.937 | 0.712 |
RF4 | 116.514 | 10.794 | 8.255 | 0.764 |
Variables | RF1 | RF2 | RF3 | RF4 | ||||
---|---|---|---|---|---|---|---|---|
%IMSE | INP | %IMSE | INP | %IMSE | INP | %IMSE | INP | |
Evaporation (lag 0) | 10.2 | 6733.2 | - | - | - | - | 4.0 | 2380.2 |
Evapotranspiration (lag 0) | 5.2 | 1849.4 | - | - | - | - | 2.6 | 373.2 |
Insolation (lag 0) | 8.9 | 3369.0 | - | - | - | - | 4.2 | 963.7 |
Cloudiness (lag 0) | 3.1 | 2386.9 | - | - | - | - | 2.0 | 524.6 |
Days with precipitation (lag 0) | 2.9 | 1545.7 | - | - | - | - | 2.8 | 417.4 |
Precipitation (lag 0) | 1.7 | 1476.2 | - | - | - | - | 0.1 | 425.1 |
Atmospheric pressure (lag 0) | 8.6 | 6720.3 | - | - | - | - | 0.8 | 1170.6 |
Maximum temperature (lag 0) | 3.9 | 1881.9 | - | - | - | - | 2.4 | 465.5 |
Average temperature (lag 0) | 8.1 | 5069.5 | - | - | - | - | 3.5 | 1067.0 |
Minimum temperature (lag 0) | 16.8 | 13,037.0 | - | - | - | - | 9.2 | 5273.3 |
Relative humidity (lag 0) | 3.4 | 2511.5 | - | - | - | - | 1.5 | 631.9 |
Wind speed (lag 0) | 2.6 | 1303.1 | - | - | - | - | 1.2 | 309.7 |
CO (lag 0) | 3.9 | 3442.6 | - | - | - | - | 0.9 | 814.2 |
NO2 (lag 0) | 8.4 | 3286.9 | - | - | - | - | 1.8 | 832.0 |
O3 (lag 0) | 4.8 | 2409.4 | - | - | - | - | 3.1 | 455.2 |
SO2 (lag 0) | 16.1 | 8093.4 | - | - | - | - | 6.9 | 2580.8 |
PM10 (lag 0) | 3.8 | 2923.0 | - | - | - | - | 2.8 | 805.2 |
PM2.5 (lag 0) | 4.8 | 2442.4 | - | - | - | - | 1.8 | 654.0 |
CO (lag 1) | - | - | 3.1 | 3347.8 | 2.2 | 1600.0 | 1.4 | 666.6 |
NO2 (lag 1) | - | - | 7.2 | 3170.7 | 3.3 | 1604.0 | 1.4 | 858.2 |
O3 (lag 1) | - | - | 2.4 | 2032.2 | 3.0 | 1100.3 | 1.2 | 506.9 |
SO2 (lag 1) | - | - | 16.7 | 7796.1 | 7.3 | 3645.4 | 5.5 | 2735.3 |
PM10 (lag 1) | - | - | 2.4 | 1869.1 | 2.2 | 1318.7 | 2.5 | 675.9 |
PM2.5 (lag 1) | - | - | 2.4 | 2010.2 | 1.8 | 1560.7 | 4.0 | 727.7 |
Evaporation (lag 1) | - | - | 6.7 | 5170.4 | 4.9 | 3388.1 | 4.0 | 1500.4 |
Evapotranspiration (lag 1) | - | - | 4.6 | 2075.2 | 0.0 | 1013.1 | 2.1 | 385.0 |
Insolation (lag 1) | - | - | 5.9 | 3060.8 | 3.6 | 1617.4 | 1.8 | 560.8 |
Cloudiness (lag 1) | - | - | 4.1 | 3049.7 | 2.9 | 1895.9 | 2.7 | 715.8 |
Days with precipitation (lag 1) | - | - | 3.2 | 1943.5 | 1.5 | 1305.7 | 2.9 | 482.4 |
Precipitation (lag 1) | - | - | 4.5 | 2352.3 | 1.8 | 1280.9 | -0.6 | 677.1 |
Atmospheric pressure (lag 1) | - | - | 10.3 | 6871.8 | 5.2 | 3476.9 | 2.4 | 2387.5 |
Maximum temperature (lag 1) | - | - | 0.5 | 2139.2 | 4.7 | 1174.7 | 2.7 | 583.5 |
Average temperature (lag 1) | - | - | 8.7 | 5105.7 | 6.0 | 3569.8 | 4.8 | 1639.9 |
Minimum temperature (lag 1) | - | - | 18.4 | 13,908.0 | 10.5 | 7307.2 | 9.1 | 4912.3 |
Relative humidity (lag 1) | - | - | 3.5 | 2551.7 | 1.6 | 1391.7 | 1.5 | 676.5 |
Wind speed (lag 1) | - | - | 0.9 | 1110.6 | 1.9 | 650.7 | 1.1 | 250.7 |
Hospitalizations (lag1) | - | - | 39.9 | 32,661.0 | 36.8 | 31,592.1 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Reis, J.S.d.; Costa, R.L.; Silva, F.D.d.S.; de Souza, E.D.F.; Cortes, T.R.; Coelho, R.H.; Velasco, S.R.M.; Neves, D.J.D.; Sousa Filho, J.F.; Barreto, C.E.C.; et al. Predicting Asthma Hospitalizations from Climate and Air Pollution Data: A Machine Learning-Based Approach. Climate 2025, 13, 23. https://doi.org/10.3390/cli13020023
Reis JSd, Costa RL, Silva FDdS, de Souza EDF, Cortes TR, Coelho RH, Velasco SRM, Neves DJD, Sousa Filho JF, Barreto CEC, et al. Predicting Asthma Hospitalizations from Climate and Air Pollution Data: A Machine Learning-Based Approach. Climate. 2025; 13(2):23. https://doi.org/10.3390/cli13020023
Chicago/Turabian StyleReis, Jean Souza dos, Rafaela Lisboa Costa, Fabricio Daniel dos Santos Silva, Ediclê Duarte Fernandes de Souza, Taisa Rodrigues Cortes, Rachel Helena Coelho, Sofia Rafaela Maito Velasco, Danielson Jorge Delgado Neves, José Firmino Sousa Filho, Cairo Eduardo Carvalho Barreto, and et al. 2025. "Predicting Asthma Hospitalizations from Climate and Air Pollution Data: A Machine Learning-Based Approach" Climate 13, no. 2: 23. https://doi.org/10.3390/cli13020023
APA StyleReis, J. S. d., Costa, R. L., Silva, F. D. d. S., de Souza, E. D. F., Cortes, T. R., Coelho, R. H., Velasco, S. R. M., Neves, D. J. D., Sousa Filho, J. F., Barreto, C. E. C., Cabral Júnior, J. B., dos Reis, H. S., Mendes, K. R., Lins, M. C. C., Ferreira, T. R., Vanderlei, M. H. G. d. S., Alonso, M. F., Mariano, G. L., Gomes, H. B., & Gomes, H. B. (2025). Predicting Asthma Hospitalizations from Climate and Air Pollution Data: A Machine Learning-Based Approach. Climate, 13(2), 23. https://doi.org/10.3390/cli13020023