A Climate Change Assessment via Trend Estimation of Certain Climate Parameters with In Situ Measurement at the Coasts and Islands of Viet Nam
Abstract
:1. Introduction
2. Material and Methods
2.1. Methods
2.2. Data Used for the Study
3. Results and Discussion
3.1. Air Temperature
3.2. Water Temperature
3.3. Water Level
3.4. Number of Typhoon Landed at the Vietnamese Coasts
4. Conclusions and Future Outlook
- (1)
- It is extremely likely that there is a trend of increase of annual average air temperature at all coastal and nearshore island stations throughout Viet Nam.
- (2)
- Extremely likely trends of increase in annual average sea water temperature were found only at a few partially sheltered stations. The sea water temperature data at all stations located at open waters and at some stations located at sheltered waters do not show an increasing trend. It seems that the general circulation in the East Viet Nam Sea has a large influence on the heating of the sea surface water, but the phenomenon of heating of the sea surface water in the area is very complicated and needs more investigations to understand.
- (3)
- It is extremely likely that the sea level near the coasts and islands of Viet Nam is rising. A large discrepancy in the rate of sea water level rise evaluated at different stations shows that the vertical movement of the ground surface might have a significant influence on the rate of sea level rise and needs to be accurately assessed. Then, the conclusion by MONRE (2009, 2012) that average sea level rise rate along the coast of Viet Nam is about 2.9 mm/year should be used with care.
- (4)
- It is very likely that there is a decrease trend in the frequency of typhoons landed at Vietnamese coasts during the period from 1954 to 2012. However, the unclear trend of decrease in the frequency of typhoons landed at Vietnamese coasts might represent climate variability and does not necessarily represent a general trend due to climate change.
- (5)
- Policymakers in Viet Nam should consider the level of uncertainties in evaluating climate change trend based on the data at the coast and island of Viet Nam and thus in climate change scenario projections when developing climate change adaptation policies in future.
Acknowledgments
Conflicts of Interest
References
- Intergovernmental Panel on Climate Change (IPCC). Climate Change 2013: The Physical Science Basis. Cambrige University Press, 2013. Available online: http://www.ipcc.ch/report/ar5/wg1/ (accessed on 18 May 2017).
- Pham, N.T.; Phan, T.D. The Climate of Viet Nam; Ha Noi Science and Engineering Publisher: Ha Noi, Vietnam, 1995. [Google Scholar]
- Ho, T.; Phan, V.; Le, N.; Nguyen, Q. Extreme climatic events over Viet Nam from observational data and RegCM3 projections. Clim. Res. 2011, 49, 87–100. [Google Scholar] [CrossRef]
- Ministry of Natural Resources and Environment of Viet Nam (MONRE). Climate Change Scenarios and Sea Level Rise for Viet Nam; Report; 2009. Available online: http://www.preventionweb.net/files/11348_ClimateChangeSeaLevelScenariosforVi.pdf (accessed on 18 May 2017).
- Ministry of Natural Resources and Environment of Viet Nam (MONRE). Climate Change Scenarios and Sea Level Rise for Vietnam; Report; Natural Resource and Environment Publisher: Ha Noi, Vietnam, 2012.
- Mai, V.K.; Redmond, G.; McSweeney, C.; Tran, T. Evaluation of dynamically downscaled ensemble climate simulations for Vietnam. Int. J. Climatol. 2014, 34, 2450–2463. [Google Scholar]
- Ngo-Duc, T.; Kieu, C.; Thatcher, M.; Nguyen-Le, D.; Phan-Van, T. Future climate projections for Vietnam based on three regional climate models. Clim. Res. 2014. [Google Scholar] [CrossRef]
- Lin, Y.L.; Ho, C.R.; Zheng, Q.N.; Huang, S.J.; Kuo, N.J. Variability of sea surface temperature and warm pool area in the South China Sea and its relationship to the western Pacific warm pool. J. Oceanogr. 2011, 67, 719–724. [Google Scholar] [CrossRef]
- Kajikawa, Y.; Wang, B. Interdecadal change of the South China Sea Summer Monsoon Onset. J. Clim. 2011, 25, 3207–3218. [Google Scholar] [CrossRef]
- Goh, A.Z.C.; Chan, J.C.L. Interannual and interdecadal variations of tropical cyclone activity in the South China Sea. Int. J. Climatol. 2010, 30, 827–843. [Google Scholar] [CrossRef]
- Hamed, K.H.; Rao, A.R. A modified Mann–kendall trend test for autocorrelated data. J. Hydrol. 1998, 204, 182–196. [Google Scholar] [CrossRef]
- Karmeshu, N. Trend Detection in Annual Temperature & Precipitation using the Mann Kendall Test—A Case Study to Assess Climate Change on Select States in the Northeastern United States. Available online: http://repository.upenn.edu/mes_capstones/47 (accessed on 18 May 2017).
- Sen, P.K. Estimates of the regression coefficient based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Phinney, B.; Cavadias, G. The influence of autocorrelation on the ability to detecttrend in hydrological series. Hydrol. Processes 2002, 16, 1807–1829. [Google Scholar] [CrossRef]
- Yue, S.; Wang, C. The Mann–kendall test modified by effective sample size to detect trend in serially correlated hydrological series. Water Resour. Manag. 2004, 18, 201–218. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: London, UK, 1955. [Google Scholar]
- Mann, HB. Non-Parametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Murumkar, A.R.; Arya, D.S. Trend and periodicity analysis in rainfall pattern of Nira Basin, Central India. Am. J. Clim. Chang. 2014, 3, 60–70. [Google Scholar] [CrossRef]
- Haan, C.T. Statistical Methods in Hydrology; Iowa State University Press: Ames, IA, USA, 1995. [Google Scholar]
- Lazaro, R.; Rodrigo, F.S.; Gutierrez, L.; Domingo, F.; Puigdefabregas, J. Analysis of a 30-year rainfall record (1967–1997) in semi-arid SE Spain for implications on vegetation. J. Arid Environ. 2001, 48, 373–395. [Google Scholar] [CrossRef]
- Mirza, M.Q.; Warrick, R.A.; Ericksen, N.J.; Kenny, G.J. Trends and persistence in precipitation in the Ganges, Brahmaputra and Meghna river basins. Hydrol. Sci. J. 1998, 43, 845–858. [Google Scholar] [CrossRef]
- Ramsey, P.H. Critical values for Spearman’s rank order correlation. J. Educ. Stat. 1989, 14, 245–253. [Google Scholar] [CrossRef]
- Gilbert, R.O. “6.5 Sen’s Nonparametric Estimator of Slope”, Statistical Methods for Environmental Pollution Monitoring; John Wiley and Sons: Hoboken, NJ, USA, 1987. [Google Scholar]
- Vu, T.C. Assessing Impacts of Climate Change and Sea Level Rise on Island Districts in Viet Nam and Proposing Adaptation Measures; Research project report submitted to the Ministry of Natural Resources and Environment of Viet Nam; Natural Resources and Environment Publisher: Ha Noi, Vietnam, 2013. (In Vietnamese) [Google Scholar]
- Bryant, D.; Burke, L.; McManus, J.; Spaulding, M. Reefs at Risk: A Map-Based Indicator of Threats to the World’s Coral Reefs; World Resources Institute: Washington, DC, USA, 1998. [Google Scholar]
- Hoegh-Guldberg, O. Climate change, coral bleaching and the future of the worldís coral reefs. Mar. Freshw. Res. 1999, 50, 839–866. [Google Scholar] [CrossRef]
- Aronson, R.B.; Precht, W.F.; MacIntyre, I.G.; Murdoch, T.J.T. Ecosystems: Coral bleach-out in Belize. Nature 2000, 405, 36. [Google Scholar] [CrossRef] [PubMed]
- Glynn, P.W. El Niño-Southern Oscillation mass mortalities of reef corals: A model of high temperature marine extinctions? In Organism-Environment Feedbacks in Carbonate Platforms and Reefs; Insalaco, E., Skelton, P., Palmer, T., Eds.; Geological Society Special Pub. No. 151; The Geological Society of London: London, UK, 2000; Volume 178, pp. 117–133. [Google Scholar]
- Wilkinson, C. Status of Coral Reefs of the World 2008; Australian Institute of Marine Science: Townsville, Australia, 2008. [Google Scholar]
- Dipper, J.W.; Nguyen, K.V.; Hein, H.; Ohde, T.; Loick, N. Monsoon-induced upwelling off the Vietnamese coast. Ocean Dyn. 2007, 57, 46–62. [Google Scholar] [CrossRef]
- Nguyen, K.C.; Walsh, K.J.E. Interannual, decadal, and transient greenhouse simulation of tropical cyclone-like vortices in a regional climate model of the South Pacific. J. Clim. 2001, 14, 3043–3054. [Google Scholar] [CrossRef]
n−2 | 10 | 20 | 30 | 40 | 50 | 60 | 70 | 80 | 90 | 100 |
---|---|---|---|---|---|---|---|---|---|---|
α = 0.05 | 0.648 | 0.447 | 0.362 | 0.313 | 0.279 | 0.255 | 0.235 | 0.220 | 0.207 | 0.197 |
No. | Name of the Station | Latitude | Longitude | Years of Data Use for Air Temperature | Years of Data Use for Water Temperature | Years of Data Use for Sea Level |
---|---|---|---|---|---|---|
1 | Cua Ong | 21°01′ | 107°21′ | 1961–2012 | 1986–2012 | 1962–2012 |
2 | Co To | 20°59′ | 107°46′ | 1959–2012 | 1960–2012 | 1960–2012 |
3 | Bai Chay | 20°57′ | 107°04′ | 1961–2012 | 1962–2012 | 1962–2012 |
4 | Hon Dau | 20°40′ | 106°48′ | 1956–2012 | 1956–2012 | 1957–2012 |
5 | Bach Long Vi | 20°08′ | 107°43′ | 1960–2012 | 1998–2012 | 1998–2012 |
6 | Sam Son | 19°45′ | 105°54′ | 1961–1965; 1994–2012 | 1998–2012 | 1998–2012 |
7 | Hon Ngu | 18°48′ | 105°46′ | 1961–2012 | 1962–2012 | 2009–2012 |
8 | Con Co | 17°10′ | 107°22′ | 1975–2012 | 1993–2012 | 1980–2012 |
9 | Hue | 107°35′ | 16°26′ | 1961–1974; 1978–2012 | – | – |
10 | Son Tra | 16°06′ | 108°13′ | 1976–2012 | – | – |
11 | Phu Quy | 10°31′ | 108°56′ | 1979–2012 | 1980–2012 | 1980–2013 |
12 | Vung Tau | 10°20′ | 107°04′ | 1979–2012 | 1983–2012 | 1978–2012 |
13 | Truong Sa | 8°39′ | 111°55′ | 1977–1985; 1986–2012 | 1986–2012 | 1986–2012 |
14 | Con Dao | 8°41′ | 106°36′ | 1978–2012 | 1980–2012 | 1980–2012 |
15 | Phu Quoc | 10°13′ | 103°58′ | 1979–2012 | 1986–2012 | 1979–2012 |
No. | Name of the Station | Mann–Kendall Test | Spearman Rank Correlation Coefficient | Trend | ||
---|---|---|---|---|---|---|
Z | Trend | ρ | Trend | |||
1 | Cua Ong | 4.22 | Y | 0.54 | Y | 0.021 ± 0.016 |
2 | Co To | 3.13 | Y | 0.47 | Y | 0.017 ± 0.015 |
3 | Bai Chay | 4.81 | Y | 0.62 | Y | 0.022 ± 0.015 |
4 | Hon Dau | 5.33 | Y | 0.65 | Y | 0.025 ± 0.017 |
5 | Bach Long Vi | 4.61 | Y | 0.59 | Y | 0.025 ± 0.018 |
6 | Sam Son | 1.19 | N | 0.24 | N | – |
7 | Hon Ngu | −0.87 | N | 0.23 | N | – |
8 | Con Co | 2.77 | Y | 0.20 | N | – |
9 | Hue | −4.18 | Y | 0.28 | Y | −0.007 ± 0.005 |
10 | Son Tra | 3.26 | Y | 0.52 | Y | 0.017 ± 0.012 |
11 | Phu Quy | 1.50 | N | 0.42 | Y | 0.011 ± 0.009 |
12 | Vung Tau | 4.8 | Y | 0.78 | Y | 0.028 ± 0.012 |
13 | Truong Sa | 3.32 | Y | 0.53 | Y | 0.019 ± 0.010 |
14 | Con Dao | 3.91 | Y | 0.66 | Y | 0.020 ± 0.010 |
15 | Phu Quoc | 3.29 | Y | 0.50 | Y | 0.015 ± 0.010 |
No. | Name of the Station | Mann–Kendall Test | Spearman Rank Correlation Coefficient | Trend | ||
---|---|---|---|---|---|---|
Z | Trend | ρ | Trend | |||
1 | Cua Ong | 2.84 | Y | 0.49 | Y | 0.025 ± 0.003 |
2 | Co To | 2.62 | Y | 0.36 | Y | 0.011 ± 0.013 |
3 | Bai Chay | −0.30 | N | 0.15 | N | – |
4 | Hon Dau | 2.58 | Y | 0.36 | Y | 0.010 ± 0.012 |
5 | Bach Long Vi | – | – | – | – | – |
6 | Sam Son | – | – | 0.16 | N | – |
7 | Hon Ngu | 2.75 | Y | 0.22 | N | 0.016 ± 0.013 |
8 | Con Co | 0.42 | N | 0.11 | N | – |
9 | Hue | – | – | – | – | – |
10 | Son Tra | – | – | – | – | – |
11 | Phu Quy | 0.39 | N | 0.05 | N | – |
12 | Vung Tau | 1.00 | N | 0.07 | N | – |
13 | Truong Sa | 1.54 | N | 0.30 | – | – |
14 | Con Dao | 0.34 | N | 0.12 | – | – |
15 | Phu Quoc | 2.96 | Y | 0.53 | Y | 0.18 ± 0.11 |
No. | Name of the Station | Mann–Kendall Test | Spearman Rank Correlation Coefficient | Trend (cm/year) | ||
---|---|---|---|---|---|---|
Z | Trend | ρ | Trend | |||
1 | Cua Ong | 6.70 | Y | 0.87 | Y | 0.527 ± 0.256 |
2 | Co To | −4.10 | Y | 0.59 | Y | −0.152 ± 0.107 |
3 | Bai Chay | 3.49 | Y | 0.41 | Y | 0.207 ± 0.207 |
4 | Hon Dau | 6.37 | Y | 0.74 | Y | 0.378 ± 0.221 |
5 | Bach Long Vi | 0.20 | N | 0.10 | N | – |
6 | Sam Son | 3.17 | Y | 0.69 | Y | 0.415 ± 0.252 |
7 | Hon Ngu | – | – | – | – | – |
8 | Con Co | 0.00 | N | 0.012 | N | – |
9 | Hue | – | – | – | – | – |
10 | Son Tra | – | – | – | – | – |
11 | Phu Quy | 4.29 | Y | 0.64 | Y | 0.357 ± 0.187 |
12 | Vung Tau | 3.32 | Y | 0.59 | Y | 0.368 ± 0.211 |
13 | Truong Sa | – | – | – | – | – |
14 | Con Dao | 3.18 | Y | 0.56 | Y | 0.252 ± 0.149 |
15 | Phu Quoc | 2.76 | Y | 0.41 | Y | 0.244 ± 0.201 |
© 2017 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ca, V.T. A Climate Change Assessment via Trend Estimation of Certain Climate Parameters with In Situ Measurement at the Coasts and Islands of Viet Nam. Climate 2017, 5, 36. https://doi.org/10.3390/cli5020036
Ca VT. A Climate Change Assessment via Trend Estimation of Certain Climate Parameters with In Situ Measurement at the Coasts and Islands of Viet Nam. Climate. 2017; 5(2):36. https://doi.org/10.3390/cli5020036
Chicago/Turabian StyleCa, Vu Thanh. 2017. "A Climate Change Assessment via Trend Estimation of Certain Climate Parameters with In Situ Measurement at the Coasts and Islands of Viet Nam" Climate 5, no. 2: 36. https://doi.org/10.3390/cli5020036
APA StyleCa, V. T. (2017). A Climate Change Assessment via Trend Estimation of Certain Climate Parameters with In Situ Measurement at the Coasts and Islands of Viet Nam. Climate, 5(2), 36. https://doi.org/10.3390/cli5020036