Hydrologic Alterations Predicted by Seasonally-Consistent Subset Ensembles of General Circulation Models
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrologic Model
2.3. Hydrologic Indexes
2.4. Climate Data Processing
2.5. Future Scenarios
2.5.1. Baseline Scenario
2.5.2. Group 1 Scenarios: Uniform Shifts
2.5.3. Group 2 Scenario: Ensemble Mean Shifts
2.5.4. Group 3 Scenarios: Seasonal Shifts
2.5.5. Future Scenario Analysis
3. Results
3.1. Streamflow Analysis
3.2. Analysis of Hydrologic Indexes
4. Discussion
5. Conclusions
- The use of stationary uniform shifts of ±10% of historical precipitation provided a reasonable bound of maximum and minimum annual and seasonal hydrological response to projected future climate, but they did not capture important shifts in drought and flood behaviors of streamflow.
- The use of an ensemble mean of 15 GCMs was found to be an efficient way to capture the non-stationary effects of projected future climate without the bias generated by assumptions and specifics of an individual GCM, but it also did not capture important shifts in drought and flood behaviors of streamflow.
- The new approach that used seasonally-consistent subset ensembles of the 15 GCMs highlighted a range of distinct seasonal streamflow trends and hydrological responses not captured by non-stationary or full-ensemble approaches.
- Using subsets of seasonally-consistent GCMs was extremely important in considering ranges of hydrologic impacts of future climate projections, particularly for the extreme low-flow and high-flow event magnitude, frequency, and duration.
- The use of a stochastic weather generator (WINDS) in generating daily climate variables simulated daily storms based on the precipitation probability distribution inherited from the validation record and provided an efficient and reproducible method of downscaling monthly GCM data for daily hydrological model input.
- The methods used to develop the scenarios and subset ensembles can be universally applied to any region.
Acknowledgments
Author Contributions
Conflicts of Interest
References
- IPCC-DDC Data Distribution Center. Available online: http://ipcc-data.org/ (accessed on 16 March 2017).
- Intergovernmental Panel on Climate Change Fourth Assessment Report Working Group I (IPCC AR4 WG1). Climate Change 2007: The Physical Science Basis. In Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H., Eds.; Cambridge University Press: Cambridge, UK, 2007. [Google Scholar]
- Chen, J.; Brissette, F.P.; Poulin, A.; Leconte, R. Overall uncertainty study of the hydrological impacts of climate change for a Canadian watershed. Water Resour. Res. 2011, 47, W12509. [Google Scholar] [CrossRef]
- Kay, A.; Davies, H.; Bell, V.; Jones, R. Comparison of uncertainty sources for climate change impacts: Flood frequency in England. Clim. Chang. 2009, 92, 41–63. [Google Scholar] [CrossRef]
- Wilby, R.; Harris, I. A framework for assessing uncertainties in climate change impacts: Low-flow scenarios for the River Thames, UK. Water Resour. Res. 2006, 42, W02419. [Google Scholar] [CrossRef]
- Maraun, D.; Wetterhall, F.; Ireson, A. Precipitation downscaling under climate change: Recent developments to bridge the gap between dynamical models and the end user. Rev. Geophys. 2010, 48. [Google Scholar] [CrossRef]
- Chen, J.; Brissette, F.P.; Leconte, R. Assessing regression-based statistical approaches for downscaling precipitation over North America. Hydrol. Process. 2014, 28, 3482–3504. [Google Scholar] [CrossRef]
- Feddersen, H.; Andersen, U. A method for statistical downscaling of seasonal ensemble predictions. Tellus A 2005, 57, 398–408. [Google Scholar] [CrossRef]
- Sharma, D.; Gupta, A.; Babel, M. Spatial disaggregation of bias-corrected GCM precipitation for improved hydrologic simulation: Ping River Basin, Thailand. Hydrol. Earth 2007, 11, 1373–1390. [Google Scholar] [CrossRef]
- Wilby, R.; Hay, L.; Leavesley, G. A comparison of downscaled and raw GCM output: Implications for climate change scenarios in the San Juan River basin, Colorado. J. Hydrol. 1999, 225, 67–91. [Google Scholar] [CrossRef]
- Sheshukov, A.Y.; Siebenmorgen, C.B.; Douglas-Mankin, K.R. Seasonal and annual impacts of climate change on watershed response using an ensemble of global climate models. Trans. ASABE 2011, 54, 2209–2218. [Google Scholar] [CrossRef]
- Fowler, H.J.; Blenkinsop, S.; Tebaldi, C. Linking climate change modelling to impacts studies: Recent advances in downscaling techniques for hydrological modelling. Int. J. Climatol. 2007, 27, 1547–1578. [Google Scholar] [CrossRef]
- Zhang, X.-C.; Nearing, M.A.; Garbrecht, J.D.; Steiner, J.L. Downscaling Monthly Forecasts to Simulate Impacts of Climate Change on Soil Erosion and Wheat Production. Soil Sci. Soc. Am. J. 2004, 68, 1376–1385. [Google Scholar] [CrossRef]
- Zhang, Y.G.; Nearing, M.A.; Zhang, X.C.; Xie, Y.; Wei, H. Projected rainfall erosivity changes under climate change from multimodel and multiscenario projections in Northeast China. J. Hydrol. 2010, 384, 97–106. [Google Scholar] [CrossRef]
- Zhang, X.C.; Nearing, M.A. Impact of climate change on soil erosion, runoff, and wheat productivity in central Oklahoma. Catena 2005, 61, 185–195. [Google Scholar] [CrossRef]
- Jha, M.; Arnold, J.; Gassman, P. Climate chhange sensitivity assessment on upper mississippi river basin streamflows using SWAT. J. Am. Water Resour. Assoc. 2006, 42, 997–1015. [Google Scholar] [CrossRef]
- Siebenmorgen, C.B.; Sheshukov, A.Y.; Douglas-Mankin, K.R. Impacts of climate change on hydrologic indices in a Northeast Kansas watershed. In Proceedings of the 5th Conference on Watershed Management to Improve Water Quality (TMDLs), Baltimore, MD, USA, 14–17 November 2010; American Society of Agricultural and Biological Engineer (ASABE): St. Joseph, MI, USA, 2010. [Google Scholar]
- Zhang, X.-C. A comparison of explicit and implicit spatial downscaling of GCM output for soil erosion and crop production assessments. Clim. Chang. 2007, 84, 337–363. [Google Scholar] [CrossRef]
- Githui, F.; Gitau, W.; Mutua, F.; Bauwens, W. Climate change impact on SWAT simulated streamflow in western Kenya. Int. J. Climatol. 2009, 29, 1823–1834. [Google Scholar] [CrossRef]
- Chaubey, I.; Bosch, D.; Muñoz-Carpena, R.; Harmel, R.D.; Douglas-Mankin, K.R.; Nejadhashemi, A.; Srivastava, P.; Shirmohammadi, A. Climate Change: A Call for Adaptation and Mitigation Strategies. Trans. ASABE 2016, 59, 1709–1713. [Google Scholar]
- Aumen, N.; Havens, K.; Best, G.; Berry, L. Predicting ecological responses of the Florida Everglades to possible future climate scenarios: Introduction. Environ. Manag. 2015, 55, 741–748. [Google Scholar] [CrossRef] [PubMed]
- Brunsell, N.A.; Jones, A.R.; Jackson, T.L.; Feddema, J.J. Seasonal trends in air temperature and precipitation in IPCC AR4 GCM output for Kansas, USA: Evaluation and implications. Int. J. Climatol. 2010, 30, 1178–1193. [Google Scholar] [CrossRef]
- Karl, T.R.; Melillo, J.M.; Peterson, T.C. Global Climate Change Impacts in the United States; Cambridge University Press: New York, NY, USA, 2009. [Google Scholar]
- Juracek, K. Historical Channel Change Along Soldier Creek, Northeast Kansas; USGS Water-Resources Investigations Report 02-4047; United States Geological Survey: Reston, VA, USA, 2002.
- United States Geological Survey (USGS). The National Map; USGS: Reston, VA, USA, 2016.
- Arnold, J.; Srinivasan, R.; Muttiah, R.; Williams, J. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Neitsch, S.; Arnold, J.; Kiniry, J.; Williams, J. Soil and Water Assessment Tool Theoretical Documentation; Version 2009; Texas Water Resources Institute: College Station, TX, USA, 2011. [Google Scholar]
- Arnold, J.G.; Youssef, M.A.; Yen, H.; White, M.J.; Sheshukov, A.Y.; Sadeghi, A.M.; Moriasi, D.N.; Steiner, J.L.; Amatya, D.M.; Skaggs, R.W.; et al. Hydrological Processes and Model Representation: Impact of Soft Data on Calibration. Trans. ASABE 2015, 58, 1650–1660. [Google Scholar]
- Douglas-Mankin, K.; Srinivasan, R.; Arnold, J. Soil and Water Assessment Tool (SWAT) model: Current developments and applications. Trans. ASABE 2010, 53, 1423–1431. [Google Scholar] [CrossRef]
- Gassman, P.; Reyes, M.; Green, C.; Arnold, J. The Soil and Water Assessment Tool: Historical Development, Applications, and Future Research Directions. Trans. ASABE 2007, 50, 1211–1240. [Google Scholar] [CrossRef]
- Gassman, P.; Sadeghi, A.; Srinivasan, R. Applications of the SWAT model special section: Overview and insights. J. Environ. Qual. 2014, 43, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Tuppad, P.; Douglas-Mankin, K.; Lee, T.; Srinivasan, R.; Arnold, J.G. Soil and Water Assessment Tool (SWAT) Hydrologic/Water Quality Model: Extended Capability and Wider Adoption. Trans. ASABE 2011, 54, 1677–1684. [Google Scholar] [CrossRef]
- USDA-NRCS Geospatial Data Gateway. Available online: https://gdg.sc.egov.usda.gov/ (accessed on 1 January 2016).
- Homer, C.; Huang, C.; Yang, L.; Wylie, B. Development of a 2001 national land-cover database for the United States. Photogramm. Eng. Remote Sens. 2004, 70, 829–840. [Google Scholar] [CrossRef]
- WRAPS Delaware River Watershed Restoration and Protection Strategy. Nine Element Watershed Plan Summary. Available online: http://www.kswraps.org/files/attachments/delaware_plansummary.pdf (accessed on 1 January 2016).
- NOAA-NCEI Climate-radar Data Inventories. Available online: https://www.ncdc.noaa.gov/ (accessed on 1 January 2016).
- Moriasi, D.; Arnold, J.; Van Liew, M.; Bingner, R.; Harmel, R.; Veith, T. Model evaluation guidelines for systematic quantification of accuracy in watershed simulations. Trans. ASABE 2007, 50, 885–900. [Google Scholar] [CrossRef]
- Siebenmorgen, C.B. Potential Climate Change Impacts on Hydrologic Regimes in Northeast Kansas; Kansas State University: Manhattan, KS, USA, 2010. [Google Scholar]
- Indicators of Hydrologic Alteration (IHA). Indicators of Hydrologic Alteration User’s Manual; Ver. 7.1; IHA: Arlington, VA, USA, 2009. [Google Scholar]
- Wilson, B.N.; Sheshukov, A.Y.; Pulley, R. Chapter 3: Modeling algorithms of the WINDS model. In Erosion Risk Assessment Tool for Construction Sites; Research Report No. MN/RC-2006-27; Wilson, B., Sheshukov, A., Pulley, R., Eds.; Minnesota Department of Transportation: St. Paul, MN, USA, 2006. [Google Scholar]
- Richardson, C. Stochastic simulation of daily precipitation, temperature, and solar radiation. Water Resour. Res. 1981, 96, 85–101. [Google Scholar] [CrossRef]
- Wilson, B.N.; Sheshukov, A.Y. Precipitation parameters of stochastic climate models for a changing climate. In Proceedings of the International Symposium on Erosion and Landscape Evolution (ASABE), Anchorage, AK, USA, 18–21 September 2011. [Google Scholar]
- Chen, J.; Brissette, F.P. Combining Stochastic Weather Generation and Ensemble Weather Forecasts for Short-Term Streamflow Prediction. Water Resour. Manag. 2015, 29, 3329–3342. [Google Scholar] [CrossRef]
- Teutschbein, C.; Seibert, J. Regional Climate Models for Hydrological Impact Studies at the Catchment Scale: A Review of Recent Modeling Strategies. Geogr. Compass 2010, 4, 834–860. [Google Scholar] [CrossRef]
- Gao, J.; Sheshukov, A.Y. Uncertainty Estimation of Hydrological Impacts of Bias-Corrected CMIP5 Climate Change Projections. In Proceedings of the International Soil and Water Assessment Tool Conference, West Lafayette, IN, USA, 14–16 October 2015. [Google Scholar]
- Dodds, W.K.; Gido, K.; Whiles, M.R.; Fritz, K.M.; Matthews, W.J. Life on the Edge: The Ecology of Great Plains Prairie Streams. Bioscience 2004, 54, 205. [Google Scholar] [CrossRef]
Model | Grid Cell | |||
---|---|---|---|---|
Name | Country | Center Point | Resolution | |
1 | CNRM CM3 | France | 40.45, 264.38 | 2.80 × 2.80 |
2 | CSIRO Mk3.0 | Australia | 40.09, 264.38 | 1.875 × 1.875 |
3 | MHP ECHOG | Germany, Korea | 38.94, 262.50 | 3.75 × 3.75 |
4 | GFDL CM2 | U.S.A. | 39.00, 263.75 | 2.00 × 2.50 |
5 | GFDL CM2.1 | U.S.A. | 39.22, 263.75 | 2.00 × 2.50 |
6 | NASA GISS-ER | U.S.A. | 37.58, 262.50 | 4.00 × 5.00 |
7 | UKMO HadCM3 | U.K. | 40.00, 262.50 | 2.75 × 3.75 |
8 | UKMO HadGEM1 | U.K. | 38.75, 264.38 | 1.25 × 1.875 |
9 | INM CM3.0 | Russia | 40.00, 265.00 | 4.00 × 5.00 |
10 | IPSL CM4 | France | 39.30, 262.50 | 2.50 × 3.75 |
11 | NIES MIROC 3.2medres | Japan | 40.45, 264.38 | 2.80 × 2.80 |
12 | MPI-OM ECHAM5 | Germany | 38.23, 264.38 | 2.80 × 2.80 |
13 | MRI CGCM 2.3.2 | Japan | 40.45, 264.38 | 2.80 × 2.80 |
14 | NCAR CCSM3 | U.S.A. | 39.91, 264.38 | 1.40 × 1.40 |
15 | NCAR PCM | U.S.A. | 40.45, 264.38 | 2.80 × 2.80 |
Scenario | Observed | 1a | 1b | 2 | 3ww | 3dd | 3wd | |||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
P | T | ΔP | ΔP | ΔP | ΔT * | ΔP | ΔT | ΔP | ΔT | ΔP | ΔT | |
Jan | 24 | −2.6 | 2.4 | −2.4 | 4.8 | 2.6 | −0.2 | 2.8 | 0.4 | 2.4 | 7.0 | 2.8 |
Feb | 23 | 0.5 | 2.3 | −2.3 | 3.0 | 2.8 | 1.5 | 3.2 | 0.9 | 3.4 | 4.5 | 2.7 |
Mar | 62 | 6.8 | 6.2 | −6.2 | 4.2 | 2.8 | 6.7 | 2.6 | 2.8 | 3.4 | 7.0 | 2.9 |
Apr | 81 | 12.7 | 8.1 | −8.1 | 2.1 | 2.4 | 5.8 | 2.1 | −13.1 | 3.1 | 7.7 | 2.6 |
May | 124 | 18.1 | 12.4 | −12.4 | 10.3 | 2.5 | 17.7 | 2.9 | −7.7 | 2.9 | 19.8 | 2.5 |
Jun | 139 | 23.3 | 13.9 | −13.9 | −8.3 | 3.0 | 12.5 | 2.7 | −18.6 | 3.8 | −18.8 | 3.1 |
Jul | 93 | 26.0 | 9.3 | −9.3 | −12.3 | 3.5 | 13.4 | 2.6 | −14.0 | 3.7 | −28.6 | 4.6 |
Aug | 87 | 24.9 | 8.7 | −8.7 | −7.3 | 4.0 | 16.1 | 2.9 | −17.1 | 4.2 | −18.1 | 5.4 |
Sep | 116 | 20.2 | 11.6 | −11.6 | −4.1 | 3.8 | 11.9 | 3.1 | −13.4 | 4.6 | −6.2 | 4.2 |
Oct | 76 | 13.6 | 7.6 | −7.6 | 3.0 | 3.0 | −5.0 | 3.7 | 14.8 | 3.3 | −0.3 | 2.7 |
Nov | 48 | 6.2 | 4.8 | −4.8 | 2.8 | 2.7 | −2.0 | 2.8 | 4.7 | 3.1 | 4.0 | 2.9 |
Dec | 32 | −0.5 | 3.2 | −3.2 | 4.1 | 2.9 | 5.4 | 2.7 | 7.1 | 2.8 | 3.5 | 3.2 |
Average | 75 | 9.4 | 7.5 | −7.5 | 0.2 | 3.0 | 7.0 | 2.8 | −4.4 | 3.4 | −1.5 | 3.3 |
MPI-M ECHAM5-OM | CNRM CM3 | IPSL CM4 | NIES MIROC3.2 Medres | UKMO HadCM3 | GFDL CM2 | CFDL CM2.1 | GISS E-R | UKMO HadGEM1 | INM CM3.0 | NCAR PCM | CSIRO Mk3.0 | CONS ECHOG | MRI CGCM2.3.2 | NRAR CCSM3 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Spring | d | d | d | d | d | w | w | w | w | w | w | w | w | w | w |
Summer | w | d | d | d | d | d | d | d | d | d | d | w | w | w | w |
Scenario | - | 3dd | 3dd | 3dd | 3dd | 3wd | 3wd | 3wd | 3wd | 3wd | 3wd | 3ww | 3ww | 3ww | 3ww |
Baseline | 1a | 1b | 2 | 3ww | 3dd | 3wd | |
---|---|---|---|---|---|---|---|
Mean Annual Flow (m3/s) | 4.5 | 5.6 (24%) | 3.0 (−33%) | 4.6 (2%) | 5.4 (20%) | 3.2 (−29%) | 4.3 (−4%) |
Low-flow Pulse Count (#) | 6.0 | 4.1 (−32%) | 8.3 (38%) | 6.7 (12%) | 4.0 (−33%) | 7.8 (30%) | 7.0 (17%) |
Low-flow Pulse Duration (days) | 16.0 | 13.4 (−16%) | 19.8 (24%) | 14.7 (−8%) | 17.2 (8%) | 16.8 (5%) | 16.3 (2%) |
Small Flood Peak (m3/s) | 435 | 444 (2%) | 456 (5%) | 448 (3%) | 421 (−3%) | 371 (−15%) | 462 (6%) |
Small Flood Duration (days) | 61.7 | 74.2 (20%) | 29.4 (−52%) | 59.8 (−3%) | 57.5 (−7%) | 31.4 (−49%) | 62.4 (1%) |
Small Flood Frequency (#/yr) | 0.20 | 0.20 (0%) | 0.10 (−50%) | 0.20 (0%) | 0.20 (0%) | 0.05 (−75%) | 0.14 (−30%) |
Large Flood Peak (m3/s) | 777 | 838 (8%) | 821 (6%) | 862 (11%) | 1294 (66%) | 972 (25%) | 1211 (56%) |
Large Flood Duration (days) | 61.4 | 69.2 (13%) | 35.3 (−43%) | 57.6 (−6%) | 51.8 (−16%) | 41.4 (−33%) | 55.9 (−9%) |
Large Flood Frequency (#/yr) | 0.10 | 0.10 (0%) | 0.10 (0%) | 0.10 (0%) | 0.04 (−60%) | 0.05 (−50%) | 0.11 (10%) |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sheshukov, A.Y.; Douglas-Mankin, K.R. Hydrologic Alterations Predicted by Seasonally-Consistent Subset Ensembles of General Circulation Models. Climate 2017, 5, 44. https://doi.org/10.3390/cli5030044
Sheshukov AY, Douglas-Mankin KR. Hydrologic Alterations Predicted by Seasonally-Consistent Subset Ensembles of General Circulation Models. Climate. 2017; 5(3):44. https://doi.org/10.3390/cli5030044
Chicago/Turabian StyleSheshukov, Aleksey Y., and Kyle R. Douglas-Mankin. 2017. "Hydrologic Alterations Predicted by Seasonally-Consistent Subset Ensembles of General Circulation Models" Climate 5, no. 3: 44. https://doi.org/10.3390/cli5030044
APA StyleSheshukov, A. Y., & Douglas-Mankin, K. R. (2017). Hydrologic Alterations Predicted by Seasonally-Consistent Subset Ensembles of General Circulation Models. Climate, 5(3), 44. https://doi.org/10.3390/cli5030044