Assessment of Groundwater Resources in the Context of Climate Change and Population Growth: Case of the Klela Basin in Southern Mali
Abstract
:1. Introduction
Study Area
2. Materials and Methods
2.1. Thornthwaite Model
2.2. WEAP (Water Evaluation and Planning System) Model
2.2.1. Development of Scenarios
- RCP4.5: the scenario RCP4.5 is an intermediate pathway that is around the stabilization level of approximatively 4.5 W/m2 [27], supposing that all the world countries undertake emission mitigation policies [28]. Comparing RCP4.5 with the GCAM (General Circulation Atmospheric Model) reference scenario, it has been demonstrated in [28] that the population and income drivers are the same, but they are different from the policy applied to “greenhouse gas emissions to stabilize atmospheric radiative forcing”. The main anthropogenic gas emission for RCP4.5 is carbon dioxide (CO2) and comprises the widest contribution to total radiative forcing followed by methane (CH4) and others [28]. In order to decrease greenhouse gas emissions in the atmosphere and stabilize radiative forcing by 2100, the RCP4.5 scenario is projected to inform research on the atmospheric consequences [28]. Refer to [28] for more details.
- RCP8.5: The worst case scenario RCP8.5 is a reference scenario and representing the highest RCP scenario regarding GHG emissions without any explicit climate policy. “RCP8.5 is a rising radiative forcing pathway leading to 8.5 W/m2 in 2100” [29]. In RCP8.5, increasing global population (approximatively 12 billion by 2100) and economy associated with a lower rate of technology development lead to increasing primary energy demand [30]. An increasing global population in RCP8.5 is mostly due to increasing use of cropland and grasslands [26]. It is mentioned in Riahi et al. [30] that in RCP8.5 the greenhouse gas emissions continue rising due to mainly the high intensity of fossil energy as well as growing population and also high demand for food [30]. Most of the GHG emissions rising are due to those of CO2 from energy sector; but from agriculture sector, it is principally attributed ”to increasing use of fertilizers and intensification of agricultural production, giving rise to the main source of nitrogen dioxide (N2O) emissions” [30]. Besides the principal gases responsible for radiative forcing such as CO2, CH4, NO2, etc., there are some others additional tropospheric ozone in RCP8.5, which are “expected to increase the radiative forcing by an additional 0.2 W/m2 by 2100” [31].
- Reference scenario: it refers to the current account scenario in which the socio-economic is used (business as usual). Climate (precipitation) data is based on current account year (2013). Therefore, the recharge was constant over time from 2013–2050.
- High population growth scenario: the present growth rate (3.6%) will increase by 2% to become 5.6% in 2050. Other parameters are used as reference scenario.
- Socio-economic scenario E1: all water demand data is moderately increasing, except livestock which is the same as in reference scenario, and population growth decreases (based on DAES projection, see before) slightly compared to the reference scenario.
- Socio-economic scenario E2: high water demand scenario with slight decrease of population growth, but greater than in scenario E1. All socio-economic data are increased to cover the possible future water demand.
- Climate change scenario using RCP4.5: only the climate data from the RCP4.5 scenario was used. The population and other demands were not changed.
- Climate change scenario using RCP8.5: only the climate from the RCP8.5 scenario was used. The other parameters were used as in the reference scenario.
2.2.2. Water Supply Resources
2.2.3. Water Demands
3. Results and Discussion
Hydrology
4. Conclusions
Acknowledgments
Author Contributions
Conflicts of Interest
References
- Comodi, G.; Cioccolanti, L.; Palpacelli, S.; Tazioli, A.; Nanni, T. Distributed generation and water production: A study for a region in central Italy. Desalin. Water Treat. 2011, 31, 218–225. [Google Scholar] [CrossRef]
- Heath, R.C. Basic Ground-Water Hydrology, U.S. Geological Survey Water-Supply Paper 2220. 1983; 86p. Available online: https://pubs.er.usgs.gov/djvu/WSP/wsp_2220.pdf (accessed on 22 June 2017).
- Mahé, G.; Olivry, J.C.; Dessouassi, R.; Orange, D.; Bamba, F.; Servat, E. Relations eaux de surface-eaux souterraines d’une rivière tropicale au Mali. Surf. Geosci. 2000, 330, 689–692. [Google Scholar] [CrossRef]
- Bricquet, J.P.; Bamba, F.; Mahe, G.; Toure, M.; Olivry, J.C. Évolution récente des ressources en eau de l’Afrique atlantique. Rev. Sci. Eau 1997, 10, 321. [Google Scholar] [CrossRef]
- Roudier, P.; Mahé, G. Study of water stress and droughts with indicators using daily data on the Bani river (Niger basin, Mali). Int. J. Climatol. 2010, 30, 1689–1705. [Google Scholar] [CrossRef]
- Toure, A.; Diekkrüger, B.; Mariko, A. Impact of Climate Change on Groundwater Resources in the Klela Basin, Southern Mali. Hydrology 2016, 3, 17. [Google Scholar] [CrossRef]
- Cervi, F.; Corsini, A.; Doveri, M.; Mussi, M.; Ronchetti, F.; Tazioli, A. Characterizing the Recharge of Fractured Aquifers: A Case Study in a Flysch Rock Mass of the Northern Apennines (Italy). In Engineering Geology for Society and Territory—Volume 3; Lollino, G., Arattano, M., Rinaldi, M., Giustolisi, O., Marechal, J.-C., Grant, G.E., Eds.; Springer International Publishing: Cham, Switzerland, 2015; pp. 563–567. [Google Scholar]
- Mussi, M.; Nanni, T.; Tazioli, A.; Vivalda, P.M. The Mt Conero Limestone Ridge: The contribution of stable isotopes in the identification of the recharge area of aquifers. Ital. J. Geosci. 2016. [Google Scholar] [CrossRef]
- Aquilanti, L.; Clementi, F.; Nanni, T.; Palpacelli, S.; Tazioli, A.; Vivalda, P.M. DNA and fluorescein tracer tests to study the recharge, groundwater flowpath and hydraulic contact of aquifers in the Umbria-Marche limestone ridge (central Apennines, Italy). Environ. Earth Sci. 2016, 75. [Google Scholar] [CrossRef]
- USAID. Plan de Sécurité Alimentaire Commune Rurale de Klela; Commissariat de la Sécurité Alimentaire (CSA); Commune Rurale de Kléla: Kléla, Republique du Mali, 2006.
- McCabe, G.J.; Markstrom, S.L. A Monthly Water-Balance Model Driven by a Graphical User Interface. U.S. Geological Survey 2007, Open File Report 2007-1088; 6p. Available online: https://pubs.usgs.gov/of/2007/1088/pdf/of07-1088_508.pdf (accessed on 11 August 2016).
- SEI. WEAP: Water Evaluation and Planning System, User Guide for WEAP21; Stockholm Environment Institute: Boston, MA, USA, 2001. [Google Scholar]
- Rosenzweig, C.; Strzepek, K.M.; Major, D.C.; Iglesias, A.; Yates, D.N.; McCluskey, A.; Hillel, D. Water resources for agriculture in a changing climate: International case studies. Glob. Environ. Chang. 2004, 14, 345–360. [Google Scholar] [CrossRef]
- Yates, D.; Sieber, J.; Purkey, D.; Huber-Lee, A. WEAP21–A Demand-, Priority-, and Preference-Driven Water Planning Model. Int. Water Resour. Assoc. 2005, 30, 487–500. [Google Scholar] [CrossRef]
- Haddad, M.; Jayousi, A.; Hantash, S.A. Applicability of WEAP as water management decision support system tool on localized area of watershed scales: Tulkarem District in Palestine as case study. Presented at the Eleventh International Water Technology Conference—IWTC11 2007, Sharm El-Sheikh, Egypt, 15–18 March 2007. [Google Scholar]
- McCartney, M.P.; Arranz, R. Evaluation of Historic, Current and Future Water Demand in the Olifants River Catchment, South Africa; International Water Management Institute: Colombo, Sri Lanka, 2007. [Google Scholar]
- Hoff, H.; Bonzi, C.; Joyce, B.; Tielbörger, K. A Water Resources Planning Tool for the Jordan River Basin. Water 2011, 3, 718–736. [Google Scholar] [CrossRef]
- Nayak, P.C.; Wardlaw, R.; Kharya, A.K. Water balance approach to study the effect of climate change on groundwater storage for Sirhind command area in India. Int. J. River Basin Manag. 2015, 13, 243–261. [Google Scholar] [CrossRef]
- SEI. WEAP Tutorial: A Collection of Stand-Alone Modules to Aid in Learning the WEAP Software; Stockholm Environment Institute: Stockholm, Sweden, 2015. [Google Scholar]
- Traore, S.M.; Doumbia, A.G.; Traore, V.; Tolno, D.F. 4ème Recensement Général de la Population et de L’habitat du Mali (rgph-2009): Etat et Structure de la Population; Institut National de la Statistique (INSTAT): Bamako, Mali, 2011. [Google Scholar]
- Traore, M.; Sissoko, Y. Les Institutions du Marché du Travail Face aux défis du Développement le cas du Mali; BIT: Genève, Switzerland, 2010. [Google Scholar]
- Keïta, S.; Konaté, F.O. Le Mali et sa Population, in Questions de Population au Mali; UNFPA: New York, NY, USA, 2003; pp. 11–64. [Google Scholar]
- Ozturk, T.; Altinsoy, H.; Türkeș, M.; Kurnaz, M. Simulation of temperature and precipitation climatology for the Central Asia CORDEX domain using RegCM 4.0. Clim. Res. 2012, 52, 63–76. [Google Scholar] [CrossRef]
- Evans, J.P. CORDEX—An international climate downscaling initiative. Presented at the 19th International Congress on Modelling and Simulation, Perth, Australia, 26–28 May 2011; pp. 2705–2711. [Google Scholar]
- Wayne, G.P. The Beginner’s Guide to Representative Concentration Pathways. Skeptical Science. 2013. Available online: https://skepticalscience.com/docs/RCP_Guide.pdf (accessed on 12 November 2015).
- Van Vuuren, D.P.; Edmonds, J.; Kainuma, M.; Riahi, K.; Thomson, A.; Hibbard, K.; Hurtt, G.C.; Kram, T.; Krey, V.; Lamarque, J.-F.; et al. The representative concentration pathways: An overview. Clim. Chang. 2011, 109, 5–31. [Google Scholar] [CrossRef]
- Moss, R.; Babiker, M.; Brinkman, S.; Calvo, E.; Carter, T.; Edmonds, J.; Elgizouli, I.; Emori, S.; Erda, L.; Hibbard, K.; et al. Towards New Scenarios for Analysis of Emissions, Climate Change, Impacts, and Response Strategies, Intergovernmental Panel on Climate Change 2008, Geneva. Available online: https://www.ipcc.ch/pdf/supporting-material/expert-meeting-ts-scenarios.pdf (accessed on 12 November 2015).
- Thomson, A.M.; Calvin, K.V.; Smith, S.J.; Kyle, G.P.; Volke, A.; Patel, P.; Delgado-Arias, S.; Bond-Lamberty, B.; Wise, M.A.; Clarke, L.E.; et al. RCP4.5: A pathway for stabilization of radiative forcing by 2100. Clim. Chang. 2011, 109, 77–94. [Google Scholar] [CrossRef]
- Meinshausen, M.; Smith, S.J.; Calvin, K.; Daniel, J.S.; Kainuma, M.L.T.; Lamarque, J.-F.; Matsumoto, K.; Montzka, S.A.; Raper, S.C.B.; Riahi, K.; et al. The RCP greenhouse gas concentrations and their extensions from 1765 to 2300. Clim. Chang. 2011, 109, 213–241. [Google Scholar] [CrossRef]
- Riahi, K.; Rao, S.; Krey, V.; Cho, C.; Chirkov, V.; Fischer, G.; Kindermann, G.; Nakicenovic, N.; Rafaj, P. RCP 8.5—A scenario of comparatively high greenhouse gas emissions. Clim. Chang. 2011, 109, 33–57. [Google Scholar] [CrossRef]
- Lamarque, J.-F.; Kyle, G.P.; Meinshausen, M.; Riahi, K.; Smith, S.J.; van Vuuren, D.P.; Conley, A.J.; Vitt, F. Global and regional evolution of short-lived radiatively-active gases and aerosols in the Representative Concentration Pathways. Clim. Chang. 2011, 109, 191–212. [Google Scholar] [CrossRef]
- N’Djim, H.; Doumbia, B. Population and Water Issues: Case Study Mali; American Association for the Advancement of Science: Washington, DC, USA, 1998. [Google Scholar]
- WHO (Ed.) The Right to Water; WHO: Geneva, Switzerland, 2003. [Google Scholar]
- WWAP. Rapport National sur la Mise en Valeur des Ressources en Eau: Mali. UN-Water/WWAP/2006/10. Bamako, Mali, 2006. Available online: http://unesdoc.unesco.org/images/0014/001472/147267f.pdf (accessed on 12 November 2015).
- Diakité, L.; Zida, M. Étude Diagnostique de la Filière Pomme de Terre Dans Trois Pays de L’Afrique de L’ouest: Cas du Mali; CILSS-Institut du Sahel: Bamako, Mali, 2003. [Google Scholar]
Population | Demand per Capita (m3/Year) | Irrigation (ha) | Livestock | Number of Factories | |||
---|---|---|---|---|---|---|---|
Urban | Rural | Urban | Rural | Potato | Rice | ||
260,059 | 272,775 | 15 | 7.5 | 576 | 4612.2 | 363,270 | 12 |
Demand Site | Annual Water Demand (Mm3) | Reference | |
---|---|---|---|
Domestic | Urban | 3.90 | DNSI (La Direction Nationale de la Statistique et de l’Informatique), RGPH (Recensement Général de la Population et de l’Habitat) |
Rural | 2.05 | [34] | |
Livestock | 3.31 | DRSV (Direction Régionale des Services Vétérinaires) | |
Irrigation | Rice | 62.26 | DRGR (Direction Régionale du Génie Rural) |
Potato | 4.49 | Diakité and Zida [35], PCDA (Projet pour la Compétitivité et Diversion Agricole), Fiche technique pomme de terre | |
Industry | 0.05 | DRI (Direction Régionale de l'Industrie) | |
Total | 76.06 |
Scenarios | PET | P | AET | Recharge |
---|---|---|---|---|
RCP4.5 | 1372.8 | 999.2 | 919.3 | 80.2 |
RCP8.5 | 1391.7 | 974.2 | 913.3 | 60.2 |
Climate | Interval of Years | Recharge (109 m3) | Precipitation (109 m3) | GW Outflow (109 m3) |
---|---|---|---|---|
Current account | 2013 | 0.52 | 4.65 | 0.44 |
Scenario RCP4.5 | 2013–2015 * | 0.59 | 4.05 | 0.45 |
2016–2020 | 0.41 | 3.94 | 0.45 | |
2021–2025 | 0.43 | 3.76 | 0.41 | |
2026–2030 | 0.54 | 4.13 | 0.41 | |
2031–2035 | 0.00 | 3.06 | 0.33 | |
2036–2040 | 0.15 | 3.45 | 0.23 | |
2041–2045 | 0.27 | 3.53 | 0.18 | |
2046–2050 | 0.21 | 3.84 | 0.18 | |
Scenario RCP8.5 | 2013–2015 * | 0.17 | 2.95 | 0.43 |
2016–2020 | 0.18 | 3.61 | 0.34 | |
2021–2025 | 0.27 | 3.73 | 0.29 | |
2026–2030 | 0.32 | 3.73 | 0.25 | |
2031–2035 | 0.25 | 3.53 | 0.27 | |
2036–2040 | 0.14 | 3.56 | 0.18 | |
2041–2045 | 0.01 | 3.04 | 0.13 | |
2046–2050 | 0.22 | 3.86 | 0.07 |
© 2017 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Toure, A.; Diekkrüger, B.; Mariko, A.; Cissé, A.S. Assessment of Groundwater Resources in the Context of Climate Change and Population Growth: Case of the Klela Basin in Southern Mali. Climate 2017, 5, 45. https://doi.org/10.3390/cli5030045
Toure A, Diekkrüger B, Mariko A, Cissé AS. Assessment of Groundwater Resources in the Context of Climate Change and Population Growth: Case of the Klela Basin in Southern Mali. Climate. 2017; 5(3):45. https://doi.org/10.3390/cli5030045
Chicago/Turabian StyleToure, Adama, Bernd Diekkrüger, Adama Mariko, and Abdoulaye Salim Cissé. 2017. "Assessment of Groundwater Resources in the Context of Climate Change and Population Growth: Case of the Klela Basin in Southern Mali" Climate 5, no. 3: 45. https://doi.org/10.3390/cli5030045
APA StyleToure, A., Diekkrüger, B., Mariko, A., & Cissé, A. S. (2017). Assessment of Groundwater Resources in the Context of Climate Change and Population Growth: Case of the Klela Basin in Southern Mali. Climate, 5(3), 45. https://doi.org/10.3390/cli5030045