Changes in the Intensity and Variability of Precipitation in the Central Region of Argentina between 1960 and 2012
Abstract
:1. Introduction
2. Material and Methods
2.1. Region of Study, Rainfall Data, and Indicators
2.2. Homogeneity Tests
2.2.1. Run Test
2.2.2. Buishand Tests
2.3. Trend Detection
Mann–Kendall (MK) Test
2.4. Tests to Detect a Change of Trend over Time
2.4.1. Mann–Kendall–Sneyers Procedure (Sequential)
2.4.2. The Tomé–Miranda (TM) Method
3. Results and Discussion
3.1. Rainfall Intensity in the Central Region of Argentina
3.2. Assessment of Rainfall Time Series Homogeneity
3.3. Long-Term Trend Analysis
3.4. Trend Change Analysis
3.4.1. Variation of Annual Rainfall at Laboulaye (LB), Villa Dolores (VD), and Villa de María de Río Seco (VM)
3.4.2. Variation of Rainy Days in Córdoba City (BO), Río Cuarto (RC), and Villa de María de Río Seco (VM)
3.4.3. Variation of Mean Rainfall Intensity in Córdoba city (BO), Laboulaye (LB), Río Cuarto (RC) and Villa Dolores (VD)
3.4.4. Variation of Maximum Daily Value of Annual Rainfall in Río Cuarto (RC), Villa Dolores (VD), and Villa de María de Río Seco (VM)
3.4.5. Variation of Annual Rainfall Variability in Pilar (PI), Río Cuarto (RC), and Villa de María de Río Seco (VM)
3.4.6. Variation of Annual Rainy Day Variability in Córdoba City (BO) and Río Cuarto (RC)
4. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- Huntington, T.G. Climate warming-induced intensification of the hydrologic cycle: An assessment of the published record and potential impacts on agriculture. Adv. Agron. 2011, 109, 1–52. [Google Scholar]
- Trenberth, K.E.; Jones, P.D.; Ambenje, P.; Bojariu, R.; Easterling, D.; Tank, A.K.; Parker, D.; Rahimzadeh, F.; Renwick, J.A.; Rusticucci, M.; et al. Observations: Surface and Atmospheric Climate Change. In Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007; pp. 235–336. [Google Scholar]
- Lucero, O.A.; Rozas, D. Characteristics of aggregation of daily rainfall in a middle-latitudes region during a climate variability in annual rainfall amount. Atmos. Res. 2002, 61, 35–48. [Google Scholar] [CrossRef]
- Ravelo, A.C.; Irastorza, R.O.; Zanvettor, R.E. Zonificación de la región Pampeana Argentina según tendencias de series pluviométricas (1931–2000). Rev. Argent. Agrometeorol. 2003, 3–4, 85–90. [Google Scholar]
- De la Casa, A.C.; Nasello, O.B. Breakpoints in annual rainfall trends over Córdoba, Argentina. Atmos. Res. 2010, 95, 419–427. [Google Scholar] [CrossRef]
- Dai, A.; Fung, I.Y.; Del Genio, A.D. Surface observed global land precipitation variations during 1900–88. J. Clim. 1997, 10, 2943–2962. [Google Scholar] [CrossRef]
- Cislaghi, M.; De Michele, C.; Ghezzi, A.; Rosso, R. Statistical assessment of trends and oscillations in rainfall dynamics: Analysis of long daily Italian series. Atmos. Res. 2005, 77, 188–202. [Google Scholar] [CrossRef]
- Killam, D.; Bui, A.; LaDochy, S.; Ramirez, P.; Willis, J.; Patzert, W. California Getting Wetter to the North, Drier to the South: Natural Variability or Climate Change? Climate 2014, 2, 168–180. [Google Scholar] [CrossRef] [Green Version]
- Sayemuzzaman, M.; Jha, M.K. Seasonal and annual precipitation time series trend analysis in North Carolina, United States. Atmos. Res. 2014, 137, 183–194. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K.; Mekonnen, A.; Schimmel, K.A. Subseasonal climate variability for North Carolina, United States. Atmos. Res. 2014, 145–146, 69–79. [Google Scholar] [CrossRef]
- Costa, A.C.; Soares, A. Trends in extreme precipitation indices derived from a daily rainfall data base for the South of Portugal. Int. J. Climatol. 2009, 29, 1956–1975. [Google Scholar] [CrossRef]
- Liang, L.; Li, L.; Liuet, Q. Precipitation variability in Northeast China from 1961 to 2008. J. Hydrol. 2011, 404, 67–76. [Google Scholar] [CrossRef]
- Porto de Carvalho, J.R.P.; Assad, E.D.; de Oliveira, A.F.; Pinto, H.S. Annual maximum daily rainfall trends in the Midwest, southeast and southern Brazil in the last 71 years. Weather Clim. Extremes 2014, 5–6, 7–15. [Google Scholar] [CrossRef] [Green Version]
- Villafuerte, M.Q.; Matsumoto, J.; Akasaka, I.; Takahashi, H.G.; Kubota, H.; Cinco, T.A. Long-term trends and variability of rainfall extremes in the Philippines. Atmos. Res. 2014, 137, 1–13. [Google Scholar] [CrossRef]
- Allan, R.P.; Soden, B.J. Atmospheric warming and the amplification of precipitation extremes. Science 2008, 321, 1481–1484. [Google Scholar] [CrossRef] [PubMed]
- Trenberth, K.E.; Dai, A.; Rasmussen, R.M.; Parsons, D.B. The changing character of precipitation. Bull. Am. Meteorol. Soc. 2003, 84, 205–217. [Google Scholar] [CrossRef]
- Kwarteng, A.Y.; Dorvlo, A.S.; Vijaya Kumar, G.T. Analysis of a 27-year rainfall data (1977–2003) in the Sultanate of Oman. Int. J. Climatol. 2009, 29, 605–617. [Google Scholar] [CrossRef]
- De la Casa, A.C.; Nasello, O.B. Low frequency oscillation of rainfall in Córdoba, Argentina, and its relation with solar cycles and cosmic rays. Atmos. Res. 2012, 113, 140–146. [Google Scholar] [CrossRef]
- Greene, A.M.; Goddard, L.; Cousin, R. Web tool deconstructs variability in twentieth-century climate. Eos Trans. AGU 2011, 92, 397–398. [Google Scholar] [CrossRef]
- Tomé, A.R.; Miranda, P.M.A. Piecewise linear fitting and trend changing points of climate parameters. Geophys. Res. Lett. 2004, 31, L02207. [Google Scholar] [CrossRef]
- De la Casa, A.C.; Nasello, O.B. Análisis periódico de las condiciones hidrológicas en la Provincia de Córdoba, Argentina. Anales AFA 2015, 26, 170–176. [Google Scholar]
- Sneyers, R. Climate chaotic instability: Statistical determination and theoretical background. Environmetrics 1997, 8, 517–532. [Google Scholar] [CrossRef]
- Zhao, J.; Huang, Q.; Chang, J.; Liu, D.; Huang, S.; Shi, X. Analysis of temporal and spatial trends of hydro-climatic variables in the Wei River Basin. Environ. Res. 2015, 139, 55–64. [Google Scholar] [CrossRef] [PubMed]
- Chowdhury, R.K.; Beecham, S. Australian rainfall trends and their relation to the Southern Oscillation Index. Hydrol. Process. 2010, 24, 504–514. [Google Scholar] [CrossRef]
- Wijngaard, J.B.; Tank, A.K.; Können, G.P. Homogeneity of 20th century european daily temperature and precipitation series. Int. J. Climatol. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- González, M.; Barros, V. The relation between tropical convection in South America and the end of a dry period in Subtropical Argentina. Int. J. Climatol. 1998, 18, 1669–1685. [Google Scholar] [CrossRef]
- Prohaska, F.J. Climates of Central and South America. In World Survey of Climatology; Elsevier Scientific Publishing Company: Amsterdam, The Netherlands, 1976; Volume 12, pp. 57–69. [Google Scholar]
- Nasri, M.; Modarres, R. Dry spell trend analysis of Isfahan Province, Iran. Int. J. Climatol. 2009, 29, 1430–1438. [Google Scholar] [CrossRef] [Green Version]
- Lázaro, R.; Rodrigo, F.S.; Gutiérrez, L.; Domingo, F.; Puigdefábregas, J. Analysis of a 30-year rainfall record (1967–1997) in semi-arid SE Spain for implications on vegetation. J. Arid Environ. 2001, 48, 373–395. [Google Scholar] [CrossRef]
- Buishand, T.A. Some methods for testing the homogeneity of rainfall records. J. Hydrol. 1982, 58, 11–27. [Google Scholar] [CrossRef]
- Soltani, M.; Rousta, I.; Taheri, S.S.M. Using Mann-Kendall and time series techniques for statistical analysis of long-term precipitation in Gorgan Weather Station. World Appl. Sci. J. 2013, 28, 902–908. [Google Scholar]
- Sneyers, R. On the Statistical Analysis of Series of Observations; Tech. Note 143, WMO-No. 415; WMO: Geneva, Switzerland, 1990. [Google Scholar]
- Camargo, M.; Hubbard, K.G. Spatial and temporal variability of daily weather variables in sub-humid and semi-arid areas of the United States high plains. Agric. For. Meteorol. 1999, 93, 141–148. [Google Scholar] [CrossRef]
- Viglizzo, E.F.; Roberto, Z.E.; Filippin, M.C.; Pordomingo, A.J. Climate variability and agroecological change in the Central Pampas of Argentina. Agric. Ecosyst. Environ. 1995, 55, 7–16. [Google Scholar] [CrossRef]
- De la Casa, A.C.; Nasello, O.B. Tendencias parciales de los días de lluvia y la intensidad media anual en la provincia de Córdoba, Argentina. Meteorológica 2012, 37, 67–77. [Google Scholar]
- De la Casa, A.C.; Ovando, G.G. Climate change and its impact on agricultural potential in the central region of Argentina between 1941 and 2010. Agric. For. Meteorol. 2014, 195–196, 1–11. [Google Scholar] [CrossRef]
- De la Casa, A.C.; Ovando, G.G.; Díaz, G.J. Secular variation of rainfall regime in the central region of Argentina. Atmos. Res. 2018, 213, 196–210. [Google Scholar] [CrossRef]
- Jones, J.R.; Schwartz, J.S.; Ellis, K.N.; Hathaway, J.M.; Jawdy, C.M. Temporal variability of precipitation in the Upper Tennessee Valley. J. Hydrol. Reg. Stud. 2015, 3, 125–138. [Google Scholar] [CrossRef]
- Chowdhury, R.K.; Beecham, S.; Boland, J.; Piantadosi, J. Understanding South Australian rainfall trends and step changes. Int. J. Climatol. 2015, 35, 348–360. [Google Scholar] [CrossRef]
- Pérez, S.; Sierra, E.; Momo, F.; Massobrio, M. Changes in Average Annual Precipitation in Argentina’s Pampa Region and Their Possible Causes. Climate 2015, 3, 150–167. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Yonekura, E. Decadal variability in the Southern Hemisphere. J. Geophys. Res. 2011, 116, D19115. [Google Scholar] [CrossRef]
Weather Stations | ||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
BO | LB | MJ | PI | RC | VD | VM | ||||||||
AMDR | INT | AMDR | INT | AMDR | INT | AMDR | INT | AMDR | INT | AMDR | INT | AMDR | INT | |
Mean (mm d−1) | 78.6 | 9.1 | 78.5 | 10.2 | 82.6 | 11.9 | 76.7 | 9.7 | 77.3 | 11.0 | 56.1 | 11.0 | 75.2 | 10.9 |
DE (mm d−1) | 30.5 | 1.7 | 28.5 | 1.8 | 29.3 | 2.3 | 24.0 | 1.8 | 23.7 | 1.6 | 18.0 | 1.6 | 24.6 | 1.7 |
CV (%) | 38.7 | 19.0 | 36.3 | 17.7 | 35.5 | 19.2 | 31.3 | 18.7 | 30.7 | 14.3 | 32.1 | 14.3 | 32.7 | 15.7 |
r | 0.487 * | 0.524 * | 0.569 * | 0.479 * | 0.442 * | 0.518 * | 0.394 * |
Buishand Test | Run Test | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Weather Station | Q | α | R | α | Run | n0 | n1 | n | E(R) | DE(R) | Z | p | α | ||||||
0.1 | 0.05 | 0.01 | 0.1 | 0.05 | 0.01 | 0.1 | 0.05 | 0.01 | |||||||||||
AR | |||||||||||||||||||
BO | 6.1 | no | no | no | 10.2 | no | no | no | 26 | 31 | 22 | 53 | 26.7 | 3.5 | 0.21 | 0.83 | no | no | no |
LB | 7.9 | no | no | no | 10.3 | no | no | no | 24 | 27 | 26 | 53 | 27.5 | 3.6 | 0.97 | 0.33 | no | no | no |
MJ | 7.4 | no | no | no | 9.3 | no | no | no | 24 | 30 | 23 | 53 | 27.0 | 3.5 | 0.86 | 0.39 | no | no | no |
PI | 8.3 | no | no | no | 13.0 | yes | yes | yes | 25 | 32 | 21 | 53 | 26.4 | 3.4 | 0.39 | 0.69 | no | no | no |
RC | 5.6 | no | no | no | 7.9 | no | no | no | 28 | 28 | 25 | 53 | 27.4 | 3.6 | 0.16 | 0.87 | no | no | no |
VD | 10.0 | yes | yes | no | 11.8 | yes | yes | no | 20 | 26 | 27 | 53 | 27.5 | 3.6 | 2.08 | 0.04 | yes | yes | no |
VM | 8.1 | no | no | no | 11.4 | yes | yes | no | 18 | 24 | 29 | 53 | 27.3 | 3.6 | 2.59 | 0.01 | yes | yes | yes |
DPF | |||||||||||||||||||
BO | 10.9 | yes | yes | no | 13.7 | yes | yes | yes | 20 | 26 | 27 | 53 | 27.5 | 3.6 | 2.08 | 0.04 | yes | yes | no |
LB | 4.9 | no | no | no | 9.4 | no | no | no | 18 | 28 | 25 | 53 | 27.4 | 3.6 | 2.62 | 0.01 | yes | yes | yes |
MJ | 6.4 | no | no | no | 11.8 | yes | yes | no | 22 | 28 | 25 | 53 | 27.4 | 3.6 | 1.51 | 0.13 | no | no | no |
PI | 5.9 | no | no | no | 10.5 | yes | no | no | 28 | 25 | 28 | 53 | 27.4 | 3.6 | 0.16 | 0.87 | no | no | no |
RC | 12.9 | yes | yes | yes | 13.4 | yes | yes | yes | 17 | 26 | 27 | 53 | 27.5 | 3.6 | 2.91 | 0.00 | yes | yes | yes |
VD | 5.7 | no | no | no | 10.3 | no | no | no | 22 | 28 | 25 | 53 | 27.4 | 3.6 | 1.51 | 0.13 | no | no | no |
VM | 11.2 | yes | yes | yes | 17.0 | yes | yes | yes | 22 | 26 | 27 | 53 | 27.5 | 3.6 | 1.52 | 0.13 | no | no | no |
INT | |||||||||||||||||||
BO | 10.4 | yes | yes | no | 11.0 | yes | no | no | 28 | 29 | 24 | 53 | 27.3 | 3.6 | 0.21 | 0.84 | no | no | no |
LB | 7.3 | no | no | no | 7.9 | no | no | no | 30 | 29 | 24 | 53 | 27.3 | 3.6 | 0.77 | 0.44 | no | no | no |
MJ | 5.7 | no | no | no | 7.3 | no | no | no | 24 | 30 | 23 | 53 | 27.0 | 3.5 | 0.86 | 0.39 | no | no | no |
PI | 8.2 | no | no | no | 10.9 | yes | no | no | 26 | 28 | 25 | 53 | 27.4 | 3.6 | 0.39 | 0.69 | no | no | no |
RC | 14.1 | yes | yes | yes | 14.1 | yes | yes | yes | 24 | 27 | 26 | 53 | 27.5 | 3.6 | 0.97 | 0.33 | no | no | no |
VD | 10.0 | yes | yes | no | 11.0 | yes | no | no | 25 | 31 | 22 | 53 | 26.7 | 3.5 | 0.50 | 0.62 | no | no | no |
VM | 4.8 | no | no | no | 8.5 | no | no | no | 29 | 28 | 25 | 53 | 27.4 | 3.6 | 0.44 | 0.66 | no | no | no |
AMDR | |||||||||||||||||||
BO | 4.8 | no | no | no | 7.1 | no | no | no | 32 | 32 | 21 | 53 | 26.4 | 3.4 | 1.64 | 0.10 | no | no | no |
LB | 5.6 | no | no | no | 6.2 | no | no | no | 29 | 29 | 24 | 53 | 27.3 | 3.6 | 0.49 | 0.63 | no | no | no |
MJ | 5.4 | no | no | no | 8.7 | no | no | no | 24 | 33 | 20 | 53 | 25.9 | 3.4 | 0.56 | 0.57 | no | no | no |
PI | 7.5 | no | no | no | 11.7 | yes | yes | no | 22 | 28 | 25 | 53 | 27.4 | 3.6 | 1.51 | 0.13 | no | no | no |
RC | 6.9 | no | no | no | 9.7 | no | no | no | 29 | 32 | 21 | 53 | 26.4 | 3.4 | 0.77 | 0.44 | no | no | no |
VD | 7.9 | no | no | no | 8.1 | no | no | no | 27 | 33 | 20 | 53 | 25.9 | 3.4 | 0.32 | 0.75 | no | no | no |
VM | 5.4 | no | no | no | 6.0 | no | no | no | 28 | 33 | 20 | 53 | 25.9 | 3.4 | 0.62 | 0.54 | no | no | no |
ARCV | |||||||||||||||||||
BO | 4.6 | no | no | no | 6.3 | no | no | no | 29 | 28 | 25 | 53 | 27.4 | 3.6 | 0.44 | 0.66 | no | no | no |
LB | 5.5 | no | no | no | 7.6 | no | no | no | 30 | 28 | 25 | 53 | 27.4 | 3.6 | 0.72 | 0.47 | no | no | no |
MJ | 5.2 | no | no | no | 6.6 | no | no | no | 21 | 30 | 23 | 53 | 27.0 | 3.5 | 1.71 | 0.09 | yes | no | no |
PI | 6.4 | no | no | no | 6.5 | no | no | no | 24 | 30 | 23 | 53 | 27.0 | 3.5 | 0.86 | 0.39 | no | no | no |
RC | 7.1 | no | no | no | 7.5 | no | no | no | 30 | 28 | 25 | 53 | 27.4 | 3.6 | 0.72 | 0.47 | no | no | no |
VD | 3.3 | no | no | no | 5.5 | no | no | no | 23 | 28 | 25 | 53 | 27.4 | 3.6 | 1.23 | 0.22 | no | no | no |
VM | 10.2 | yes | yes | no | 10.3 | no | no | no | 24 | 30 | 23 | 53 | 27.0 | 3.5 | 0.86 | 0.39 | no | no | no |
DPFCV | |||||||||||||||||||
BO | 8.5 | yes | no | no | 8.8 | no | no | no | 28 | 25 | 28 | 53 | 27.4 | 3.6 | 0.16 | 0.87 | no | no | no |
LB | 6.8 | no | no | no | 10.8 | yes | no | no | 20 | 30 | 23 | 53 | 27.0 | 3.5 | 1.99 | 0.05 | yes | yes | no |
MJ | 5.5 | no | no | no | 9.1 | no | no | no | 26 | 27 | 26 | 53 | 27.5 | 3.6 | 0.41 | 0.68 | no | no | no |
PI | 5.7 | no | no | no | 6.7 | no | no | no | 24 | 27 | 26 | 53 | 27.5 | 3.6 | 0.97 | 0.33 | no | no | no |
RC | 9.9 | yes | yes | no | 10.0 | no | no | no | 27 | 26 | 27 | 53 | 27.5 | 3.6 | 0.14 | 0.89 | no | no | no |
VD | 4.3 | no | no | no | 7.5 | no | no | no | 28 | 26 | 27 | 53 | 27.5 | 3.6 | 0.14 | 0.89 | no | no | no |
VM | 7.5 | no | no | no | 11.1 | yes | no | no | 28 | 26 | 27 | 53 | 27.5 | 3.6 | 0.14 | 0.89 | no | no | no |
Index | Weather Station | Trend | Homogeneity Tests | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Z | p | SOLS | Q | R | Run Test | Condition | ||||||||
0.1 | 0.05 | 0.01 | 0.1 | 0.05 | 0.01 | 0.1 | 0.05 | 0.01 | ||||||
AR | LB | 1.841 | 0.0328 | 2.76 | no | no | no | no | no | no | no | no | no | H |
AR | VD | 1.312 | 0.0948 | 1.76 | yes | yes | no | yes | yes | no | yes | yes | no | NH |
AR | VM | −1.373 | 0.0849 | −2.35 | no | no | no | yes | yes | no | yes | yes | yes | NH |
DPF | BO | −2.182 | 0.0146 | −0.21 | yes | yes | no | yes | yes | yes | yes | yes | no | NH |
DPF | RC | −3.226 | 0.0006 | −0.31 | yes | yes | yes | yes | yes | yes | yes | yes | yes | NH |
DPF | VM | −1.781 | 0.0375 | −0.19 | yes | yes | yes | yes | yes | yes | no | no | no | NH |
INT | BO | 2.723 | 0.0032 | 0.039 | yes | yes | no | yes | no | no | no | no | no | H |
INT | LB | 1.895 | 0.0291 | 0.026 | no | no | no | no | no | no | no | no | no | H |
INT | RC | 3.521 | 0.0002 | 0.051 | yes | yes | yes | yes | yes | yes | no | no | no | NH |
INT | VD | 1.987 | 0.0235 | 0.028 | yes | yes | no | yes | no | no | no | no | no | H |
AMDR | RC | 1.358 | 0.0872 | 0.216 | no | no | no | no | no | no | no | no | no | H |
AMDR | VD | 1.988 | 0.0234 | 0.275 | yes | no | no | no | no | no | no | no | no | H |
AMDR | VM | −1.481 | 0.0694 | −0.213 | no | no | no | no | no | no | no | no | no | H |
ARCV | PI | 1.634 | 0.0511 | 0.18 | no | no | no | no | no | no | no | no | no | H |
ARCV | RC | 1.404 | 0.0802 | 0.21 | no | no | no | no | no | no | no | no | no | H |
ARCV | VM | 1.895 | 0.0291 | 0.33 | yes | yes | no | no | no | no | no | no | no | H |
DPFCV | BO | 2.293 | 0.0109 | 0.22 | yes | no | no | no | no | no | no | no | no | H |
DPFCV | RC | 2.508 | 0.0061 | 0.27 | yes | yes | no | no | no | no | no | no | no | H |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
De la Casa, A.C.; Ovando, G.G.; Nasello, O.B. Changes in the Intensity and Variability of Precipitation in the Central Region of Argentina between 1960 and 2012. Climate 2018, 6, 66. https://doi.org/10.3390/cli6030066
De la Casa AC, Ovando GG, Nasello OB. Changes in the Intensity and Variability of Precipitation in the Central Region of Argentina between 1960 and 2012. Climate. 2018; 6(3):66. https://doi.org/10.3390/cli6030066
Chicago/Turabian StyleDe la Casa, Antonio C., Gustavo G. Ovando, and Olga B. Nasello. 2018. "Changes in the Intensity and Variability of Precipitation in the Central Region of Argentina between 1960 and 2012" Climate 6, no. 3: 66. https://doi.org/10.3390/cli6030066
APA StyleDe la Casa, A. C., Ovando, G. G., & Nasello, O. B. (2018). Changes in the Intensity and Variability of Precipitation in the Central Region of Argentina between 1960 and 2012. Climate, 6(3), 66. https://doi.org/10.3390/cli6030066