Multihazard Risk Assessment for Planning with Climate in the Dosso Region, Niger
Abstract
:1. Introduction
2. Materials and Methods
2.1. Context
2.1.1. Hazard Trends
2.1.2. Risk Criteria
2.2. Risk Identification
2.2.1. Dataset Identification
2.2.2. Exposed Settlements
2.2.3. Plans and Projects
2.2.4. The Factors that Cause Disasters
2.3. Risk Analysis
- H = probability of occurrence of a rainy day having caused L&D during the 2011–2017 period;
- L&D = loss and damages during the 2011–2017 period;
- P = population according to the 2012 national census [63].
2.4. The Potential Use of the Risk Index and Maps
2.5. Uncertainties
3. Results
3.1. Context
Hazard Trends
3.2. Risk Identification
3.2.1. Dataset Identification
3.2.2. Exposed Settlements
3.2.3. Plans and Projects
3.2.4. Factors that Contribute to Causing Disasters
3.3. Risk Analysis
The Principal Risk, Determinant, and Indicator
3.4. From Single to Multihazard Risk Levels
3.5. The Potential Use of Risk Assessment: Planning with Climate
3.5.1. The Consistency between Actions and the Principal Risk, Determinant, and Indicator
3.5.2. The Consistency between the Budget for Actions and the MHRI Level
3.5.3. The Consistency between the Number of Projects and the MHRI Level
3.5.4. The Consistency between Categories of Actions and the MHRI Level
3.5.5. The Consistency between Actions and Factors that Cause Disasters
3.6. Uncertainties
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References and Notes
- United Nations General Assembly. Sendai Framework for Disaster Risk Reduction 2015–2030; UNISDR: Geneva, Switzerland, 2015; Available online: https://www.unisdr.org/files/43291_sendaiframeworkfordrren.pdf (accessed on 18 March 2018).
- United Nations. The Sustainable Development Goals. 2015. Available online: http://www.un.org/sustainabledevelopment/sustainable-development-goals/ (accessed on 18 March 2018).
- De Moel, H.; Jongman, B.; Kreicich, H.; Merz, B.; Penning-Roswell, E.; Ward, P.J. Flood Risk Assessment at Different Spatial Scales. Mitig. Adapt. Strateg. Glob. 2015, 20, 866–890. [Google Scholar] [CrossRef]
- Murnane, R.; Simpson, A.; Jongman, B. Understanding risk: What makes a risk assessment successful? Int. J. Disaster Resil. Built Environ. 2015, 7, 186–200. [Google Scholar] [CrossRef]
- United Nations Office for Disaster Risk Reduction. Terminology on Disaster Risk Reduction; UNISDR: Geneva, Switzerland, 2009. [Google Scholar]
- Tiepolo, M. Relevance and quality of Climate planning for large and medium-sized cities of the Tropics. In Renewing Local Planning to Face Climate Change in the Tropics; Tiepolo, M., Pezzoli, A., Tarchiani, V., Eds.; Springer: Cham, Switzerland, 2017; pp. 199–226. [Google Scholar]
- Barrantes, G. Multi-hazard model for developing countries. Nat. Hazards 2018, 92, 1081–1095. [Google Scholar] [CrossRef]
- Bernal, G.A.; Salgado-Gálvez, M.A.; Zuloaga, D.; Tristancho, J.; González, D.; Cardona, O.-D. Integration of probabilistic and multi-hazard risk assessment within urban development planning and emergency preparedness and response: Application to Manizales, Colombia. Int. J. Disaster Risk Sci. 2017, 8, 203–270. [Google Scholar] [CrossRef]
- Mulyani, R.; Ahmadi, R.; Pilakoutas, K.; Hajirasouliha, I.; Taufik. A multi-hazard risk assessment of buildings in Padang city. Procedia Eng. 2015, 125, 1094–1100. [Google Scholar] [CrossRef]
- Ponte, E. Flood risk due to heavy rains and rising sea levels rise in the municipality of Maputo. In Climate Change Vulnerability in Southern African Cities. Building Knowledge for Adaptation; Macchi, S., Tiepolo, M., Eds.; Springer: Cham, Switzerland, 2014; pp. 187–204. ISBN 978-3-319-00672-7. [Google Scholar]
- UNDP. Hazard Risk and Vulnerability Analysis (HRVA) of the City of BHUBANESWAR (Odisha); Final Report; UNDP: New York, NY, USA, 2014. [Google Scholar]
- Kaur, H.; Gupta, S.; Parkash, S.; Thapa, R. Application of geospatial technologies for multi-hazard mapping and characterization of risk at local scale. Ann. GIS 2018, 24, 33–46. [Google Scholar] [CrossRef]
- Van Westen, C.J.; Montoya, L.; Boerboom, L. Multi-hazard Risk Assessment Using GIS in Urban Areas: A Case Study for the City of Turrialba, Costa Rica. In Proceedings of the Hazard Mapping and Risk Assessment Regional Workshop, Bali, Indonesia, 24–26 September 2002. [Google Scholar]
- Wannewitz, S.; Hagenlocher, M.; Garschagen, M. Development and validation of a sub-national multi-hazard risk index for the Philippines. GI Forum 2016, 1, 133–140. [Google Scholar] [CrossRef]
- Petrie, B.; Chapman, A.; Midgley, A.; Parker, R. Vulnerability and resilience in the Limpopo river basin system: Climate change, water and biodiversity. A synthesis. Cape Town, One World, 2014; unpublished. [Google Scholar]
- Varazanashvili, O.; Tsereteli, N.; Amiranashvili, A.; Tsereteli, E.; Elizbarashvili, E.; Dolidze, J. Vulnerability, hazards and multiple risk assessment for Georgia. Nat. Hazards 2012, 64, 2012–2056. [Google Scholar] [CrossRef]
- Wipulanusat, W.; Nakrod, S.; Prabnarong, P. Multi-hazard risk assessment using GIS and RS applications: A case study of Pak Phanang basin. Walailak J. Sci. Technol. 2009, 6, 109–125. [Google Scholar]
- Thierry, P.; Stieltjes, L.; Kouokam, E.; Nguéya, P.; Salley, P.M. Multi-hazard risk mapping and assessment on an active volcano: The GRINP project at Mount Cameroon. Nat. Hazards 2008, 45, 429–456. [Google Scholar] [CrossRef]
- Papathoma-Köhle, M.; Promper, C.; Glade, T. A common methodology for risk assessment and mapping of climate change related hazards–implications for climate change adaptation policies. Climate 2016, 4, 8. [Google Scholar] [CrossRef]
- Marzocchi, W.; Garcia-Aristizabal, A.; Gasparini, P.; Mastellone, M.; Di Ruocco, A.; Novelli, P. Basic principles of multi-riskassessment: A case study in Italy. Nat. Hazards 2012, 62, 551–573. [Google Scholar] [CrossRef]
- Grünthal, G.; Thieken, A.; Schwartz, J.; Smolka, A.; Mertz, B. Comparative risk assessment for the city of Cologne-storms, floods, earthquakes. Nat. Hazards 2006, 38, 21–44. [Google Scholar] [CrossRef]
- Greiving, S.; Fleischhauer, M.; Lückenkötter, J. A methodology for an integrated risk assessment of spatially relevant hazards. J. Environ. Plan. Man 2006, 49, 1–19. [Google Scholar] [CrossRef]
- Granger, K.; Jones, T.; Leiba, M.; Scott, G. Community risk in Cairns: A multi-hazard risk assessment. Aust. J. Emerg. Manag. 1999, 14, 29–30. [Google Scholar]
- Niang, I.; Ruppel, O.C.; Abdrobo, M.A.; Essel, A.; Lennard, C.; Padgam, J.; Urguhart, P. Africa. In Climate Change 2014: Impacts, Adaptation, and Vulnerability. Part B: Regional Aspects, Contribution of the WG II to the Fifth Assessment Report of the IPCC; Cambridge University Press: Cambridge, UK, 2014; pp. 1199–1265. Available online: http://www.ipcc.ch/report/ar5/wg2/ (accessed on 18 March 2018).
- Nicholson, S.E. Climatic and environmental change in Africa during the last two centuries. Clim. Res. 2001, 17, 123–144. [Google Scholar] [CrossRef] [Green Version]
- Nicholson, S. On the question of the ‘recovery’ of the rains in the West African Sahel. J. Arid Environ. 2005, 63, 615–641. [Google Scholar] [CrossRef]
- Panthou, G.; Vischela, T.; Lebel, T. Short communication Recent trends in the regime of extreme rainfall in the Central Sahel. Int. J. Climatol. 2014, 34, 3998–4006. [Google Scholar] [CrossRef]
- Tschakert, P.; Sagoe, R.; Ofori-Darko, R.; Codjoe, S. Floods in the Sahel: An analysis of anomalies, memory, and anticipatory learning. Clim. Chang. 2010, 103, 471–502. [Google Scholar] [CrossRef]
- Ceccherini, G.; Russo, S.; Ameztoy, I.; Marchese, A.F.; Carmona-Moreno, C. Heat waves in Africa 1981–2015, observations and reanalysis. Nat. Hazard Earth Syst. 2017, 17, 115–125. [Google Scholar] [CrossRef]
- CRED. EM-DAT: The Emergency Events Database-Universitécatholique de Louvain (UCL). D. Guha-Sapir, Brussels. Available online: www.emdat.be (accessed on 12 March 2018).
- Roudier, P.; Sultan, B.; Quirion, P.; Berg, A. The impact of future climate change on West African crop yields: What does the recent literature say? Glob. Environ. Chang. 2011, 21, 1073–1083. [Google Scholar] [CrossRef] [Green Version]
- OECD. Climate Change: OECD External Development Finance Statistics. Available online: http://www.oecd.org/dac/financing-sustainable-development/development-finance-topics/climate-change. htm (accessed on 1 March 2018).
- Van Niekerk, D. Disaster performance in Africa. A retrospective assessment of progress in against the hyogo framework for action (2000–2012). Disaster Prev. Manag. 2015, 24, 397–426. [Google Scholar] [CrossRef]
- Adelikan, I.; Johnson, C.; Manda, M.; Matyas, D.; Mberu, B.U.; Parnell, S.; Pelling, M.; Satterthwaite, D.; Vivekanada, J. Disaster risk and its reduction: An agenda for urban Africa. Int. Dev. Plan. Rev. 2015, 37, 33–40. [Google Scholar] [CrossRef]
- Plan National de Contingence Multirisques du Togo. Cinquième edition mai 2015-mai 2016. 2015. Available online: http://securite.gouv.tg/sites/default/files/documents/plan_national_de_contingence_version_2015.pdf (accessed on 18 March 2018).
- Direction Nationale de la Protection Civile du Mali. Etude des Inondations au Mali 2006–2013; UNICEF: Geneva, Switzerland, 2014; Available online: http://www.reachresourcecentre.info/system/files/resource-documents/anne.thurin-08052014-024644-REACH_%20Etude%20des%20Inondations%20au%20Mali%202006-2013.pdf (accessed on 18 March 2018).
- Gouvernement du Burkina Faso. Plan National Multi Risque de Preparation et de Reponse aux Catastrophes. Available online: http://www.ifrc.org/docs/IDRL/burkinafasoPlan.pdf (accessed on 18 March 2018).
- R. of N. Plan National de Contingence Multi Risque Niger 2013. SAP/PC. 2013. Available online: http://www.ne.undp.org/content/dam/niger/docs/Publications/UNDP-NE-PLAN-NATIONAL-CONTINGENCE2013.pdf (accessed on 18 March 2018).
- Asare-Kyei, D.; Renaud, F.G.; Kloos, J.; Walz, Y.; Rhyner, J. Development and validation of risk profiles of West African rural communities facing multiple natural hazards. PLoS ONE 2017, 12, e0171921. [Google Scholar] [CrossRef] [PubMed]
- Mayomi, I.; Dami, A.; Maryah, U.M. GIS based assessment of flood risk and vulnerability of communities in the Benoue floodplains, Adamawa State, Nigeria. J. Geogr. Geol. 2013, 4, 148–160. [Google Scholar]
- Natajal, J.; Lamptey, L.B.; Mahamadou, I.B.; Nyarko, B.K. Flood disaster risk mapping in the lower Mono river basin in Togo, West Africa. Int. J. Dis. Risk Res. 2017, 13, 93–103. [Google Scholar] [CrossRef]
- Ekere, O.O.; Udoh, J.O. Multi hazard risk assessment using GIS techniques in the Mbo area of Nigeria. Asian Rev. Environ. Earth Sci. 2014, 1, 1–4. [Google Scholar]
- N’guessan Bi, V.H.; Saley, B.; Wade, S.; Valere, D.E.; Kouame, F.; Affian, K. Cartographie du risque d’inondation par une approche couplée de la télédétection et des systèmes d’information géographiques (SIG) dans le département de Sinfra (Centre-ouest de la Cote d’Ivoire). Eur. Sci. J. 2014, 10, 170–191. [Google Scholar]
- Danumah, J.H.; Odai, S.N.; Saley, B.M.; Szarzynski, J.; Thiel, M.; Kouame, A.; You Akpa, L. Flood risk assessment and mapping in Abidjan district using multi-criteria analysis (AHP) model and geoinformation techniques (Cote d’Ivoire). Geoenviron. Dis. 2016, 3, 10. [Google Scholar] [CrossRef]
- Oriola, E.; Chibuike, C. Flood risk analysis of the Edu government area (Kwara state, Nigeria). Geogr. Environ. Sustain. 2016, 3, 106–116. [Google Scholar] [CrossRef]
- Koudamiloro, O.; Vissin, E.W.; Sintondji, L.O.; Houssou, C.S. Effets Socio-Économiques et Environnementaux des Risques Hydroclimatiques Dans le Bassin Versant du Fleuve Ouémé à L’exutoire de Bétérou au Benin (Afrique de l’Ouest); XXVIIIe Colloque de l’Association Internationale de Climatologie. Liège, Belgium, 2015; pp. 543–548. Available online: www.climato.be/aic/colloques/actes/ACTES_AIC2015/5%20Variabilites%20et%20aleas%20climatiques/088-KOUDAMILORO-543-548.pdf (accessed on 18 March 2018).
- Behanzin, I.D.; Thiel, M.; Szarzynski, J.; Boko, M. GIS-based mapping of flood vulnerability and risk in the Benin Niger river valley. Int. J. Geomat. Geosci. 2015, 6, 1653–1669. [Google Scholar]
- Saley, M.B.; Kouamé, F.K.; Penven, M.J.; Biémi, J.; Boyssoro Kouadio, H. Cartographie des zones à risque d’inondation dans la région semi-montagneuse à l’ouest de la Cote d’Ivoire: Apports des MNA et de l’imagerie satellitaire. Télédétéction 2005, 5, 53–67. [Google Scholar]
- Koumassi, D.H.; Tchibozo, E.; Vissin, E.W.; Houssou, C.S. SIG et télédétection pour l’optimisation de la cartographie des risques d’inondation dans le bassin de la Sota au Bénin. Revue Ivoirienne Science Technologie 2014, 23, 137–152. [Google Scholar]
- Nkeki, F.N.; Henah, P.H.J.; Ojeh, V.N. Geospatial techniques for the assessment and analysis of flood risk along the Niger-Benue basin in Nigeria. J. Geogr. Inf. Syst. 2013, 5, 123–135. [Google Scholar] [CrossRef]
- OduroAmoako, P.Y.; Asanoah, K.A.; Mantey, P.P.; Ametefe, V.W.; Addabor, V.O.; Agbleze, K. Flood and Drought Risk Mapping in Ghana; 5-AAP Pilot Districts; African Adaptation Programme: Accra, Ghana, 2012. [Google Scholar]
- Komi, K.; Amisigo, B.A.; Diekkrϋgger, B. Integrated flood risk assessment of rural communities in the Oti river basin, West Africa. Hydrology 2016, 3, 42. [Google Scholar] [CrossRef]
- Tiepolo, M.; Braccio, S. Flood risk assessment at municipal level in the Tillabéri Region, Niger. In Planning to Cope with Tropical and Subtropical Climate Change; Tiepolo, M., Ponte, E., Cristofori, E., Eds.; De Gruyter Open: Warsaw, Poland; Berlin, Germany, 2016; pp. 221–242. ISBN 978-3-11-048079-5. Available online: https://www.degruyter.com/view/product/473515 (accessed on 18 March 2018).
- Kreft, S.; Eckstein, D.; Melchior, I. Global Climate Risk Index 2017; Germanwatch: Bonn, Germany, 2016. [Google Scholar]
- Kappes, M.S.; Keiler, M.; von Elverfeldt, K.; Glade, T. Challenges of analyzing multi-hazard risk: A review. Nat. Hazards 2012, 64, 1925–1958. [Google Scholar] [CrossRef]
- IEC/ISO-Organisation Internationale de Normalisation. Norme Internationale. Gestion des Risques-Techniques d’évaluation des Risques; ISO: Geneva, Switzerland, 2009; ISBN 2-8318-1068-2. [Google Scholar]
- Ozer, P.; Laminou, O.M.; Tidjani, A.D.; Djaby, B.; De Longueville, F. Evolution récente des extrêmes pluviométriques au Niger (1950–2014). Geogr. Ecol. Trop. 2017, 41, 375–383. [Google Scholar]
- Mach, K.J.; Planton, S.; von Stechow, C. (Eds.) Annex II. Glossary. In Climate Change 2014: Synthesis Report. Contribution of WGI, II and III to the Fifth Assessment Report of the IPCC; IPCC: Geneva, Switzerland, 2014; pp. 117–130. Available online: https://www.ipcc.ch/pdf/assessment-report/ar5/syr/AR5_SYR_FINAL_Glossary.pdf (accessed on 18 March 2018).
- Crichton, D. The risk triangle. In Natural Disaster Management; Ingleton, J., Ed.; Tudor Rose: London, UK, 1999; pp. 102–103. ISBN 0953614018. [Google Scholar]
- Cardona, O.D.; van Aalst, M.K.; Birkmann, J.; Fordham, G.; McGregor, G.; Perez, R.; Pulwarty, R.S.; Schipper, E.L.F.; Sinh, B.I. Determinants of risk: Exposure and vulnerability. In Managing the Risk of Extreme Events and Disastersto Advance Climate Change Adaptation; A Special Report of Working Group I and II of the IPCC; Field, G.B., V. Barros, T.F., Stocker, D., Qin, D.J., David, J.D., Gian-Kasper, P., Kristie, L.E., Michael, D.M., Katharine, J.M., Simon, K.A., et al., Eds.; Cambridge University Press: Cambridge, UK, 2012; pp. 65–108. Available online: http://www.ipcc.ch/report/srex/ (accessed on 18 March 2018).
- Funk, C.C.; Peterson, P.J.; Landsfeld, M.F.; Pedreros, D.H.; Verdin, J.P.; Rowland, J.D.; Romero, B.E.; Husak, G.J.; Michaelsen, J.C.; Verdin, A.P. A Quasi-Global Precipitation Time Series for Drought Monitoring; U.S. Geological Survey Data Series 832; U.S. Geological Survey: Tallahassee, FL, USA, 2014.
- World Meteorological Organization and Global Water Partnership. Flood Mapping; WMO: Geneva, Switzerland, 2013. [Google Scholar]
- R. of Niger. Repertoire Nationale des Localités-ReNaLoc; Institut National de la Statistique: Tunis, Tunisia, 2013. [Google Scholar]
- Gumbel, E.J. Statistical Theory of Extreme-Values and Some Practical Applications; National Bureau of Standards: Applied Mathematics Series; National Bureau of Standards: Washington, DC, USA, 1954.
- Svoboda, M.; Hayes, M.; Wood, D. Standardization Precipitation Index User Guide; World Meteorological Organization: Geneva, Switzerland, 2012. [Google Scholar]
- R. of Niger; Region de Dosso; Commune rurale de Tounouga. Plan de Developpement Communal de la Commune Rurale de Tounouga 2014–2018, 2014; unpublished.
- R. of Niger; Dosso Region; Commune rurale de Tanda. Plan de Développement Communal de la Commune Rurale de Tanda 2015–2019. PDC Acclimaté, 2015; unpublished.
- R. of Niger; Région de Dosso; Commune rurale de Douméga. Plan de Développement de la Commune de Doumega Pour la Periode 2013-2017, 2013; unpublished.
- R. of Niger; Région de Dosso; Commune urbaine de Doutchi. Plan de Développement Communal PDC Replanifié, 2017; unpublished.
- R. of Niger; Région de Dosso; Commune rurale de Falmey. Plan de Développement Communal, 2015; unpublished.
- R. of Niger; Région de Dosso; Commune rurale de Guéchémé. Plan de Développement Communal 2014–2018, 2014; unpublished.
- Eau-Vive. Programme “Doutchi Climat” au Niger. Montreuil. Available online: https://ideas.asso.fr/media/organism/eau-vive/projet/170509-Fiche-Projet-Doutchi-Climat.pdf (accessed on 24 February 2018).
- UNCDF. Local Niger Moves to Phase 2. United Nations Capital Development Fund, 2017. Available online: https://www.local-uncdf.org/news/local-niger-enters-phase-2 (accessed on 24 February 2018).
- Ministère du Plan, de l’Aménagement du Territoire et du Développement Communautaire. PSRC Programme Strategique de Résilience Climatique. Zones D’intervention et Bénéficiaires des Activités du Projet. Available online: http://psrcniger-ppcr.ne/index.php/pacrc/zone-d-intervention-et-beneficiaires (accessed on 24 February 2018).
- Lux Dev. Programme d’Appui au Développement Agricole durable dans la Region de Dosso. Evaluation Finale. 2016. Available online: https://niger.luxdev.lu/en/documents/section/eval (accessed on 24 February 2018).
- R. of Niger, Cabinet du Premier Ministre, CNEDD, FEM, PNUD. Rapport D’évaluation Finale du Projet PANA Resilience. 2014. Available online: www.preventionweb.net/files/RAPPORT%20EVALUATION%20FINALE%2014.doc (accessed on 24 February 2018).
- Alliance Mondiale Contre le Changement Climatique, Commission Européenne. La Résilience Climatique Pour un Développement Agricole Durable au Niger. Available online: http://www.gcca.eu/fr/la-resilience-climatique-pour-un-developpement-agricole/ (accessed on 24 February 2018).
- R. of Niger, Unité de Coordination des Programmes du Millennium Challenge. PASEC-Projet D’appui à L’agriculture Sensible aux Risques Climatiques. Available online: http://ucpmc.ne/programme-compact/volet-co-financement/projet-dappui-a-lagriculture-sensible-aux-risques-climatiques-pasec/ (accessed on 24 February 2018).
- World Bank. Niger Safety Net Project. Implementation Status & Results Report 3 May 2017. Available online: http://projects.worldbank.org/P123399/niger-safety-net-project?lang=en&tab=documents&subTab=projectDocuments (accessed on 24 February 2018).
- World Bank. PGRC-DU Projet de Gestion des Risques de Catastrophes et de Développement Urbain. Available online: https://pgrcdu-niger.org/ (accessed on 24 February 2018).
- Croix-Rouge de Belgique, Nigerienne Irish Red Cross. Evaluation Externe du Projet Renforcement de la Resilience Communautaire Dans la Commune Rurale de Kieché (Dogondoutchi, Niger). Rapport Final. Available online: https://www.croix-rouge.be/content/uploads/sites/11/2017/12/Niger_-R%C3%A9silience-communautaire-2014-2016.pdf (accessed on 24 February 2018).
- Ibimet-CNR. Climate Change Adaptation, Disaster Prevention and Agricultural Development for Flood Security. Available online: https://training.climateservices.it/anadia-niger/ (accessed on 5 March 2018).
- World Bank. Project Appraisal Document on a Proposed Concessional Loan and Proposed Grant from the Pilot Program for Climate Resilience of the Strategic Climate Fund to the Republic of Niger for a Community Action Project for Climate Resilience. 19 December 2011. Available online: http://projects.worldbank.org/P125669/niger-community-action-project-climate-resilience?lang=en (accessed on 5 March 2018).
- Biagini, B.; Bierbaum, R.; Stults, M.; Dobardzic, S.; McNeely, S.M. A typology of adaptation actions: A global look at climate action financed through the Global Environmental Facility. Glob. Environ. Chang. 2014, 25, 97–108. [Google Scholar] [CrossRef]
- Desinventar. Available online: https://www.desinventar.net/DesInventar/main.jsp (accessed on 3 March 2018).
- Munich RE. NarCatService-Natural Catastrophe Know-How for Risk Management and Research. 2011. Available online: https://www.munichre.com/en/reinsurance/business/non-life/natcatservice/index.html (accessed on 12 March 2018).
- R. of Niger. Enquête Conjointe sur la Vulnerabilité à L’insecurité Alimentaire des Menages au Niger (Décembre 2015–Janvier 2016); Institut National de Statistique-Niger and Système d’Alerte Precoce et Prevention des Catastrophes: Niamey, Niger, 2016. [Google Scholar]
- R. of Niger, Ministère Interieur, DGPC. Situation inondations (à la date du 30 Septembre 2017).
- R. of Niger, CC/SAP. Situation des dégats causes par les inondations. 2011-16.
- R. of Niger, Direction régionale de l’agriculture. 2011-16. Liste des villages déficitaires à 50% et plus de la Région de Dosso campagne hivernale 2011-17.
- Descroix, L.; Guichard, F.; Grippa, M.; Lambert, L.A.; Panthou, G.; Mahé, G.; Gal, L.; Dardel, C.; Quantin, G.; Kergoat, L.; et al. Evolution of surface hydrology in the Sahelo-sudanian strip: An updated review. Water 2018, 10, 748. [Google Scholar] [CrossRef]
- Adeloye, A.J.; Mwale, F.D.; Dulanya, Z. A metric-based assessment of flood risk and vulnerability of rural communities in the lower Shire valley, Malawi. PIAHS 2015, 370, 139–145. [Google Scholar] [CrossRef]
- Fiorillo, E.; Crisci, A.; Issa, H.; Maracchi, G.; Morabito, M.; Tarchiani, V. Recent changes of floods and related impacts in Niger based on the ANADIA Niger flood database. Climate 2018, 6, 59. [Google Scholar] [CrossRef]
- Ingram, K.T.; Roncoli, M.C.; Krishen, P.H. Opportunities and constraints for farmers of West Africa to use seasonal precipitation forecasts with Burkina Faso as a case study. Agric. Syst. 2002, 74, 331–349. [Google Scholar] [CrossRef]
- Conway, D.; Schipper, L.F. Adaptation to climate change in Africa: Challenges and opportunities identified from Ethiopia. Glob. Environ. Change 2017, 21, 227–237. [Google Scholar] [CrossRef]
- Gemenne, F.; Blocher, J.; De Longueville, F.; Vigil Diaz Telenti, S.; Zickgraf, C.; Gharbaoui, D.; Ozer, P. Changement climatique, catastrophes naturelles et mobilité humaine en Afrique de l’Ouest. Geo-Eco-Trop 2017, 41, 317–337. [Google Scholar]
Region | Country ISO | Area Km2 | Determinants of Risk * | Hazard | Technique | Reference |
---|---|---|---|---|---|---|
Dassari ** | BEN | HV | Flood/drought | Risk Index | [39] | |
Dano ** | BFA | HV | Flood/drought | Risk Index | [39] | |
Vea ** | GHA | HV | Flood/drought | Risk Index | [39] | |
Adamaua state | NIG | - | V | Flood | Spatial analysis | [40] |
Mono river basin | TOG | 406 | HEVA | Flood | Risk Index | [41] |
Mbo | NIG | 700 | HV | Flood/erosion | Spatial analysis | [42] |
Sinfra department | CDI | 1600 | HV | 2 Floods | Spatial analysis | [43] |
Abidjan district | CDI | 2119 | HV | Flood | Spatial analysis | [44] |
Edu local government | NIG | 2542 | E | Flood | Spatial analysis | [45] |
Ouémé basin | BEN | - | H | Flood | SPI | [46] |
Benin Niger basin | BEN | 9118 | HEV | Flood | Spatial analysis | [47] |
Man area | CDI | 12,100 | HV | Flood | Spatial analysis | [48] |
Sota basin | BEN | 13,410 | HV | Flood | Multicriteria | [49] |
Niger-Benoué basin | NIG | 13,702 | E | Flood | Spatial analysis | [50] |
5 districts | GHA | 14,600 | HV | Flood/drought | Risk Index | [51] |
Oti river basin | BEN | 58,670 | HEVA | Flood | Risk Index | [52] |
Tillabéri | NER | 97,250 | HEV | Flood | Risk Index | [53] |
Settlements | Pluvial Flood | Fluvial Flood | Drought | Multihazard |
---|---|---|---|---|
Number | 277 | 36 | 1135 | 121 |
% of regional settlements | 6 | 1 | 24 | 2 |
Population number | 345,859 | 32,167 | 987,842 | 235,826 |
% of regional population | 17 | 2 | 48 | 12 |
Hazard | Impact | Disaster Factors |
---|---|---|
Pluvial flood | Houses collapse | Lack of elevated threshold at house entrance |
Lack of corrugated iron roof | ||
Lack of plaster | ||
Reduced access to water | Unraised basement of wells and fountains | |
Environmental pollution | Unraised latrines | |
Fluvial flood | Loss of livestock, agricultural tools | Lack of early warning |
Fluvial and pluvial flood | Houses collapse | Lack of unraised basement |
Drought | Crop loss | Lack of rain gauge Lack of drought-resistant cultivars Lack of water and soil conservation |
Municipality | Pluvialflood | Fluvialflood | Drought | Multihazard | ||||||
---|---|---|---|---|---|---|---|---|---|---|
H | D | R | H | D | R | H | D | R | R | |
1 Bana | 0.1 | 22.8 | 0.91 | 0.8 | 2.4 | 2.0 | 2.9 | |||
2 Bengou | 1 | 45.2 | 45.17 | 0.8 | 0 | 0 | 45.2 | |||
3 Birni N’Gaoure | 1 | 1.4 | 1.41 | 0.8 | 0.4 | 0.3 | 1.7 | |||
4 Dan Kassari | 1 | 0.6 | 0.64 | 0.8 | 1.1 | 0.9 | 1.6 | |||
5 Dioudiou | 1 | 1.0 | 0.97 | 0.5 | 0.2 | 0.1 | 1.1 | |||
6 Dogon Kiria | 0.99 | 0 | 0.03 | 0.7 | 0.8 | 0.5 | 0.6 | |||
7 Dogondoutchi | 1 | 3.4 | 3.37 | 0.5 | 0.7 | 0.4 | 3.8 | |||
8 Dosso | 1 | 0 | 0 | 0.7 | 0.2 | 0.1 | 0.1 | |||
9 Doumega | 1 | 4.1 | 4.05 | 0.5 | 9.2 | 4.6 | 8.6 | |||
10 Fabidji | 0.1 | 4.8 | 0.48 | 0.7 | 1.9 | 1.3 | 1.7 | |||
11 Fakara | 0.02 | 0 | 0 | 0.8 | 1.7 | 1.4 | 1.4 | |||
12 Falmey | 1 | 2.1 | 2.14 | 0.3 | 2.7 | 0.9 | 0.8 | 0.3 | 0.2 | 3.3 |
13 Falwel | 1 | 0.8 | 0.78 | 0.7 | 1.6 | 1.0 | 1.8 | |||
14 Farrey | 1 | 0 | 0 | 0.7 | 0.5 | 0.3 | 0.3 | |||
15 Garankedey | 0.93 | 1.1 | 1.04 | 0.7 | 1.7 | 1.1 | 2.2 | |||
16 Gaya | 1 | 3.0 | 3.03 | 0.3 | 18.4 | 6.1 | 0.8 | 0.1 | 0.1 | 9.2 |
17 Golle | 1 | 0.1 | 0.14 | 0.7 | 0.4 | 0.2 | 0.4 | |||
18 GoroubanKassam | 1 | 0 | 0 | 0.7 | 0.9 | 0.6 | 0.6 | |||
19 Guéchémé | 1 | 5.1 | 5.07 | 0.5 | 1.3 | 0.6 | 5.7 | |||
20 Guilladjé | 1 | 9.0 | 8.98 | 0.7 | 0.4 | 0.3 | 9.3 | |||
21 Harikanassou | 1 | 0 | 0.02 | 0.8 | 1.9 | 1.5 | 1.6 | |||
22 Kankandi | 0.33 | 1.2 | 0.41 | 0.0 | 0.3 | 0 | 0.4 | |||
23 KaraKara | 1 | 0.8 | 0.83 | 0.7 | 1.7 | 1.2 | 2.0 | |||
24 KarguiBangou | 1 | 6.8 | 6.84 | 0.7 | 0.9 | 0.6 | 7.5 | |||
25 Kieché | 1 | 2.8 | 2.8 | 0.8 | 0.7 | 0.5 | 3.4 | |||
26 Kiota | 1 | 1.6 | 1,59 | 0.8 | 1.7 | 1.4 | 3.0 | |||
27 Kore Mairoua | 1 | 1.4 | 1.43 | 0.7 | 1.6 | 1.0 | 2.2 | |||
28 Koygolo | 1 | 0.5 | 0.48 | 0.5 | 1.0 | 0.5 | 2.5 | |||
29 Loga | 1 | 0 | 0 | 0.5 | 1.0 | 0.5 | 0.5 | |||
30 Matankari | 1 | 3.0 | 2.98 | 0.5 | 0.8 | 0.4 | 3.4 | |||
31 Mokko | 1 | 0 | 0 | 0.8 | 1.4 | 1.2 | 1.2 | |||
32 N’Gonga | 0.9 | 1.0 | 0.92 | 0.8 | 0.4 | 0.3 | 1.2 | |||
33 Sambera | 1 | 1.6 | 1.55 | 0.5 | 7.8 | 3.8 | 0.5 | 0.10 | 0.1 | 5.4 |
34 Sokorbé | 1 | 0 | 0 | 0.7 | 0 | 0 | 0 | |||
35 Soucoucoutane | 1 | 1.3 | 1.33 | 0.7 | 0.9 | 0.6 | 2.0 | |||
36 Tanda | 1 | 5.0 | 4.97 | 0.3 | 69.3 | 22.9 | 0.7 | 0.2 | 0.1 | 28.0 |
37 Tessa | 1 | 2.0 | 1.96 | 0.7 | 1.1 | 0.8 | 2.7 | |||
38 Tibiri | 1 | 1.0 | 1.01 | 0.7 | 0.7 | 0.5 | 1.5 | |||
39 TomboKoarey I | 1 | 1.0 | 1.03 | 0.7 | 1.5 | 1.0 | 2.1 | |||
40 TK II-Sakadamna | 0.1 | 0 | 0 | 0.7 | 0.7 | 0.5 | 0.5 | |||
41 Tounouga | 1 | 21.5 | 21.51 | 0.7 | 20.4 | 13.7 | 0.8 | 0.5 | 0.5 | 35.6 |
42 Yelou | 1 | 4.4 | 4.36 | 0.8 | 0.5 | 0.5 | 4.8 | |||
43 Zabori | 1 | 0 | 0 | 0.7 | 1.3 | 0.9 | 0.9 |
Municipality | ||||||
---|---|---|---|---|---|---|
Tounouga | Tanda | Douméga | Guéchémé | Dogondoutchi | Falmey | |
Hazard * | PF | PF | DF | F | F | F |
MHRI | 36 | 28 | 9 | 6 | 4 | 3 |
Actions: | ||||||
Training | 1 | |||||
OSV-SCAPRU | 29 | 1 | ||||
WSC | 58 | 550 | 545 | 507 | ||
Treeplanting | 75 | 81 | 8 | 4 | ||
Stoves | 18 | |||||
Culverts | 64 | |||||
Creeks | 190 | |||||
Drainage | 28 | |||||
Weir | 319 | |||||
Latrines | 49 | |||||
Seeds | 4 | |||||
Gardens | 86 | 120 | 214 | 23 | ||
Imputbank | 11 | 28 | 26 | 8 | ||
Cerealbank | 11 | 47 | 73 | 19 |
Municipality | MHRI | Climate Risk, Adaptation or Resilience Projects | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
ANADIA ANADIA | PARC-DAD | DC | GOMNI | PGRC DU | PFSS | CAP CR | LoCal | PADAD | RRC | PANA R | FLEUVE | ||
41 Tounouga | 35.6 | ● | ● | ||||||||||
16 Gaya | 9.2 | ● | |||||||||||
9 Doumega | 8.6 | ||||||||||||
24 KarguiBangou | 7.5 | ● | |||||||||||
19 Guéchémé | 5.7 | ● | ● | ||||||||||
7 Dogondoutchi | 3.8 | ● | ● | ● | |||||||||
25 Kieché | 3.4 | ● | ● | ● | ● | ||||||||
30 Matankari | 3.4 | ● | |||||||||||
12 Falmey | 3.3 | ● | ● | ||||||||||
37 Tessa | 2.7 | ● | |||||||||||
15 Garankedey | 2.2 | ● | |||||||||||
35 Soucoucoutane | 2.0 | ● | ● | ||||||||||
13 Falwel | 1.8 | ● | ● | ||||||||||
3 Birni N’Gaoure | 1.7 | ● | |||||||||||
4 Dan Kassari | 1.6 | ● | |||||||||||
38 Tibiri | 1.5 | ● | |||||||||||
28 Koygolo | 1.0 | ● | |||||||||||
6 Dogon Kiria | 0.6 | ● | ● | ● | |||||||||
29 Loga | 0.5 | ● | ● | ● | ● | ||||||||
17 Gollé | 0.4 | ● | |||||||||||
14 Farrey | 0.3 | ● | |||||||||||
8 Dosso | 0.1 | ● | ● | ||||||||||
34 Sokorbé | 0 | ● | ● | ● |
Municipality | MHRI | Category | ||||||
---|---|---|---|---|---|---|---|---|
A | B | C | D | E | F | G | ||
41 Tounouga | 35.6 | 2 | 1 | 1 | 1 | |||
16 Gaya | 9.2 | 1 | 1 | 1 | ||||
24 KarguiBangou | 7.5 | 1 | 5 | 2 | ||||
19 Guéchémé | 5.7 | 2 | 1 | 1 | 1 | |||
7 Dogondoutchi | 3.8 | 3 | 2 | 4 | 2 | 1 | ||
25 Kieché | 3.4 | 1 | 5 | 3 | 1 | 6 | 1 | 1 |
30 Matankari | 3.4 | 2 | 2 | 2 | 2 | 1 | ||
12 Falmey | 3.3 | 2 | 1 | 1 | 1 | |||
37 Tessa | 2.7 | 1 | 1 | 3 | 1 | 2 | 1 | |
15 Garankedey | 2.2 | 1 | ||||||
39 TomboKoarey I | 2.1 | 1 | 2 | 2 | ||||
35 Soucoucoutane | 2.0 | 2 | 2 | 2 | 2 | 1 | ||
13 Falwel | 1.8 | 1 | 1 | 4 | ||||
31 Mokko | 1.7 | 1 | 2 | 2 | ||||
4 Dan Kassari | 1.6 | 1 | 2 | 2 | 2 | 1 | ||
38 Tibiri | 1.5 | 1 | 1 | |||||
28 Koygolo | 1.0 | 1 | ||||||
3 Birni N’Gaoure | 0.9 | 1 | ||||||
6 Dogon Kiria | 0.6 | 2 | 2 | 4 | 2 | 1 | 1 | |
29 Loga | 0.5 | 2 | 1 | 6 | 3 | 1 | ||
40 TK II-Sakadamna | 0.5 | 1 | 5 | 2 | ||||
17 Gollé | 0.4 | 1 | ||||||
14 Farrey | 0.3 | 1 | ||||||
8 Dosso | 0.1 | 1 | 1 | |||||
34 Sokorbé | 0 | 1 | 1 | 3 | ||||
Sum | 21 | 27 | 54 | 5 | 32 | 6 | 9 |
Hazard | Municipalities Provided with a Weather Station Having 30 Years of Rain Registrations | Settlements Providing the Amount of Population | Settlements Providing the Quantity and Type of Loss and Damage |
---|---|---|---|
% | % | % | |
Pluvial flood | 47 | 74 | 74 |
Fluvial flood | - | 99 | 99 |
Meteorological drought | 47 | 89 | 89 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Tiepolo, M.; Bacci, M.; Braccio, S. Multihazard Risk Assessment for Planning with Climate in the Dosso Region, Niger. Climate 2018, 6, 67. https://doi.org/10.3390/cli6030067
Tiepolo M, Bacci M, Braccio S. Multihazard Risk Assessment for Planning with Climate in the Dosso Region, Niger. Climate. 2018; 6(3):67. https://doi.org/10.3390/cli6030067
Chicago/Turabian StyleTiepolo, Maurizio, Maurizio Bacci, and Sarah Braccio. 2018. "Multihazard Risk Assessment for Planning with Climate in the Dosso Region, Niger" Climate 6, no. 3: 67. https://doi.org/10.3390/cli6030067
APA StyleTiepolo, M., Bacci, M., & Braccio, S. (2018). Multihazard Risk Assessment for Planning with Climate in the Dosso Region, Niger. Climate, 6(3), 67. https://doi.org/10.3390/cli6030067