The Value of Tactical Adaptation to El Niño–Southern Oscillation for East Australian Wheat
Abstract
:1. Introduction
2. Materials and Methods
2.1. Climatic Data
2.2. Crop Simulations and Gross Margins
2.3. Fixed and Tactical Adaptation Options
3. Results and Discussion
3.1. SOI Impacts on Seasonal Temperature and Rainfall
3.2. ENSO Impacts the Frequency of Occurrence of Frost and Heat Events around Flowering
3.3. Variations in Yield across SOI Phases
3.4. Optimising Genotype and Management across All Years Results in Consistent Yield Improvement and Higher Gross Margins
3.5. Benefits of Tactical Compared to Fixed Adaptation Vary with the Location, the Soil Pre-Sowing Conditions and the SOI Forecast
3.6. Should Eastern Australian Wheat Producers Adapt Their Decisions Based on SOI Phases?
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Hammer, G.L.; Holzworth, D.P.; Stone, R. The value of skill in seasonal climate forecasting to wheat crop management in a region with high climatic variability. Aust. J. Agric. Res. 1996, 47, 717–737. [Google Scholar] [CrossRef]
- Chapman, S.C.; Chakraborty, S.; Dreccer, M.F.; Howden, S.M. Plant adaptation to climate change? Opportunities and priorities in breeding. Crop Pasture Sci. 2012, 63, 251–268. [Google Scholar] [CrossRef]
- Potgieter, A.B.; Hammer, G.L.; Butler, D. Spatial and temporal patterns in Australian wheat yield and their relationship with ENSO. Aust. J. Agric. Res. 2002, 53, 77–89. [Google Scholar] [CrossRef]
- Meinke, H.; de Voil, P.; Hammer, G.L.; Power, S.; Allan, R.; Stone, R.C.; Folland, C.; Potgieter, A. Rainfall Variability at Decadal and Longer Time Scales: Signal or Noise? J. Clim. 2005, 18, 89–96. [Google Scholar] [CrossRef] [Green Version]
- Yates, D.; Vervoort, R.W.; Minasny, B.; McBratney, A. The history of using rainfall data to improve production in the grain industry in Australia—From Goyder to ENSO. Crop Pasture Sci. 2016, 67, 467–479. [Google Scholar] [CrossRef]
- Chenu, K.; Cooper, M.; Hammer, G.L.; Mathews, K.L.; Dreccer, M.F.; Chapman, S.C. Environment characterization as an aid to wheat improvement: Interpreting genotype–environment interactions by modelling water-deficit patterns in North-Eastern Australia. J. Exp. Bot. 2011, 62, 1743–1755. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.Y.; Chenu, K.; Dreccer, M.F.; Chapman, S.C. Breeding for the future: What are the potential impacts of future frost and heat events on sowing and flowering time requirements for Australian bread wheat (Triticum aestivum) varieties? Glob. Chang. Biol. 2012, 18, 2899–2914. [Google Scholar] [CrossRef] [PubMed]
- Nicholls, N.; Baek, H.J.; Gosai, A.; Chambers, L.E.; Choi, Y.; Collins, D.; Della-Marta, P.M.; Griffiths, G.M.; Haylock, M.R.; Iga, N.; et al. The El Niño–Southern Oscillation and daily temperature extremes in East Asia and the west Pacific. Geophys. Res. Lett. 2005, 32, L16714. [Google Scholar] [CrossRef]
- Chambers, L.E.; Griffiths, G.M. The changing nature of temperature extremes in Australia and New Zealand. Aust. Meteorol. Mag. 2008, 57, 13–35. [Google Scholar]
- Lobell, D.B.; Hammer, G.L.; Chenu, K.; Zheng, B.; McLean, G.; Chapman, S.C. The shifting influence of drought and heat stress for crops in Northeast Australia. Glob. Chang. Biol. 2015, 21, 4115–4127. [Google Scholar] [CrossRef] [PubMed]
- Frederiks, T.M.; Christopher, J.T.; Harvey, G.L.; Sutherland, M.W.; Borrell, A.K. Current and emerging screening methods to identify post-head-emergence frost adaptation in wheat and barley. J. Exp. Bot. 2012, 63, 5405–5416. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Zheng, B.; Chapman, S.C.; Christopher, J.T.; Frederiks, T.M.; Chenu, K. Frost trends and their estimated impact on yield in the Australian wheatbelt. J. Exp. Bot. 2015, 66, 3611–3623. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Crimp, S.J.; Zheng, B.; Khimashia, N.; Gobbett, D.L.; Chapman, S.; Howden, M.; Nicholls, N. Recent changes in southern Australian frost occurrence: Implications for wheat production risk. Crop Pasture Sci. 2016, 67, 801–811. [Google Scholar] [CrossRef]
- Timmermann, A.; Oberhuber, J.; Bacher, A.; Esch, M.; Latif, M.; Roeckner, E. Increased El Nino frequency in a climate model forced by future greenhouse warming. Nature 1999, 398, 694–697. [Google Scholar] [CrossRef]
- Cai, W.; Wang, G.; Santoso, A.; McPhaden, M.J.; Wu, L.; Jin, F.-F.; Timmermann, A.; Collins, M.; Vecchi, G.; Lengaigne, M.; et al. Increased frequency of extreme La Nina events under greenhouse warming. Nat. Clim. Chang. 2015, 5, 132–137. [Google Scholar] [CrossRef]
- McPhaden, M.J.; Zebiak, S.E.; Glantz, M.H. ENSO as an Integrating Concept in Earth Science. Science 2006, 314, 1740–1745. [Google Scholar] [CrossRef] [PubMed]
- Ashok, K.; Yamagata, T. Climate change: The El Nino with a difference. Nature 2009, 461, 481–484. [Google Scholar] [CrossRef] [PubMed]
- Stone, R.; Hammer, G.L.; Marcussen, T. Prediction of global rainfall probabilities using phases of the Southern Oscillation Index. Nature 1996, 384, 252–255. [Google Scholar] [CrossRef]
- Hammer, G.L.; McLean, G.; Chapman, S.; Zheng, B.; Doherty, A.; Harrison, M.T.; van Oosterom, E.; Jordan, D. Crop design for specific adaptation in variable dryland production environments. Crop Pasture Sci. 2014, 65, 614–626. [Google Scholar]
- Stone, R.; Nicholls, N.; Hammer, G. Frost in Northeast Australia: Trends and influences of phases of the Southern Oscillation. J. Clim. 1996, 9, 1896–1909. [Google Scholar] [CrossRef]
- Woli, P.; Ortiz, B.V.; Johnson, J.; Hoogenboom, G. El Niño–Southern Oscillation Effects on winter wheat in the southeastern United States. Agron. J. 2015, 107, 2193. [Google Scholar] [CrossRef]
- Chenu, K.; Deihimfard, R.; Chapman, S.C. Large-scale characterization of drought pattern: A continent-wide modelling approach applied to the Australian wheatbelt—Spatial and temporal trends. New Phytol. 2013, 198, 801–820. [Google Scholar] [CrossRef] [PubMed]
- Dennett, M.D. Effects of sowing date and the determination of optimum sowing date. In Wheat: Ecology and Physiology of Yield Determination; Satorre, E.H., Slafer, G.H., Eds.; Food Products Press: Binghamton, NY, USA, 1999; pp. 123–140. [Google Scholar]
- Pook, M.; Lisson, S.; Risbey, J.; Ummenhofer, C.C.; McIntosh, P.; Rebbeck, M. The autumn break for cropping in southeast Australia: Trends, synoptic influences and impacts on wheat yield. Int. J. Climatol. 2009, 29, 2012–2026. [Google Scholar] [CrossRef]
- Flohr, B.M.; Hunt, J.R.; Kirkegaard, J.A.; Evans, J.R. Water and temperature stress define the optimal flowering period for wheat in south-eastern Australia. Field Crops Res. 2017, 209, 108–119. [Google Scholar] [CrossRef]
- Chenu, K.; Porter, J.R.; Martre, P.; Basso, B.; Chapman, S.C.; Ewert, F.; Bindi, M.; Asseng, S. Contribution of Crop Models to Adaptation in Wheat. Trends Plant Sci. 2017, 22, 472–490. [Google Scholar] [CrossRef] [PubMed]
- Holzworth, D.P.; Huth, N.; de Voil, P.G.; Zurcher, E.J.; Herrmann, N.I.; McLean, G.; Chenu, K.; Van Oosterom, E.; Murphy, C.; Moore, A.D.; et al. APSIM—Evolution towards a new generation of agricultural systems simulation. Environ. Model. Softw. 2014, 62, 327–350. [Google Scholar] [CrossRef]
- Zheng, B.Y.; Biddulph, B.; Li, D.; Kuchel, H.; Chapman, S.C. Quantification of the effects of VRN1 and Ppd-D1 to predict spring wheat (Triticum aestivum) heading time across diverse environments. J. Exp. Bot. 2013, 64, 3747–3761. [Google Scholar] [CrossRef] [PubMed]
- Jeffrey, S.J.; Carter, J.O.; Moodie, K.B.; Beswick, A.R. Using spatial interpolation to construct a comprehensive archive of Australian climate data. Environ. Model. Softw. 2001, 16, 309–330. [Google Scholar] [CrossRef]
- Zheng, B.; Chenu, K.; Doherty, A.; Chapman, S. The APSIM-Wheat Module (7.5 R3008); Agricultural Production Systems Simulator (APSIM) Initiative: Toowoomba, Australian, 2014. [Google Scholar]
- Christopher, J.T.; Christopher, M.J.; Borrell, A.K.; Fletcher, S.; Chenu, K. Stay-green traits to improve wheat adaptation in well-watered and water-limited environments. J. Exp. Bot. 2016, 67, 5159–5172. [Google Scholar] [CrossRef] [PubMed]
- Zheng, B.; Holland, E.; Chapman, S.C. A standardized workflow to utilise a grid-computing system through advanced message queuing protocols. Environ. Model. Softw. 2016, 84, 304–310. [Google Scholar] [CrossRef]
- Australian Bureau of Agricultural and Resource Economics (ABARE). Australian Commodity Statistics 2016; ABARE: Canberra, Australia, 2016.
- Stone, R.; Auliciems, A. SOI phase relationships with rainfall in eastern Australia. Int. J. Climatol. 1992, 12, 625–636. [Google Scholar] [CrossRef]
- Alexander, B.; Hayman, P. Can we use forecasts of El Nino and La Nina for frost management in the Eastern and Southern grains belt? In Proceedings of the 14th Agronomy Conference, Adelaide, Australia, 21–25 September 2008. [Google Scholar]
- Potgieter, A.B.; Hammer, G.L.; Meinke, H.; Stone, R.C.; Goddard, L. Three putative types of El Niño revealed by spatial variability in impact on Australian wheat yield. J. Clim. 2005, 18, 1566–1574. [Google Scholar] [CrossRef]
- Rimmington, G.M.; Nicholls, N. Forecasting wheat yields in Australia with the Southern Oscillation Index. Crop Pasture Sci. 1993, 44, 625–632. [Google Scholar] [CrossRef]
- Anwar, M.R.; Rodriguez, D.; Liu, D.L.; Power, S.; O’Leary, G.J. Quality and potential utility of ENSO-based forecasts of spring rainfall and wheat yield in south-eastern Australia. Crop Pasture Sci. 2008, 59, 112–126. [Google Scholar] [CrossRef]
- Hayman, P.T.; Whitbread, A.M.; Gobbett, D.L. The impact of El Niño Southern Oscillation on seasonal drought in the southern Australian grainbelt. Crop Pasture Sci. 2010, 61, 528–539. [Google Scholar] [CrossRef]
- Marshall, G.R.; Parton, K.A.; Hammer, G.L. Risk attitude, planting conditions and the value of seasonal forecasts to a dryland wheat grower. Aust. J. Agric. Econ. 1996, 40, 211–233. [Google Scholar] [CrossRef]
- Zhao, M.; Hendon, H.H. Representation and prediction of the Indian Ocean dipole in the POAMA seasonal forecast model. Q. J. R. Meteorol. Soc. 2009, 135, 337–352. [Google Scholar] [CrossRef] [Green Version]
- Marshall, A.G.; Hudson, D.; Hendon, H.H.; Pook, M.J.; Alves, O.; Wheeler, M.C. Simulation and prediction of blocking in the Australian region and its influence on intra-seasonal rainfall in POAMA-2. Clim. Dyn. 2014, 42, 3271–3288. [Google Scholar] [CrossRef]
- Hudson, D.; Marshall, A.G.; Yin, Y.; Alves, O.; Hendon, H.H. Improving intraseasonal prediction with a new ensemble generation strategy. Mon. Weather Rev. 2013, 141, 4429–4449. [Google Scholar] [CrossRef]
- Asseng, S.; McIntosh, P.C.; Wang, G.; Khimashia, N. Optimal N fertiliser management based on a seasonal forecast. Eur. J. Agron. 2012, 38, 66–73. [Google Scholar] [CrossRef]
- Hayman, P.; Cooper, B.; Parton, K.; Alves, O.; Yong, G.; Henry, H.; Scheer, C. Can advances in climate forecasts improve the productive and environmental outcomes from nitrogen fertiliser on wheat? A case study using POAMA for topdressing wheat in South Australia. In Proceedings of the 17th Australian Agronomy Conference, Hobart, Tasmania, 20–24 September 2015; Australian Society of Agronomy: Hobart, Australia, 2015. [Google Scholar]
- Rodriguez, D.; de Voil, P.; Hudson, D.; Brown, J.N.; Hayman, P.; Marrou, H.; Meinke, H. Predicting optimum crop designs using crop models and seasonal climate forecasts. Sci. Rep. 2018, 8, 2231. [Google Scholar] [CrossRef] [PubMed]
- Power, S.; Casey, T.; Folland, C.; Colman, A.; Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 1999, 15, 319–324. [Google Scholar] [CrossRef]
- Chapman, S.C.; Cooper, M.; Hammer, G.L. Using crop simulation to generate genotype by environment interaction effects for sorghum in water-limited environments. Aust. J. Agric. Res. 2002, 53, 379–389. [Google Scholar] [CrossRef]
- Chenu, K. Characterizing the crop environment—Nature, significance and applications. In Crop Physiology. Applications for Genetic Improvement and Agronomy; Sadras, V.O., Calderini, D., Eds.; Academic Press: London, UK, 2015; pp. 321–348. ISBN 978-0-12-417104-6. [Google Scholar]
Region | Location | Lat. | Long. | Nitrogen (kg ha−1) | Minimum PAW at Sowing (mm) |
---|---|---|---|---|---|
Central Queensland | Emerald | −23.53 | 148.16 | 30-50-0-0 | 80 |
Eastern Darling Downs | Dalby | −27.18 | 151.26 | 30-130-0-0 | 80 |
Eastern NSW | Gunnedah | −30.98 | 150.25 | 50-70-60 *-0 | 80 |
Wellington | −32.80 | 148.80 | 50-50-50 †-0 | 50 | |
Northern NSW | Moree | −29.48 | 149.84 | 30-80-0-0 | 80 |
Walgett | −30.04 | 148.12 | 30-80-0-0 | 80 | |
Narrabri | −30.32 | 149.78 | 30-130-0-0 | 80 | |
Coonamble | −30.98 | 148.38 | 50-70-60 †-0 | 50 | |
Southern West Queensland | Roma | −26.57 | 148.79 | 30-50-0-0 | 80 |
Western Darling Downs | Meandarra | −27.32 | 149.88 | 30-80-0-0 | 80 |
Goondiwindi | −28.55 | 150.31 | 30-80-0-0 | 80 | |
Western NSW | Nyngan | −31.55 | 147.2 | 50-60-60 †-0 | 80 |
Gilgandra | −31.71 | 148.66 | 50-50-50 †-0 | 50 | |
Dubbo | −32.24 | 148.61 | 50-50-50 †-0 | 50 | |
Condobolin | −33.07 | 147.23 | 50-60-60 †-0 | 80 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zheng, B.; Chapman, S.; Chenu, K. The Value of Tactical Adaptation to El Niño–Southern Oscillation for East Australian Wheat. Climate 2018, 6, 77. https://doi.org/10.3390/cli6030077
Zheng B, Chapman S, Chenu K. The Value of Tactical Adaptation to El Niño–Southern Oscillation for East Australian Wheat. Climate. 2018; 6(3):77. https://doi.org/10.3390/cli6030077
Chicago/Turabian StyleZheng, Bangyou, Scott Chapman, and Karine Chenu. 2018. "The Value of Tactical Adaptation to El Niño–Southern Oscillation for East Australian Wheat" Climate 6, no. 3: 77. https://doi.org/10.3390/cli6030077
APA StyleZheng, B., Chapman, S., & Chenu, K. (2018). The Value of Tactical Adaptation to El Niño–Southern Oscillation for East Australian Wheat. Climate, 6(3), 77. https://doi.org/10.3390/cli6030077