Temporal and Spatial Variability in Surface Air Temperature and Diurnal Temperature Range in Spain over the Period 1950–2011
Abstract
:1. Introduction
2. Material and Methods
2.1. Place
2.2. Instrumentation
2.3. Data
2.4. Method: Temperature Anomalies and Data Homogeneity Testing
2.5. Theil-Sen Trend Estimator
2.6. The Mann-Kendall Non-Parametric Trend Test of Significance
2.7. Diurnal Temperature Range Analysis
3. Results
3.1. Temperature Long-term Trends (1950–2011)
3.2. Seasonal and Annual Temperature and DTR Trends (1950–2011)
4. Discussion
4.1. DTR Trends in Rural Stations
4.2. Causes of DTR Decreases
5. Conclusions
Author Contributions
Funding
Conflicts of Interest
References
- IPCC. Climate Change 2013: The Physical Science Basis; Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; 1535p. [Google Scholar] [CrossRef]
- McMichael, A.J.; Campbell-Lendrum, D.H.; Corvalán, C.F.; Ebi, K.L.; Githeko, A.K.; Scheraga, J.D.; Woodward, A. Climate Change and Human Health: Risks and Responses; World Health Organization: Geneva, Switzerland, 2003; ISBN 92-4-1-56248-X. [Google Scholar]
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet. Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Jha, M.K.; Mekonnen, A.; Schimmel, K.A. Subseasonal climate variability for North Carolina, United States. Atmos. Res. 2014, 145, 69–79. [Google Scholar] [CrossRef]
- Brunet, M.; Saladié, O.; Jones, P.D.; Sigró, J.; Moberg, A.; Aguilar, E.; Walther, A.; Lister, D.; López, D. The development of a new daily adjusted temperature dataset for Spain (1850–2003). Int. J. Climatol. 2006, 26, 1777–1802. [Google Scholar] [CrossRef]
- Brunet, M.; Jones, P.D.; Sigro, J.; Saladie, O.; Aguilar, E.; Moberg, A.; Della-Marta, P.M.; Lister, D.; Walther, A.; López, D. Temporal and spatial temperature variability and change over Spain during 1850–2005. J. Geophys. Res. 2007, 112, D12117. [Google Scholar] [CrossRef]
- Esteban-Parra, M.J.; Rodrigo, J.S.; Castro-Diez, Y. Temperature trends and change points in the Northern Spanish Plateau during the last 100 years. Int. J. Climatol. 1995, 15, 1031–1042. [Google Scholar] [CrossRef]
- Homar, V.; Ramis, C.; Romero, R.; Alonso, S. Recent trends in temperature and precipitation over the Balearic Islands (Spain). Clim. Chang. 2010, 98, 199–211. [Google Scholar] [CrossRef]
- Martín, J.L.; Bethencourt, J.; Cuevas-Agulló, E. Assessment of global warming on the island of Tenerife, Canary Islands (Spain). Trends in minimum, maximum and mean temperatures since 1944. Clim. Chang. 2012, 114, 343–355. [Google Scholar] [CrossRef]
- Del Río, S.; Herrero, L.; Pinto-Comes, C.; Penas, A. Spatial analysis of mean temperature trends in Spain over the period 1961–2006. Glob. Planet. Chang. 2011, 78, 65–75. [Google Scholar] [CrossRef] [Green Version]
- Del Río, S.; Cano-Ortiz, A.; Herrero, L.; Penas, A. Recent trends in mean maximum and minimum air temperatures over Spain (1961–2006). Theor. Appl. Climatol. 2012, 109, 605–626. [Google Scholar] [CrossRef] [Green Version]
- Rodriguez-Puebla, C.; García-Casado, L.A.; Frías, M.D.; Sáenz, J.; Zubillaga, J. Trend and interannual variations in air temperature over Iberian Peninsula. In Proceedings of the 13th Symposium on Global Change and Climate Variations, Orlando, FL, USA, 13–17 January 2002; American Meteorological Society: Boston, FL, USA, 2001; pp. 106–108. [Google Scholar]
- Kadioglu, M. Trends in Surface temperature data over Turkey. Int. J. Climatol. 1997, 17, 511–520. [Google Scholar] [CrossRef]
- Galdies, C. Temperature trends in Malta (central Mediterranean) from 1951 to 2010. Meteorol. Atmos. Phys. 2012, 117, 135–143. [Google Scholar] [CrossRef]
- Sayemuzzaman, M.; Mekonnena, A.; Jha, M.K. Diurnal temperature range trend over North Carolina and the associated mechanisms. Atmos. Res. 2015, 160, 99–108. [Google Scholar] [CrossRef]
- Ventura, F.; Rossi Pisa, P.; Ardizzoni, E. Temperature and precipitation trends in Bologna (Italy) from 1952 to 1999. Atmos. Res. 2002, 61, 203–214. [Google Scholar] [CrossRef]
- El Kenawy, A.; López-Moreno, J.I.; Stepanekc, P.; Vicente-Serrano, S.M. An assessment of the role of homogenization protocol in the performance of daily temperature series and trends: Application to northeastern Spain. Int. J. Climatol. 2013, 33, 87–108. [Google Scholar] [CrossRef]
- Bilbao, J.; Román, R.; De Miguel, A. Global ultraviolet solar irradiation and meteorological variable trends in Spain. In Current Trends in Energy and Sustainability; Gómez-Calvet, R., Martínez-Duart, J.M., Eds.; Real Sociedad Española de Física: Madrid, Spain, 2015; pp. 205–222. ISBN 978-84-608-5438-8. [Google Scholar]
- De Miguel, A.; Mateos, D.; Bilbao, J.; Román, R. Sensitivity analysis of the ratio between ultraviolet and total short wave solar radiation to cloudiness, ozone, aerosols and precipitable water. Atmos Res. 2011, 101, 136–144. [Google Scholar] [CrossRef]
- Román, R. Reconstrucción y Análisis de la Radiación Ultravioleta Eritemática en la Península Ibérica Desde 1950. Ph.D. Thesis, University of Valladolid, Valladolid, Spain, 2014. [Google Scholar]
- WMO (World Meteorological Organization). Guide to Meteorological Instruments and Methods of Observation, 7th ed.; WMO Publication 8; WMO: Geneva, Switzerland, 2008. [Google Scholar]
- Román, R.; Bilbao, J.; De Miguel, A. Reconstruction of six decades of daily total solar shortwave irradiation in the Iberian Peninsula using sunshine duration records. Atmos. Environ. 2014, 99, 41–50. [Google Scholar] [CrossRef]
- Bilbao, J.; De Miguel, A.; Ayuso, A.; Franco, J.A. Iso-radiation maps for tilted surfaces in the Castile and Leon region, Spain. Energy Convers. Manag. 2003, 44, 1575–1588. [Google Scholar] [CrossRef]
- Miguel, A.; Bilbao, J.; Román, R.; Mateos, D. Measurements and attenuation of erythemal radiation in Central Spain. Int. J. Climatol. 2003, 32, 929–940. [Google Scholar] [CrossRef]
- Román, R.; Antón, M.; Valenzuela, A.; Gil, J.E.; Lyamani, H.; De Miguel, A.; Olmo, F.J.; Bilbao, J.; Alados-Arboledas, L. Evaluation of the desert dust effects on global, direct and diffuse spectral ultraviolet irradiance. Tellus B 2013, 65, 19578. [Google Scholar] [CrossRef]
- Sánchez-Lorenzo, A.; Brunetti, M.; Calbó, J.; Martin-Vide, J. Recent spatial and temporal variability and trends of sunshine duration over the Iberian Peninsula from a homogenized data set. J. Geophys. Res. Atmos. 2007, 112, D20115. [Google Scholar] [CrossRef]
- Gocic, M.; Trajkovic, S. Analysis of changes in meteorological variables using Mann-Kendall and Sen’s slope estimator statistical tests in Serbia. Glob. Planet. Chang. 2013, 100, 172–182. [Google Scholar] [CrossRef]
- Román, R.; Bilbao, J.; De Miguel, A. Erythemal ultraviolet irradiation trends in the Iberian Peninsula from 1950 to 2011. Atmos. Chem. Phys. 2015, 15, 375–391. [Google Scholar] [CrossRef] [Green Version]
- Wijngaard, J.B.; Klein-Tank, A.M.G.; Können, G.P. Homogeneity of 20th century European daily temperature and precipitation series. Int. J. Climatol. 2003, 23, 679–692. [Google Scholar] [CrossRef]
- Hakuba, M.Z.; Sánchez-Lorenzo, A.; Folini, D.; Wild, M. Testing the homogeneity of short-term surface solar radiation series in Europe. AIP Conf. Proc. 2013, 1531, 700–703. [Google Scholar]
- Wild, M. Enlightening global dimming and brightening. Bull. Am. Meteorol. Soc. 2012, 93, 27–37. [Google Scholar] [CrossRef]
- Alexandersson, H.; Moberg, A. Homogenization of Swedish temperature data. Part I: Homogeneity test for linear trends. Int. J. Climatol. 1997, 17, 25–34. [Google Scholar] [CrossRef]
- Sánchez-Lorenzo, A.; Wild, M.; Trentmann, J. Validation and stability assessment of the monthly mean CM SAF surface solar radiation dataset over Europe against a homogenized surface dataset (1983–2005). Remote Sens. Environ. 2013, 134, 355–366. [Google Scholar] [CrossRef]
- Sneyers, R. On the Statistical Analysis of Series of Observations; WMO Technical Note 143, WMO No. 415, TP-103; World Meteorological Organization: Geneva, Switzerland, 1990; p. 192. [Google Scholar]
- Gilbert, R.O. Statistical Methods for Environmental Pollution Monitoring; Van Nostrand Company: Hoboken, NJ, USA, 1987; 320p. [Google Scholar]
- Espadafor, M.; Lorite, I.J.; Gavilán, P.; Berengena, J. An analysis of the tendency of reference evapotranspiration estimates and other climate variables during the last 45 years in Southern Spain. Agric. Water Manag. 2011, 98, 1045–1061. [Google Scholar] [CrossRef]
- Mann, H.B. Non-parametric tests against trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Measures; Charles Griffin: London, UK, 1975. [Google Scholar]
- Fernández-Montes, S.; Rodrigo, F.S. Trends in surface air temperatures, precipitation and combined indices in the southeastern Iberian Peninsula (1970−2007). Clim. Res. 2015, 63, 43–60. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, C.; Peng, Y.; Zhou, H. Diurnal temperature range variation and its causes in a semiarid region from 1957 to 2006. Int. J. Climatol. 2014, 34, 343–354. [Google Scholar] [CrossRef]
- IPCC. IPCC Fourth Assessment Reports (AR4): Working Group I Report: Climate Change 2007, the Physical Basis (WMO/UNEP) Report; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Makowski, K.; Wild, M.; Ohmura, A. Diurnal temperature range over Europe between 1950 and 2005. Atmos. Chem. Phys. 2008, 8, 6483–6498. [Google Scholar] [CrossRef] [Green Version]
- Vose, R.S.; Easterling, D.R.; Gleason, B. Maximum and minimum temperature trends for the globe: An update through 2004. Geophys. Res. Lett. 2005, 32, L23822. [Google Scholar] [CrossRef]
- Acero, F.J.; Garcia, J.A.; Gallego, M.C.; Parey, S.; Dacunha-Castelle, D. Trends in summer extreme temperatures over the Iberian Peninsula using nonurban station data. J. Geophys. Res. Atmos. 2014, 119, 39–53. [Google Scholar] [CrossRef] [Green Version]
- Zhou, L.; Dai, A.; Dai, Y.; Vos, R.S.; Zou, C.H.; Tian, Y.; Chen, H. Spatial dependence of diurnal temperature range trends on precipitation from 1950 to 2004. Clim. Dyn. 2009, 32, 429–440. [Google Scholar] [CrossRef]
Latitude (°N) | Longitude (°) | Altitude (m) | Type | |
---|---|---|---|---|
Ciudad Real | 38.99 | 3.92 W | 628 | Urban |
San Sebastián (Igueldo) | 43.31 | 2.04 W | 251 | Rural |
A Coruña | 43.37 | 8.42 W | 58 | Rural |
Madrid (Ciudad Universitaria) | 40.45 | 3.72 W | 664 | Urban |
Cáceres | 39.47 | 6.34 W | 394 | Urban |
Murcia | 38.00 | 1.17 W | 61 | Urban |
Tortosa | 40.82 | 0.49 E | 44 | Urban |
Valladolid | 41.65 | 4.77 W | 735 | Urban |
Villalba de los Alcores | 41.81 | 4.93 W | 848 | Rural |
•Santiago de Compostela | 42.89 | 8.41 W | 346 | Rural |
•Zaragoza (airport) | 41.66 | 1.01 W | 370 | Rural |
•Granada (air base) | 37.14 | 3.63 W | 690 | Rural |
Annual | Spring | Summer | Autumn | Winter | |
---|---|---|---|---|---|
Tmax | 0.26 ± 0.04 | 0.26 ± 0.07 | 0.36 ± 0.06 | 0.20 ± 0.06 | 0.22 ± 0.06 |
Tmin | 0.17 ± 0.03 | 0.17 ± 0.05 | 0.24 ± 0.04 | 0.13 ± 0.05 | 0.14 ± 0.06 |
Tmean | 0.22 ± 0.03 | 0.21 ± 0.06 | 0.30 ± 0.05 | 0.17 ± 0.06 | 0.18 ± 0.06 |
DTR | 0.09 ± 0.02 | 0.09 ± 0.03 | 0.13 ± 0.02 | 0.06 ± 0.03 | 0.07 ± 0.03 |
Area | Spring | Summer | Autumn | Winter |
---|---|---|---|---|
Centre | 0.16 ± 0.06 | 0.25 ± 0.05 | 0.15 ± 0.08 | 0.17 ± 0.06 |
Atlantic | 0.00 ± 0.00 | −0.01 ± 0.01 | −0.01 ± 0.00 | 0.01 ± 0.01 |
Mediterranean | −0.29 ± 0.04 | −0.20 ± 0.07 | −0.11 ± 0.06 | −0.22 ± 0.06 |
*Villalba | 0.13 ± 0.04 | 0.23 ± 0.06 | 0.06 ± 0.03 | 0.13 ± 0.06 |
*Granada (air base) | 0.07 ± 0.05 | −0.06 ± 0.05 | 0.03 ± 0.04 | 0.22 ± 0.09 |
*Santiago de Compostela | 0.10 ± 0.04 | −0.07 ± 0.04 | 0.01 ± 0.01 | 0.01 ± 0.01 |
*Zaragoza (Airport) | 0.00 ± 0.01 | 0.07 ± 0.03 | −0.08 ± 0.04 | 0.02 ± 0.02 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilbao, J.; Román, R.; De Miguel, A. Temporal and Spatial Variability in Surface Air Temperature and Diurnal Temperature Range in Spain over the Period 1950–2011. Climate 2019, 7, 16. https://doi.org/10.3390/cli7010016
Bilbao J, Román R, De Miguel A. Temporal and Spatial Variability in Surface Air Temperature and Diurnal Temperature Range in Spain over the Period 1950–2011. Climate. 2019; 7(1):16. https://doi.org/10.3390/cli7010016
Chicago/Turabian StyleBilbao, Julia, Roberto Román, and Argimiro De Miguel. 2019. "Temporal and Spatial Variability in Surface Air Temperature and Diurnal Temperature Range in Spain over the Period 1950–2011" Climate 7, no. 1: 16. https://doi.org/10.3390/cli7010016
APA StyleBilbao, J., Román, R., & De Miguel, A. (2019). Temporal and Spatial Variability in Surface Air Temperature and Diurnal Temperature Range in Spain over the Period 1950–2011. Climate, 7(1), 16. https://doi.org/10.3390/cli7010016