A Climatology of Atmospheric Patterns Associated with Red River Valley Blizzards
Abstract
:1. Introduction
2. Materials and Methods
2.1. Composite Analysis
2.2. Objective Classification Using a SOM
3. Results and Discussion
3.1. General Characteristics
3.2. Composite Analysis
3.3. Objective Classification of Patterns Using a SOM
3.4. Discussion and Future Work
4. Summary
- Over the past 39 years, 100 documented blizzards were reported in Storm Data, resulting in an average of 2.6 blizzards per year. This dataset strongly correlates with an unofficial record of societally impactful events named by the Grand Forks Herald, a local newspaper.
- RRV blizzards occur between October and April and have a distinct bimodal distribution of occurrence, with 58% of the events occurring from December 15th to February 15th. After a lull in late February, a separate (weaker) maxima occurs in March.
- The Grand Forks NWSFO has subjectively classified blizzard patterns into four classes: Alberta Clippers, Arctic Fronts, Colorado Lows, and Hybrids. Composite patterns resemble the expected meteorological patterns with variations in the intensity, position, and progressiveness of the mid-latitude cyclone and upper-level trough. Hybrids appear as lows that have tracks in-between the Alberta Clipper and Colorado Low systems.
- Patterns have seasonal variability, with most early/late season blizzards caused by Colorado and Hybrid Lows. Alberta Clippers and Arctic Fronts are more common in the middle of the winter with peak occurrence of these latter patterns in January–February.
- A relatively simple eight-class (4 × 2) SOM can reproduce the general characteristics of the composite patterns. A transition in patterns is seen from Colorado Lows → Hybrids → Alberta Clippers → Arctic Fronts. This results in reasonable separation of subjectively identified events and good agreement in the seasonality of these patterns. This adds confidence to the subjective classification of patterns.
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Year | Month | Day | Midpoint Hour in NARR (UTC) | Type | Grand Forks Herald Name (1989–2018) |
---|---|---|---|---|---|
2018 | 1 | 11 | 0 | Front | Betsy |
2017 | 12 | 4 | 21 | Colorado | Axl |
2017 | 3 | 7 | 6 | Hybrid | |
2017 | 1 | 12 | 18 | Front | Carrie |
2016 | 12 | 26 | 15 | Colorado | Blitzen |
2016 | 12 | 7 | 12 | Hybrid | Alvin |
2016 | 11 | 18 | 12 | Colorado | |
2016 | 2 | 8 | 9 | Clipper | |
2015 | 1 | 8 | 21 | Clipper | Beryl |
2015 | 1 | 3 | 12 | Clipper | Andrew |
2014 | 3 | 31 | 21 | Colorado | Gigi |
2014 | 3 | 21 | 15 | Front | |
2014 | 3 | 6 | 0 | Ground | |
2014 | 2 | 26 | 21 | Front | |
2014 | 2 | 13 | 12 | Clipper | Fred |
2014 | 1 | 26 | 18 | Clipper | Era Bell |
2014 | 1 | 22 | 12 | Front | Dillon |
2014 | 1 | 16 | 12 | Front | Corene |
2014 | 1 | 4 | 6 | Clipper | Bubba |
2013 | 12 | 28 | 21 | Front | Anita |
2013 | 3 | 18 | 9 | Hybrid | Fiona |
2013 | 2 | 18 | 21 | Hybrid | Dolley |
2013 | 2 | 11 | 3 | Colorado | Cooper |
2013 | 1 | 19 | 18 | Front | Beth |
2013 | 1 | 12 | 3 | Colorado | Aaron |
2011 | 3 | 12 | 6 | Clipper | Estra |
2011 | 1 | 1 | 9 | Colorado | Dave |
2010 | 12 | 30 | 21 | Colorado | Casey |
2010 | 10 | 27 | 9 | Hybrid | Adeline |
2010 | 1 | 25 | 18 | Clipper | Brett |
2009 | 12 | 26 | 3 | Colorado | Alvin |
2009 | 3 | 10 | 21 | Colorado | Coyote |
2009 | 1 | 12 | 15 | Clipper | Barack |
2008 | 12 | 14 | 15 | Colorado | |
2008 | 2 | 9 | 18 | Front | |
2007 | 3 | 3 | 0 | Hybrid | |
2006 | 1 | 24 | 15 | Front | |
2005 | 11 | 16 | 3 | Clipper | York |
2005 | 10 | 6 | 3 | Hybrid | Zach |
2005 | 1 | 22 | 6 | Clipper | Ann |
2004 | 2 | 11 | 18 | Clipper | |
2003 | 2 | 11 | 18 | Front | Arlys |
2001 | 12 | 23 | 0 | Colorado | Bonnie |
2001 | 10 | 25 | 0 | Hybrid | Al |
2001 | 2 | 25 | 12 | Colorado | Dale |
2000 | 12 | 21 | 3 | Clipper | Carol |
2000 | 12 | 16 | 15 | Hybrid | Bill |
2000 | 3 | 9 | 3 | Colorado | |
1999 | 12 | 19 | 18 | Clipper | |
1999 | 4 | 1 | 18 | Colorado | |
1999 | 3 | 17 | 18 | Hybrid | |
1999 | 2 | 12 | 12 | Front | |
1998 | 12 | 18 | 21 | Clipper | |
1998 | 11 | 10 | 21 | Colorado | Alex |
1998 | 3 | 13 | 18 | Front | Aurora |
1997 | 4 | 6 | 12 | Colorado | Hannah |
1997 | 3 | 4 | 9 | Colorado | Gust |
1997 | 1 | 22 | 12 | Hybrid | Franzi |
1997 | 1 | 15 | 21 | Front | Elmo |
1997 | 1 | 10 | 9 | Clipper | Doris |
1997 | 1 | 5 | 9 | Colorado | |
1996 | 12 | 31 | 21 | Valley | |
1996 | 12 | 21 | 12 | Front | Christopher |
1996 | 12 | 18 | 0 | Clipper | Betty |
1996 | 11 | 17 | 9 | Colorado | Andy |
1996 | 3 | 25 | 0 | Colorado | Erin |
1996 | 2 | 27 | 21 | Hybrid | Darrel |
1996 | 2 | 10 | 21 | Clipper | |
1996 | 1 | 18 | 12 | Hybrid | Bruno |
1995 | 12 | 9 | 0 | Hybrid | Anna |
1995 | 2 | 10 | 6 | Clipper | |
1994 | 4 | 26 | 15 | Colorado | |
1993 | 12 | 22 | 0 | Clipper | |
1992 | 12 | 25 | 6 | Front | |
1991 | 12 | 14 | 3 | Hybrid | Dagmar |
1990 | 1 | 11 | 12 | Clipper | Arnie |
1989 | 2 | 1 | 6 | Front | |
1989 | 1 | 7 | 21 | Hybrid | |
1988 | 3 | 12 | 3 | Colorado | |
1988 | 2 | 14 | 15 | Clipper | |
1988 | 1 | 24 | 21 | Hybrid | |
1988 | 1 | 12 | 15 | Hybrid | |
1987 | 12 | 31 | 3 | Colorado | |
1986 | 4 | 15 | 3 | Colorado | |
1985 | 11 | 19 | 3 | Hybrid | |
1985 | 3 | 4 | 6 | Colorado | |
1985 | 1 | 25 | 0 | Front | |
1984 | 12 | 16 | 18 | Colorado | |
1984 | 3 | 10 | 15 | Front | |
1984 | 2 | 5 | 6 | Front | |
1983 | 12 | 25 | 0 | Hybrid | |
1983 | 12 | 15 | 9 | Hybrid | |
1983 | 3 | 8 | 21 | Colorado | |
1982 | 4 | 3 | 12 | Colorado | |
1982 | 3 | 8 | 15 | Hybrid | |
1982 | 1 | 23 | 15 | Colorado | |
1982 | 1 | 10 | 18 | Hybrid | |
1981 | 2 | 1 | 12 | Colorado | |
1980 | 1 | 11 | 15 | Hybrid | |
1980 | 1 | 7 | 3 | Hybrid |
References
- Schwartz, R.M.; Schmidlin, T.W. Climatology of Blizzards in the Conterminous United States, 1959–2000. J. Clim. 2002, 15, 1765–1772. [Google Scholar] [CrossRef]
- Coleman, J.S.; Schwartz, R.M. An Updated Blizzard Climatology of the Contiguous United States (1959–2014): An Examination of Spatiotemporal Trends. J. Appl. Meteorol. Climatol. 2017, 56, 173–187. [Google Scholar] [CrossRef]
- Doswell, C.A.; Moller, A.R.; Brooks, H.E. Storm spotting and public awareness since the first tornado forecasts of 1948. Weather Forecast. 1999, 14, 544–557. [Google Scholar] [CrossRef]
- Ray, P.S.; Bieringer, P.; Niu, X.; Whissel, B. An improved estimate of tornado occurrence in the central plains of the United States. Mon. Weather Rev. 2003, 131, 1026–1031. [Google Scholar] [CrossRef]
- Anderson, C.J.; Wikle, C.K.; Zhou, Q. Population influences on tornado reports in the United States. Weather Forecast. 2007, 22, 571–579. [Google Scholar] [CrossRef]
- Elsner, J.B.; Michaels, L.E.; Scheitlin, K.N.; Elsner, I.J. The Decreasing Population Bias in Tornado Reports across the Central Plains. Weather Clim. Soc. 2013, 5, 221–232. [Google Scholar] [CrossRef]
- Allen, J.T.; Tippett, M.K. The characteristics of United States hail reports: 1955–2014. Electron. J. Sev. Storms Meteorol. 2015, 10, 1–31. [Google Scholar]
- Weiss, S.J.; Hart, J.A.; Janish, P.R. An examination of severe thunderstorm wind report climatology: 1970–1999. In Proceedings of the 21st Conference Severe Local Storms, San Antonio, TX, USA, 11–16 August 2002; pp. 446–449. [Google Scholar]
- Teller, J.T. Proglacial lakes and the southern margin of the Laurentide Ice Sheet. In North America and Adjacent Oceans during the Last Deglaciation; Ruddiman, W.F., Wright, H.E., Jr., Eds.; Geological Society of America: Boulder, CO, USA, 1987; pp. 39–69. [Google Scholar]
- Climate Data Online (CDO). Available online: https://www.ncdc.noaa.gov/cdo-web/ (accessed on 10 December 2018).
- Kluver, D.; Mote, T.; Leathers, D.; Henderson, G.R.; Chan, W.; Robinson, D.A. Creation and Validation of a Comprehensive 1° by 1° Daily Gridded North American Dataset for 1900–2009: Snowfall. J. Atmos. Ocean. Technol. 2016, 33, 857–871. [Google Scholar] [CrossRef]
- Estilow, T.W.; Young, A.H.; Robinson, D.A. A long-term Northern Hemisphere snow cover extent data record for climate studies and monitoring. Earth Syst. Sci. Data 2015, 7, 137–142. [Google Scholar] [CrossRef] [Green Version]
- Newton, C.W. Mechanisms of circulation change in a lee cyclogenesis. J. Meteorol. 1956, 13, 528–539. [Google Scholar] [CrossRef]
- Reitan, C.H. Frequencies of cyclones and cyclogenesis for North America, 1951–1970. Mon. Weather Rev. 1974, 102, 861–868. [Google Scholar] [CrossRef]
- Zishka, K.M.; Smith, P.J. The climatology of cyclones and anticyclones over North America and surrounding ocean environs for January and July, 1950–77. Mon. Weather Rev. 1980, 108, 387–401. [Google Scholar] [CrossRef]
- Stewart, R.E.; Bachand, D.; Dunkley, R.R.; Giles, A.C.; Lawson, B.; Legal, L.; Miller, S.T.; Murphy, B.P.; Parker, M.N.; Paruk, B.J.; et al. Winter storms over Canada. Atmos.-Ocean 1995, 33, 223–247. [Google Scholar] [CrossRef] [Green Version]
- Hoskins, B.J.; Hodges, K.I. New perspectives on the Northern Hemisphere winter storm tracks. J. Atmos. Sci. 2002, 59, 1041–1061. [Google Scholar] [CrossRef]
- Laskin, D. The Children’s Blizzard, 3rd ed.; HarperCollins: New York, NY, USA, 2005; p. 336. [Google Scholar]
- Thomas, B.C.; Martin, J.E. A Synoptic Climatology and Composite Analysis of the Alberta Clipper. Weather Forecast. 2007, 22, 315–333. [Google Scholar] [CrossRef]
- Schultz, D.M.; Doswell, C.A. Analyzing and Forecasting Rocky Mountain Lee Cyclogenesis Often Associated with Strong Winds. Weather Forecast. 2000, 15, 152–173. [Google Scholar] [CrossRef] [Green Version]
- Kapela, A.F.; Leftwich, P.W.; Van Ess, R. Forecasting the impacts of strong wintertime post-cold front winds in the northern plains. Weather Forecast. 1995, 10, 229–244. [Google Scholar] [CrossRef]
- Mellor, M. Blowing Snow; US CRREL Monogr: Hanover, NH, USA, 1965; p. 79. [Google Scholar]
- Li, L.; Pomeroy, J.W. Probability of occurrence of blowing snow. J. Geophys. Res. 1997, 102, 21955–21964. [Google Scholar] [CrossRef] [Green Version]
- Mesinger, F.; DiMego, G.; Kalnay, E.; Mitchell, K.; Shafran, P.C.; Ebisuzaki, W.; Jović, D.; Woollen, J.; Rogers, E.; Berbery, E.H.; et al. North American regional reanalysis. Bull. Am. Meteorol. Soc. 2006, 87, 343–360. [Google Scholar] [CrossRef]
- Pielke, R., Sr.; Nielsen-Gammon, J.; Davey, C.; Angel, J.; Bliss, O.; Doesken, N.; Cai, M.; Fall, S.; Niyogi, D.; Gallo, K.; et al. Documentation of uncertainties and biases associated with surface temperature measurement sites and for climate change assessment. Bull. Am. Meteorol. Soc. 2007, 88, 913–928. [Google Scholar] [CrossRef]
- Choi, W.; Kim, S.J.; Rasmussen, P.F.; Moore, A.R. Use of the North American Regional Reanalysis for hydrological modelling in Manitoba. Can. Water Resour. J. 2009, 34, 17–36. [Google Scholar] [CrossRef]
- Kim, S.J. Evaluation of surface climate data from the North American Regional Reanalysis for Hydrological Applications in Central Canada. Ph.D. Thesis, University of Manitoba, Winnipeg, Canada, 2012. [Google Scholar]
- King, A.T.; Kennedy, A.D. North American Supercell Environments in Atmospheric Reanalyses and RUC-2. J. Appl. Meteorol. Climatol. 2019, 58, 71–92. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Kohonen, T.; Hynninen, J.; Kangas, J.; Laaksonen, J. SOM_PAK: The self-organizing map program package. Espoo Helsinki Univ. Technol. Lab. Comput. Inf. Sci. 1996, 1, 39–40. [Google Scholar]
- MacQueen, J. Others some methods for classification and analysis of multivariate observations. In Proceedings of the Fifth Berkeley Symposium on Mathematical Statistics and Probability; University of California Press: Oakland, CA, USA, 1967; Volume 1, pp. 281–297. [Google Scholar]
- Hewitson, B.C.; Crane, R.G. Self-organizing maps: Applications to synoptic climatology. Clim. Res. 2002, 22, 13–26. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H.; Mooers, C.N.K. Performance evaluation of the self-organizing map for feature extraction. J. Geophys. Res. 2006, 111, C05018. [Google Scholar] [CrossRef]
- Reusch, D.B.; Alley, R.B.; Hewitson, B.C. North Atlantic climate variability from a self-organizing map perspective. J. Geophys. Res. 2007, 112, DO2104. [Google Scholar] [CrossRef]
- Sheridan, S.C.; Lee, C.C. The self-organizing map in synoptic climatological research. Prog. Phys. Geogr. 2011, 35, 109–119. [Google Scholar] [CrossRef]
- Liu, Y.; Weisberg, R.H. A Review of Self-Organizing Map Applications in Meteorology and Oceanography. In Self-Organizing Maps: Applications and Novel Algorithm Design; Mwasiagi, J.I., Ed.; InTech: Rijeka, Croatia, 2011; pp. 253–272. [Google Scholar]
- Kennedy, A.D.; Dong, X.; Xi, B. Cloud fraction at the ARM SGP site: reducing uncertainty with self-organizing maps. Theor. Appl. Climatol. 2016, 124, 43–54. [Google Scholar] [CrossRef]
- Macek-Rowland, K.M. 1997 Floods in the Red River of the North and Missouri River Basins in North Dakota and Western Minnesota: U.S. Geological Survey Open-File Report; USGS: Reston, VA, USA, 1997; pp. 97–575.
- Rannie, W. The 1997 flood event in the Red River basin: Causes, assessment and damages. Can. Water Resour. J. 2016, 41, 45–55. [Google Scholar] [CrossRef]
- Eichler, T.; Higgins, W. Climatology and ENSO-Related Variability of North American Extratropical Cyclone Activity. J. Clim. 2006, 19, 2076–2093. [Google Scholar] [CrossRef]
- Seager, R.; Kushnir, Y.; Nakamura, J.; Ting, M.; Naik, N. Northern Hemisphere winter snow anomalies; ENSO, NAO and the winter of 2009/10. J. Geophys. Res. 2010, 37, L14703. [Google Scholar] [CrossRef]
- Whittaker, L.M.; Horn, L.H. Geographical and seasonal distribution of North American cyclogenesis, 1958–1977. Mon. Weather Rev. 1981, 109, 2312–2322. [Google Scholar] [CrossRef]
- Achtor, T.H.; Horn, L.H. Spring Season Colorado Cyclones. Part I: Use of Composites to Relate Upper and Lower Tropospheric Wind Fields. J. Clim. Appl. Meteorol. 1986, 25, 732–743. [Google Scholar] [CrossRef] [Green Version]
- Schultz, D.M.; Bosart, L.F.; Colle, B.A.; Davies, H.C.; Dearden, C.; Keyser, D.; Martius, O.; Roebber, P.J.; Steenburgh, W.J.; Volkert, H.; et al. Extratropical Cyclones: A Century of Research on Meteorology’s Centerpiece. Meteorol. Monogr. 2018, 59, 16.1–16.56. [Google Scholar] [CrossRef]
- Déry, S.J.; Yau, M.K. Simulation of blowing snow in the Canadian arctic using a double-moment model. Boundary-Layer Meteorol. 2001, 99, 297–316. [Google Scholar] [CrossRef]
- Yang, J.; Yau, M.K. A new triple-moment blowing snow model. Boundary Layer Meteorol. 2008, 126, 137–155. [Google Scholar] [CrossRef]
- Baggaley, D.G.; Hanesiak, J.M. An empirical blowing snow forecast technique for the Canadian Arctic and Prairie Provinces. Weather Forecast. 2005, 20, 51–62. [Google Scholar] [CrossRef]
- Compo, G.P.; Whitaker, J.S.; Sardeshmukh, P.D.; Matsui, N.; Allan, R.J.; Yin, X.; Gleason, B.E.; Vose, R.S.; Rutledge, G.; Bessemoulin, P. The twentieth century reanalysis project. Q. J. R. Meteorol. Soc. 2011, 137, 1–28. [Google Scholar] [CrossRef]
- Soden, B.J.; Held, I.M. An assessment of climate feedbacks in coupled ocean–atmosphere models. J. Clim. 2006, 19, 3354–3360. [Google Scholar] [CrossRef]
- Rupp, D.E.; Abatzoglou, J.T.; Hegewisch, K.C.; Mote, P.W. Evaluation of CMIP5 20th century climate simulations for the Pacific Northwest USA. J. Geophys. Res. Atmos. 2013, 118, 10,884–10,906. [Google Scholar] [CrossRef]
- Brown, R.D.; Robinson, D.A. Northern Hemisphere spring snow cover variability and change over 1922–2010 including an assessment of uncertainty. Cryosphere 2011, 5, 219–229. [Google Scholar] [CrossRef] [Green Version]
- Kunkel, K.E.; Palecki, M.A.; Ensor, L.; Easterling, D.; Hubbard, K.G.; Robinson, D.; Redmond, K. Trends in twentieth-century U.S. extreme snowfall seasons. J. Clim. 2009, 22, 6204–6216. [Google Scholar] [CrossRef]
- Kluver, D.; Leathers, D. Regionalization of snowfall frequency and trends over the contiguous United States. Int. J. Climatol. 2015, 35, 4348–4358. [Google Scholar] [CrossRef]
- Lambert, S.J.; Fyfe, J.C. Changes in winter cyclone frequencies and strengths simulated in enhanced greenhouse warming experiments: Results from the models participating in the IPCC diagnostic exercise. Clim. Dyn. 2006, 26, 713–728. [Google Scholar] [CrossRef]
- Catto, J.L.; Shaffrey, L.C.; Hodges, K.I. Northern Hemisphere extratropical cyclones in a warming climate in the HiGEM high-resolution climate model. J. Clim. 2011, 24, 5336–5352. [Google Scholar] [CrossRef]
- McCabe, G.; Clark, M.; Serreze, M. Trends in Northern Hemisphere surface cyclone frequency and intensity. J. Clim. 2001, 14, 2763–2768. [Google Scholar] [CrossRef]
- Mizuta, R.; Matsueda, M.; Endo, H.; Yukimoto, S. Future change in extratropical cyclones associated with change in the upper troposphere. J. Clim. 2011, 24, 6456–6470. [Google Scholar] [CrossRef]
- Long, Z.; Perrir, W.; Gyakum, J.; Laprisee, R.; Caya, D. Scenario changes in the climatology of winter midlatitude cyclone activity over eastern North America and the northwest Atlantic. J. Geophys. Res. 2009, 114, D12111. [Google Scholar] [CrossRef]
- Eichler, T.P.; Gaggini, N.; Pan, Z. Impacts of global warming on Northern Hemisphere winter storm tracks in the CMIP5 model suite. J. Geophys. Res. Atmos. 2013, 118, 3919–3932. [Google Scholar] [CrossRef] [Green Version]
Parameter | Value | Notes |
---|---|---|
Topology | Rectangular | vs. hexagonal lattice |
Neighborhood Function | Bubble | vs. Gaussian |
Trials | 10 | randomly initialized |
Training Length (stage 1, stage 2) | 93, 93000 | # of blizzard patterns |
Learning Rate (stage 1, stage 2) | 0.05, 0.01 | linearly decrease with time |
Neighborhood Radius (stage 1, stage 2) | 3, 1 | # of nodes |
Nodes 1/5 (Arctic Front) | Nodes 2/6 (Alberta Clipper) | Nodes 3/7 (Hybrid) | Nodes 4/8 (Colorado Low) | |
---|---|---|---|---|
October | 0 (0) | 0 (0) | 2 (67) | 1 (33) |
November | 0 (0) | 0 (0) | 2 (40) | 3 (60) |
December | 2 (9) | 7 (30) | 9 (39) | 5 (22) |
January | 12 (41) | 5 (17) | 8 (28) | 4 (14) |
February | 6 (35) | 6 (35) | 3 (18) | 2 (12) |
March | 4 (22) | 4 (22) | 4 (22) | 6 (33) |
April | 0 (0) | 0 (0) | 1 (20) | 4 (80) |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kennedy, A.; Trellinger, A.; Grafenauer, T.; Gust, G. A Climatology of Atmospheric Patterns Associated with Red River Valley Blizzards. Climate 2019, 7, 66. https://doi.org/10.3390/cli7050066
Kennedy A, Trellinger A, Grafenauer T, Gust G. A Climatology of Atmospheric Patterns Associated with Red River Valley Blizzards. Climate. 2019; 7(5):66. https://doi.org/10.3390/cli7050066
Chicago/Turabian StyleKennedy, Aaron, Alexander Trellinger, Thomas Grafenauer, and Gregory Gust. 2019. "A Climatology of Atmospheric Patterns Associated with Red River Valley Blizzards" Climate 7, no. 5: 66. https://doi.org/10.3390/cli7050066
APA StyleKennedy, A., Trellinger, A., Grafenauer, T., & Gust, G. (2019). A Climatology of Atmospheric Patterns Associated with Red River Valley Blizzards. Climate, 7(5), 66. https://doi.org/10.3390/cli7050066