Achieving Food Security in a Climate Change Environment: Considerations for Environmental Kuznets Curve Use in the South African Agricultural Sector
Abstract
:1. Introduction
1.1. Energy, Emissions and the Agricultural Sector
1.2. Conceptual Framework: Environmental Kuznets Curves
2. Materials and Methods
3. Results and Discussion
3.1. Descriptive Results
3.2. Empirical Results
3.3. Diagnostic Tests
4. Conclusions and Recommendations
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Campbell, B.M.; Hansen, J.; Rioux, J.; Stirling, C.M.; Twomlow, S.; Wollenberg, E.L. Urgent action to combat climate change and its impacts (SDG 13): Transforming agriculture and food systems. Curr. Opin. Environ. Sustain. 2018, 34, 13–20. [Google Scholar] [CrossRef]
- United Nations. Transforming Our World: The 2030 Agenda for Sustainable Development; United Nations: Geneva, Switzerland, 2015; Volume 16301. [Google Scholar]
- Sridharan, V.; Howells, M.; Ramos, E.P.; Fuso-Nerini, F.; Sundin, C.; Almulla, Y. The Climate-Land-Energy and Water Nexus: Implications for agricultural research. In Proceedings of the Science Forum 2018, Stellenbosch, South Africa, 10–12 October 2018; pp. 1–57. [Google Scholar]
- UNFCCC. United Nations Framework Convention on Climate Change (UNFCCC); Paris Agreement; UNFCCC: Paris, France, 2015; Report No.: Annex to decision 1/CP.21 document FCCC/CP/2015/10/Add.1; Available online: http://unfccc.int/resource/docs/2015/cop21/eng/10a01.pdf#page=24 (accessed on 23 June 2019).
- IPCC. Climate Change 2014: Synthesis Report: Fifth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2014; Available online: http://www.ipcc.ch/pdf/assessment-report/ar5/syr/SYR_AR5_SPM.pdf%0A6 (accessed on 19 June 2019).
- Canavan, C.R.; Graybill, L.; Fawzi, W.; Kinabo, J. The SDGs will require integrated agriculture, nutrition, and health at the community level. Food Nutr. Bull. 2016, 37, 112–115. [Google Scholar] [CrossRef] [PubMed]
- van Noordwijk, M.; Duguma, L.A.; Dewi, S.; Leimona, B.; Catacutan, D.C.; Lusiana, B.; Öborn, I.; Hairiah, K.; Minang, P.A. SDG synergy between agriculture and forestry in the food, energy, water and income nexus: Reinventing agroforestry? Curr. Opin. Environ. Sustain. 2018, 34, 33–42. [Google Scholar] [CrossRef]
- Meyer, N.G.; Breitenbach, M.C.; Fenyes, T.I.; Jooste, A. The economic rationale for agricultural regeneration and rural infrastructure investment in South Africa. J. Dev. Perspect. 2007, 3, 73–83. [Google Scholar]
- DEA. South Africa’s Greenhouse Gas Inventory Report 2000–2010; DEA: Pretoria, South Africa, 2014. Available online: https://www.environment.gov.za/sites/default/files/docs/greenhousegas_invetorysouthafrica.pdf (accessed on 6 July 2019).
- USAID. Greenhouse Gas Emissions in South Africa; USAID: Washington, DC, USA, 2014. Available online: https://www.environment.gov.za/sites/default/files/docs/greenhousegas_invetorysouthafrica.pdf%0A%0A (accessed on 12 December 2017).
- CSIR. Final Technical Report: Intended Nationally Determined Contributions; CSIR: Pretoria, South Africa, 2015. [Google Scholar]
- Pegels, A. Renewable energy in South Africa: Potentials, barriers and options for support. Energy Policy 2010, 38, 4945–4954. [Google Scholar] [CrossRef]
- Lin, B.; Wesseh, P.K. Energy consumption and economic growth in South Africa reexamined: A nonparametric testing apporach. Renew. Sustain. Energy. Rev. 2014, 40, 840–850. [Google Scholar] [CrossRef]
- Menyah, K.; Wolde-Rufael, Y. Energy consumption, pollutant emissions and economic growth in South Africa. Energy Econ. 2010, 32, 1374–1382. [Google Scholar] [CrossRef]
- Koen, R.; Holloway, J.; Mokilane, P.; Makhanya, S.; Magadla, T. Forecasts for Electricity Demand in South Africa (2017–2050) Using the CSIR Sectoral Regression Model for the Integrated Resource Plan of South Africa (as inputs into the Integrated Resource Plan); Department of Energy: Pretoria, South Africa, 2017. Available online: http://www.energy.gov.za/IRP/irp-update-draft-report2018/CSIR-annual-elec-demand-forecasts-IRP-2015.pdf (accessed on 30 July 2019).
- Inglesi-Lotz, R.; Pouris, A. Energy efficiency in South Africa: A decomposition exercise. Energy 2012, 42, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Ratshomo, K.; Nembahe, R. South African Energy Sector Report; Department of Energy: Pretoria, South Africa, 2018; pp. 2–49. Available online: http://www.energy.gov.za (accessed on 5 July 2019).
- Jain, S.; Jain, P.K. The rise of Renewable Energy implementation in South Africa. Energy Procedia 2017, 143, 721–726. [Google Scholar] [CrossRef]
- Rafey, W.; Sovacool, B.K. Competing discourses of energy development: The implications of the Medupi coal-fired power plant in South Africa. Glob. Environ. Chang. 2011, 21, 1141–1151. [Google Scholar] [CrossRef]
- Walwyn, D.R.; Brent, A.C. Renewable energy gathers steam in South Africa. Renew. Sustain. Energy Rev. 2015, 41, 390–401. [Google Scholar] [CrossRef] [Green Version]
- Bundschuh, J.; Chen, G. Sustainable Energy Solutions in Agriculture; CRC Press: Boca Raton, FL, USA, 2014. [Google Scholar]
- FAOSTAT. Agriculture Energy Consumption—South Africa. 2019. Available online: http://www.fao.org/faostat/en/#data/GT (accessed on 1 July 2019).
- McSweeney, R.; Timperely, J. The Carbon Brief Profile—South Africa. 2019. Available online: https://www.carbonbrief.org/the-carbon-brief-profile-south-africa (accessed on 28 June 2019).
- DEA. South Africa’s Intended Nationally Developed Contribution; DEA: Pretoria, South Africa, 2015. Available online: https://www.environment.gov.za/sites/default/files/docs/sanational_determinedcontribution.pdf (accessed on 16 June 2019).
- Climate Smart Tracker. South Africa—Country Summary. 2019. Available online: https://climateactiontracker.org/countries/south-africa/ (accessed on 27 June 2019).
- StatsSA. Sustainable Development Goals: Indicator Baseline Report 2017—South Africa; Statistics South Africa: Pretoria, South Africa, 2017.
- FAOSTAT. Agricultural Total Emission—South Africa 2019. Available online: http://www.fao.org/faostat/en/#data/GT (accessed on 1 July 2019).
- DAFF. Trends in the Agricultural Sector; DAFF: Pretoria, South Africa, 2018. Available online: https://www.daff.gov.za/Daffweb3/Portals/0/Statistics and Economic Analysis/Statistical Information/Trends in the Agricultural Sector 2017.pdf (accessed on 28 June 2019).
- Meissner, H.H.; Scholtz, M.M.; Engelbrecht, F.A. Sustainability of the South African livestock sector towards 2050 part 2: Challenges, changes and required implementations. S. Afr. J. Anim. Sci. 2013, 43, 298–319. [Google Scholar] [CrossRef]
- StatsSA. Community Survey 2016 Agricultural Households; StatsSA: Pretoria, South Africa, 2016. Available online: http://www.statssa.gov.za/?page_id=964 (accessed on 28 June 2019).
- Bo, S. A literature survey on environmental Kuznets curve. Energy Procedia 2011, 5, 1322–1325. [Google Scholar] [CrossRef]
- Kijima, M.; Nishide, K.; Ohyama, A. Economic models for the environmental Kuznets curve: A survey. J. Econ. Dyn. Control 2010, 34, 1187–1201. [Google Scholar] [CrossRef]
- Shahbaz, M.; Kumar Tiwari, A.; Nasir, M. The effects of financial development, economic growth, coal consumption and trade openness on CO2 emissions in South Africa. Energy Policy 2013, 61, 1452–1459. [Google Scholar] [CrossRef]
- Inglesi-Lotz, R.; Bohlmann, J. Environmental Kuznets curve in South Africa: To confirm or not to confirm? In Proceedings of the Ecomod Conference, Bali, Indonesia, Bali, Indonesia, 6–18 July 2014; pp. 1–17. [Google Scholar]
- Kaika, D.; Zervas, E. The Environmental Kuznets Curve (EKC) theory. Part B: Critical issues. Energy Policy 2013, 62, 1403–1411. [Google Scholar] [CrossRef]
- Lin, B.; Omoju, O.E.; Nwakeze, N.M.; Okonkwo, J.U.; Megbowon, E.T. Is the environmental Kuznets curve hypothesis a sound basis for environmental policy in Africa ? J. Clean. Prod. 2016, 133, 712–724. [Google Scholar] [CrossRef]
- Parker, H. Understanding Patterns of Climate Resilient Economic Development in Rwanda; ODI Annual Report: London, UK, 2015. [Google Scholar]
- Bouvier, R.A. Air Pollution and Per Capita Income: A Disaggregation of the Effects of Scale, Sectoral Composition, and Technological Change; Report No.: Working Paper, Series; Brock, W.A., Ed.; University of Massachusetts at Amherst: Boston, MA, USA, 2004; p. 84. [Google Scholar]
- Gill, A.R.; Viswanathan, K.K.; Hassan, S. The Environmental Kuznets Curve (EKC) and the environmental problem of the day. Renew. Sustain. Energy Rev. 2018, 81, 1636–1642. [Google Scholar] [CrossRef]
- Baek, J. Environmental Kuznets curve for CO2 emissions: The case of Arctic countries. Energy Econ. 2015, 50, 13–17. [Google Scholar] [CrossRef]
- Kaika, D.; Zervas, E. The Environmental Kuznets Curve (EKC) theory-Part A: Concept, causes and the CO2 emissions case. Energy Policy 2013, 62, 1392–1402. [Google Scholar] [CrossRef]
- Balaguer, J.; Cantavella, M. Estimating the environmental Kuznets curve for Spain by considering fuel oil prices (1874–2011). Ecol. Indic. 2016, 60, 853–859. [Google Scholar] [CrossRef]
- Alam, M.M.; Murad, M.W.; Noman, A.H.; Ozturk, I. Relationships among carbon emissions, economic growth, energy consumption and population growth: Testing Environmental Kuznets Curve hypothesis for Brazil, China, India and Indonesia. Ecol. Indic. 2016, 70, 466–479. [Google Scholar] [CrossRef]
- Apergis, N. Environmental Kuznets curves: New evidence on both panel and country-level CO2 emissions. Energy Econ. 2016, 54, 263–271. [Google Scholar] [CrossRef]
- Al-Mulali, U.; Ozturk, I. The investigation of environmental Kuznets curve hypothesis in the advanced economies: The role of energy prices. Renew. Sustain. Energy Rev. 2016, 54, 1622–1631. [Google Scholar] [CrossRef]
- Ahmad, N.; Du, L.; Lu, J.; Wang, J.; Li, H.Z.; Hashmi, M.Z. Modelling the CO2 emissions and economic growth in Croatia: Is there any environmental Kuznets curve? Energy 2017, 123, 164–172. [Google Scholar] [CrossRef]
- Özokcu, S.; Özdemir, Ö. Economic growth, energy, and environmental Kuznets curve. Renew. Sustain. Energy Rev. 2017, 72, 639–647. [Google Scholar] [CrossRef]
- Churchill, S.A.; Inekwe, J.; Ivanovski, K.; Smyth, R. The Environmental Kuznets Curve in the OECD: 1870–2014. Energy Econ. 2018, 75, 389–399. [Google Scholar] [CrossRef]
- World Bank. World Development Indicators: Agriculture, Forstery and Fishing (% added of GDP)—South Africa. 2019. Available online: https://data.worldbank.org/indicator/NV.AGR.TOTL.ZS?locations=ZA&view=chart (accessed on 3 July 2019).
- He, J.; Richard, P. Environmental Kuznets curve for CO2 in Canada. Ecol Econ. 2010, 69, 1083–1093. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Pesaran, B. Working with Microfit 4.0: Interactive Econometric Analysis; Oxford University Press: Oxford, UK, 1997. [Google Scholar]
- Pesaran, M.H.; Shin, Y.; Smith, R.J. Bounds testing approaches to the analysisof level relationships. J. Appl. Econom. 2001, 16, 289–326. [Google Scholar] [CrossRef]
- Pesaran, M.H.; Shin, Y. An autoregressive distributed lag modelling approachto cointegration analysis. In Econometrics and Economic Theoryin 20th Century: The Ragnar Frisch Centennial Symposium; Strom, S., Ed.; Cambridge University Press: Cambridge, UK, 1997. [Google Scholar]
- Said, S.E.; Dickey, D.A. Testing for unit roots in autoregressive-moving averagemodels of unknown order. Biometrika 1984, 71, 599–607. [Google Scholar] [CrossRef]
- Lütkepohl, H. Structural Vector Autoregressive Analysis for Cointegrated Vari-Ables; Springer: Heidelberg/Berlin, Germany, 2006; pp. 73–86. [Google Scholar]
- Shahbaz, M.; Aviral, T.; Nasir, M. The Effects of Financial Development, Economic Growth, Coal Consumption and Trade Openness on Environment Performance in South Africa; Federal Bureau of Statistics, Government of Pakistan: Islamabad, Pakistan, 2011.
- Nasr, B.A.; Gupta, R.; Sato, R.J. Is there an Environmental Kuznets Curve for South Africa? A co-summability approach using a century of data. Energy Econ. 2015, 52, 136–141. [Google Scholar] [CrossRef] [Green Version]
- Shahbaz, M.; Adebola, S.; Ozturk, I. Environmental Kuznets Curve hypothesis and the role of globalization in selected African countries. Ecol. Indic. 2016, 67, 623–636. [Google Scholar] [CrossRef] [Green Version]
Drivers | Key Trends | Future Challenges |
---|---|---|
Population increase and urbanization | Increase in the amount of energy use and energy in food production [12] | -Maintaining energy use whilst increasing food production |
Growing energy demand | Increased energy use in agriculture, manufacturing, households, etc. [13,14] | -Providing adequate energy to agriculture without increasing pollution -Competing interest in terms of energy use between agriculture and other sectors of the economy |
Increase in the amount of energy use in food production | Increased energy use in agricultural and manufacturing sectors [15,16] | -Ensuring sufficient, reliable and efficient energy for agriculture |
Economic growth, industrialization and urbanization | Increasing non-renewable energy importation [12,17,18,19,20] | -Ensuring stable and quality energy supply for food production -Promoting private sector involvement in renewable energy utilisation for food production |
Author | Period | Country/Region/Organization | Methodology | Variables Used in the Study | EKC Hypothesis |
---|---|---|---|---|---|
Balaguer and Cantavella [42] | 1874–2011 | Spain | Autoregressive distributed lag (ARDL) bounds test approach and error correction model (ECM) | Per capita CO2, GDP, crude oil prices | Exhibited |
Alam, Murad, Noman, and Ozturk [43] | 1970–2012 | Brazil, China, India and Indonesia | ARDL and ECM | Per capita CO2, GDP, energy, Trade openness | Exhibited in India, but not in Brazil, China and Indonesia |
Apergis [44] | 1960–2013 | 15 OECD countries | Common correlated effects and panel quantile cointegration test | Emissions, per capita GDP | Mixed results |
Al-Mulali and Ozturk [45] | 1990–2012 | 27 Countries | Kao and Fisher cointegration and VECM | CO2, GDP, renewable energy consumption, non-renewable energy consumption, trade, population, energy prices | Exhibited |
Ahmad et al. [46] | 1992–2011 | Croatia | ARDL and VECM | CO2, GDP | Exhibited |
Özokcu and Özdemir [47] | 1980–2010 | 26 OECD countries and 52 emerging countries | Polynomial (cubic) regression model | CO2 per capita, GDP per capita, energy use per capita | Mixed results |
Churchill, Inekwe, Ivanovski, and Smyth [48] | 1870–2014 | 20 OECD countries | Panel cointegration, mean group estimator (MGE), common corelated mean group (CCEMG), augmented mean group (AMG) and pooled MG (PMG) estimator | CO2, GDP, trade, population, financial development | Mixed results |
CO2 Emissions (Gigagrams) | Gross Value of Agriculture (R Million) | Coal Energy (Kilojoules) | Electricity Energy (Kilojoules) | |
---|---|---|---|---|
Mean | 17,935.49 | 69,168.65 | 3840.809 | 20,190.75 |
Median | 18,093.30 | 52,185.60 | 2605.800 | 20,718.00 |
Maximum | 19,646.07 | 16,8591.1 | 13,467.60 | 30,357.20 |
Minimum | 15,993.25 | 20,198.00 | 361.0000 | 11,188.80 |
Std Dev. | 899.9911 | 44,950.37 | 3294.036 | 3915.104 |
Skewness | −0.246352 | 0.790601 | 1.260109 | 0.133680 |
Kurtosis | 2.446791 | 2.393959 | 4.221092 | 4.191326 |
Correlation | ||||
CO2 emissions | 1.000 | |||
Gross value of agriculture | 0.525 | 1.000 | ||
Coal energy | 0.264 | 0.142 | 1.000 | |
Electricity energy | 0.747 | 0.095 | −0.030 | 1.000 |
ADF Statistics I (0) | ADF Statistics I (1) | |
---|---|---|
−2.48 | −5.44 *** | |
−2.33 | −5.27 *** | |
0.81 | −5.24 *** | |
1.68 | −4.87 *** | |
−1.61 | −4.66 *** | |
−3.78 ** | ||
Critical values | 1% | −3.809 |
5% | −3.021 | |
10% | −2.650 |
AIC | SC | |||||
---|---|---|---|---|---|---|
Lag | 0 | 1 | 2 | 0 | 1 | 2 |
−3.03 | −3.12 * | −3.04 | −2.98 | −3.02 * | −2.89 | |
1.92 | −1.98 * | −1.9 | 1.97 | −1.89 * | −1.75 | |
6.29 | 2.48 * | 2.56 | 6.34 | 2.58 * | 2.70 | |
10.12 | 6.41 * | 6.48 | 10.17 | 6.51 * | 6.63 | |
2.89 | 2.38 * | 2.46 | 2.94 | 2.48 * | 2.61 | |
−0.22 * | −0.22 | −0.22 | −0.22 * | −0.12 | −0.07 |
Variable | ||||||
---|---|---|---|---|---|---|
(-1) | 0.28 (2.91) ** | –0.25 (–1.31) | –0.26 (–1.24) | |||
0.023 (2.97) *** | –0.35 (–3.18) *** | –0.20 (–0.12) | ||||
0.044 (3.46) *** | 0.0079 (0.019) | |||||
0.0028 (0.090) | ||||||
0.022 (3.72) *** | 0.014 (3.26) *** | 0.013 (2.06) * | ||||
(-1) | –0.011 (–1.67) | |||||
0.18 (8.28) *** | 0.16 (9.03) *** | 0.16 (8.61) *** | ||||
(-1) | 0.087 (2.22) ** | 0.088 (2.14) * | ||||
C | 5.20 (5.95) *** | 5.01 (2.13) *1 | ||||
R-squared | 0.887683 | 0.930861 | 0.930900 | |||
Adjusted R-squared | 0.852584 | 0.903205 | 0.896351 | |||
F-statistic | 25.29077 *** | 33.65891 *** | 26.94370 *** | |||
Durbin‒Watson statistic | 2.434274 | 2.214419 | 2.210267 | |||
F-bounds test | ||||||
F-statistic | 28.11 | 11.69 | 9.09 | |||
I (0) | I (1) | I (0) | I (1) | I (0) | I (1) | |
10% | 2.72 | 3.77 | 2.45 | 3.52 | 2.26 | 3.35 |
5% | 3.23 | 4.35 | 2.86 | 4.01 | 2.62 | 3.79 |
2.5% | 3.69 | 4.89 | 3.25 | 4.49 | 2.96 | 4.18 |
1% | 4.29 | 5.61 | 3.74 | 5.06 | 3.41 | 4.68 |
Variable | |||
---|---|---|---|
0.032 (3.06) *** | –0.28 (–3.58) *** | –0.12 (–0.11) | |
0.035 (3.95) *** | 0.0063 (0.019) | ||
0.0022 (0.090) | |||
0.015 (2.00) * | 0.011 (3.12) *** | 0.011 (1.9) * | |
0.25 (5.97) *** | 0.20 (10.06) *** | 0.20 (9.70) *** | |
CointEq (-1) | –0.719 *** | –1.247 *** | –1.253 *** |
F-Statistic | Prob. | |
---|---|---|
does not Granger cause | 3.15122 | 0.0702 |
does not Granger cause | 3.07631 | 0.0741 |
does not Granger cause | 3.11833 | 0.0718 |
does not Granger cause | 0.57636 | 0.5732 |
does not Granger cause | 0.86314 | 0.4406 |
F-Stat | Prob. | F-Stat | Prob. | F-Stat | Prob. | |
---|---|---|---|---|---|---|
Breusch‒Godfrey serial correlation LM test | 2.208748 | 0.1467 | 0.711048 | 0.5093 | 0.948005 | 0.4147 |
Breusch‒Pagan‒Godfrey heteroskedasticity test | 2.058414 | 0.1245 | 2.125251 | 0.1107 | 1.733281 | 0.1804 |
Jarque‒Bera normality test | 2.962189 | 0.227389 | 0.9898624 | 0.609685 | 0.987404 | 0.610363 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ngarava, S.; Zhou, L.; Ayuk, J.; Tatsvarei, S. Achieving Food Security in a Climate Change Environment: Considerations for Environmental Kuznets Curve Use in the South African Agricultural Sector. Climate 2019, 7, 108. https://doi.org/10.3390/cli7090108
Ngarava S, Zhou L, Ayuk J, Tatsvarei S. Achieving Food Security in a Climate Change Environment: Considerations for Environmental Kuznets Curve Use in the South African Agricultural Sector. Climate. 2019; 7(9):108. https://doi.org/10.3390/cli7090108
Chicago/Turabian StyleNgarava, Saul, Leocadia Zhou, James Ayuk, and Simbarashe Tatsvarei. 2019. "Achieving Food Security in a Climate Change Environment: Considerations for Environmental Kuznets Curve Use in the South African Agricultural Sector" Climate 7, no. 9: 108. https://doi.org/10.3390/cli7090108
APA StyleNgarava, S., Zhou, L., Ayuk, J., & Tatsvarei, S. (2019). Achieving Food Security in a Climate Change Environment: Considerations for Environmental Kuznets Curve Use in the South African Agricultural Sector. Climate, 7(9), 108. https://doi.org/10.3390/cli7090108