The Origin and Propagation of the Antarctic Centennial Oscillation
Abstract
:1. Introduction
2. Methods
2.1. Data Sources
2.2. Analytic Approach and Rationale
2.3. Limitations
2.4. Statistical Methods
3. Results and Discussion
3.1. Overview
3.2. The Last Glacial Maximum and Deglaciation
3.2.1. Spectral Analysis
3.2.2. Latency between Homologous Antarctic Centennial Oscillations (ACOs)
3.2.3. Antarctic Centennial Oscillation (ACO) Latency Map of Antarctica
3.2.4. Effect of Warming on Latency during the Last Glacial Termination (LGT)
3.3. The Holocene
3.3.1. Spectral Analysis
3.3.2. Latency between Homologous Antarctic Centennial Oscillation (ACO) Cycles
3.4. Geographic Origin of the Antarctic Centennial Oscillation (ACO)
3.5. Generation of the Antarctic Centennial Oscillation (ACO)
3.6. Comparison of the Antarctic Centennial Oscillation (ACO) and Antarctic Oscillation (AAO)
4. Conclusions and Hypotheses
- The ACO manifests at all major Antarctic drill sites, and therefore may encompass all of Antarctica;
- The ACO originates in the SO off the east coast of Antarctica in the area bounded by 30–120° E and 40–60° S, where sustained surface wind stress across ocean water is the highest on Earth;
- The ACO temperature cycle may therefore be driven by a coupled wind cycle;
- Homologous ACOs during the LGM and LGT arrived first at LD and then propagated clockwise around Antarctica to arrive at later times (latencies) at remaining drill sites;
- ACO latency, and therefore its inverse, teleconnection velocity, varies with distance from the ocean;
- ACO teleconnection velocity varies also with temperature;
- During the ~7-millennium warming period of the LGT, ACO teleconnection velocity from LD to coastal sites increased;
- During the warming period of the LGT, teleconnection velocity from LD to inland sites decreased;
- These changes in teleconnection velocity are correlated strongly with insolation at 65° N;
- The Antarctic climate system retains information about temperature over several ACO cycles, the previously-reported Antarctic “climate memory;”
- All major parameters of the ACO cycle are correlated with its frequency except symmetry, which remains near unity (i.e., similar warming and cooling duration and rate) across all ACO cycle frequencies;
- Empirical evidence of comparable climate dynamics suggests the ACO and AAO are the same natural cycle and that it extends to the NH.
4.1. Generation of the Antarctic Centennial Oscillation (ACO)
4.2. Teleconnection of the Antarctic Centennial Oscillatin (ACO)
4.3. Future Research
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Abbreviations
AABW | Antarctic Bottom Water |
AACV | Antarctic Circumpolar Vortex |
AAIM | Antarctic Intermediate Water |
AAO | Antarctic Oscillation |
ACC | Antarctic Circumpolar Current |
ACO | Antarctic Centennial Oscillation |
ACR | Antarctic Cold Reversal |
AGW | Anthropogenic Global Warming |
AICC2012 | Antarctic Ice Core Chronology of 2012 |
AICC2012 sites | Drill sites synchronized on the AICC2012 chronology (Vostok, EDC, EDML, TALDICE) |
AIM | Antarctic Isotope Maximum |
CI | Coherency Index |
CO2 | Carbon Dioxide |
CSF | Circumpolar Shelf Water |
DF | Dome Fuji |
D-O | Dansgaard-Oeschger |
EAP | East Antarctic Plateau |
EDC | EPICA Dome C |
EDML | EPICA Dronning Maud Land |
EPICA | European Project for Ice Coring in Antarctica |
Fe | Iron |
FM | Fast Methane |
FM Sites | Drill sites synchronized on the FM chronology (LD, Byrd, EDML, SD, TALDICE) |
GT4 | Glaciological Terminology, version 4 (Vostok chronology) |
HCO | Holocene Climate Optimum |
HTM | Holocene Temperature Maximum |
JRI | James Ross Island |
km | kilometers |
Ky | Thousand years |
Kybp | Thousand years before present |
Kyb1950 | Thousand years before 1950 |
LD | Law Dome |
LGT | Last Glacial Termination |
LGM | Last Glacial Maximum |
MIS | Marine Isotope Stage |
My | Million years |
n | sample size |
NA | North Atlantic |
NH | Northern Hemisphere |
NOAA | U.S. National Oceanic and Atmospheric Administration |
NSIDC | National Snow and Ice Data Center |
p | probability of Type I error rate (alpha) |
ppmv | Parts per million by volume |
r | Pearson product moment correlation coefficient |
R2 | Coefficient of Determination (r2) |
RO | Relaxation Oscillation |
SAM | Southern Annular Mode |
SAAMW | Sub-Antarctic Mode Water |
SD | Siple Dome |
SH | Southern Hemisphere |
SM | Supplementary Material |
SO | Southern Ocean |
SP | South Pole |
SST | Sea Surface Temperature |
σ | standard deviation |
TALDICE | Talos Dome |
TD | Taylor Dome |
v. | versus |
VT | Velocity of Teleconnection |
WW | Westerly Wind |
WPDC | World Paleoclimate Data Center of NOAA |
y | year(s) |
References
- Prokoph, A.; Shields, G.; Veizer, J. Compilation and time-series analysis of a marine carbonate δ18O, δ13C, 87Sr/86Sr and δ34S database55 through Earth history. Earth Sci. Rev. 2008, 87, 113–133. [Google Scholar] [CrossRef]
- Davis, W.J. The relationship between atmospheric carbon dioxide concentration and global temperature for the last 425 million years. Climate 2017, 5, 76. [Google Scholar] [CrossRef]
- Milankovitch, M. Mathematische Klimalehre und Astronomische Theorie der Klimaschwankungen. In Handbuch der Klimatologie; Koppen, W., Geiger, R., Eds.; Springer: Berlin, Germany, 1930; Volume 1. [Google Scholar]
- Lisiecki, L.E.; Raymo, M.E. A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography 2005, 20, 1003–1020. [Google Scholar] [CrossRef]
- Walker, G.T. Correlation in seasonal variations of weather, VIII. A preliminary study of world weather. Mem. India Met. Dept. 1923, 24, 75–131. [Google Scholar]
- Li, J.; Xie, S.P.; Cook, E.R. El Niño phases embedded in Asian and North American drought reconstructions. Quat. Sci. Rev. 2014, 85, 20–34. [Google Scholar] [CrossRef]
- Ford, H.L.; Ravelo, A.C.; Polissar, P.J. Reduced El Niño-Southern Oscillation during the Last Glacial Maximum. Science 2015, 347, 255–258. [Google Scholar] [CrossRef] [PubMed]
- Madden, R.A.; Julian, P.R. Detection of a 40–50 day oscillation in the zonal wind in the tropical Pacific. J. Atmos. Sci. 1971, 28, 702–708. [Google Scholar] [CrossRef]
- Cassou, C. Intraseasonal interaction between the Madden–Julian Oscillation and the North Atlantic Oscillation. Nature 2008, 455, 523–527. [Google Scholar] [CrossRef] [PubMed]
- Kim, D.; Kug, J.S.; Sobel, A.H. Propagating versus nonpropagating Madden–Julian Oscillation events. J. Clim. 2014, 27, 111–125. [Google Scholar] [CrossRef]
- Davis, W.J.; Taylor, P.J.; Davis, W.B. The Antarctic Centennial Oscillation: A natural paleoclimate cycle in the Southern Hemisphere that influences global temperature. Climate 2018, 6, 3. [Google Scholar] [CrossRef]
- Abram, N.J.; Mulvaney, R.; Vimeux, F.; Phipps, S.J.; Turner, J.; England, M.H. Evolution of the Southern Annular Mode during the past millennium. Nat. Clim. Chang. 2014, 4, 564–569. [Google Scholar] [CrossRef] [Green Version]
- Moreno, P.I.; Vilanova, I.; Villa-Martinez, R.; Garreaud, R.D.; Rojas, M.; De Pol-Holz, R. Southern Annular Mode-like changes in southwestern Patagonia at centennial timescales over the last three millennia. Nat. Commun. 2014, 5, 4375. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Halpert, M.S.; Ropelewski, C.F. Surface temperature patterns associated with the Southern Oscillation. J. Clim. 1992, 5, 577–593. [Google Scholar] [CrossRef]
- National Aeronautic and Space Administration (NASA). 2019. Available online: https://climate.nasa.gov/climate_resources/139/graphic-global-warming-from-1880-to-2018/ (accessed on 3 March 2019).
- National Oceanographic and Atmospheric Administration (NOAA). World Data Center for Paleoclimatology. Available online: www.ncdc.noaa.gov/data-access/paleoclimatology-data/datasets (accessed on 3 March 2019).
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, M.; Delaygue, G.; et al. Climate and atmospheric history of the past 420,000 years from the Vostok ice core, Antarctica. Nature 1999, 399, 429–436. [Google Scholar] [CrossRef] [Green Version]
- Petit, J.R.; Jouzel, J.; Raynaud, D.; Barkov, N.I.; Barnola, J.M.; Basile, I.; Bender, M.; Chappellaz, J.; Davis, J.; Delaygue, G.; et al. Vostok Ice Core Data for 420,000 Years. In IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2001–076; NOAA/NGDC Paleoclimatology Program: Boulder, CO, USA, 2001. [Google Scholar]
- Veres, D.; Bazin, L.; Landais, A.; Kele, H.T.M.; Lemieux-Dudon, B.; Parrenin, F.; Martinerie, P.; Blayo, E.; Blunier, T.; Capron, E.; et al. The Antarctic ice core chronology (AICC2012): An optimized multi-parameter and multi-site dating approach for the last 120 thousand years. Clim. Past 2013, 9, 1733–1748. [Google Scholar] [CrossRef]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.M.; Chappellaz, J.; et al. Orbital and millennial Antarctic climate variability over the past 800,000 Years. Science 2007, 317, 793–796. [Google Scholar] [CrossRef] [PubMed]
- Jouzel, J.; Masson-Delmotte, V.; Cattani, O.; Dreyfus, G.; Falourd, S.; Hoffmann, G.; Minster, B.; Nouet, J.; Barnola, J.M.; Chappellaz, J.; et al. EPICA Dome C Ice Core 800KYr Deuterium Data and Temperature Estimates. In IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series # 2007–091; NOAA/NCDC Paleoclimatology Program: Boulder, CO, USA, 2007. [Google Scholar]
- Pedro, J.B.; Van Ommen, T.D.; Rasmussen, S.O.; Morgan, V.I.; Chappellaz, J.; Moy, A.D.; Masson-Delmotte, V.; Delmotte, M.; Moy, A. The last deglaciation: Timing the bipolar seesaw. Clim. Past 2011, 7, 671–683. [Google Scholar] [CrossRef]
- Pedro, J.B.; van Ommen, T.D.; Rasmussen, S.O.; Morgan, V.I.; Chappellaz, J.; Moy, A.D.; Masson-Delmotte, V.; Delmotte, M. Antarctic Ice Core Deglacial Water Isotope Data on GICC05 Timescale. In IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2011–088; NOAA/NCDC Paleoclimatology Program: Boulder, CO, USA, 2011. [Google Scholar]
- Steig, E.J.; Hart, C.P.; White, J.W.C.; Cunningham, W.L.; Davis, M.D.; Saltzman, E.S. Changes in climate, ocean and ice-sheet conditions in the Ross embayment, Antarctica, at 6 ka. Ann. Glaciol. 1998, 27, 305–310. [Google Scholar] [CrossRef] [Green Version]
- Steig, E.J. Synchronous climate changes in Antarctica and the North Atlantic. Science 1998, 282, 92–95. [Google Scholar] [CrossRef]
- Mulvaney, R.; Abram, N.J.; Hindmarsh, R.C.A.; Arrowsmith, C.; Fleet, L.; Triest, J.; Sime, L.C.; Alemany, O.; Foord, S. Recent Antarctic Peninsula warming relative to Holocene climate and ice-shelf history. Nature 2012, 489, 141–144. [Google Scholar] [CrossRef] [Green Version]
- Uemura, R.; Masson-Delmotte, V.; Jouzel, J.; Landais, A.; Motoyama, H.; Stenni, B. Ranges of moisture-source temperature estimated from Antarctic ice cores stable isotope records over glacial-interglacial cycles. Clim. Past 2012, 8, 1109–1125. [Google Scholar] [CrossRef]
- Uemura, R.; Masson-Delmotte, V.; Jouzel, J.; Landais, A.; Motoyama, H.; Stenni, B. Dome Fuji 360KYr Stable Isotope Data and Temperature Reconstruction. In IGBP PAGES/World Data Center for Paleoclimatology Data Contribution Series 2012–112; NOAA/NCDC Paleoclimatology Program: Boulder, CO, USA, 2012. [Google Scholar]
- Jouzel, J.; (Laboratoire de Géochimie Isotopique DPC, CEN Saclay, 91191, Gif-sur-Yvette Cedex, France). Personal communication, 2017.
- Stenni, B.; Curran, M.A.J.; Abram, N.J.; Orsi, A.; Goursaud, S.; Masson-Delmotte, V.; Neukom, R.; Goosse, H.; Divine, D.; Van Ommen, T.; et al. Antarctic climate variability on regional and continental scales over the last 2000 years. Clim. Past 2017, 13, 1609–1634. [Google Scholar] [CrossRef] [Green Version]
- Emile-Geay, J. A global multiproxy database for temperature reconstructions of the Common Era. Sci. Data 2017, 4, 170088. [Google Scholar]
- Moy, A.; (Australian Antarctic Division, Department of the Environment and Energy, Kingston, Tasmania, Australia). Personal communication, 2019.
- Masson, V.; Vimeux, F.; Jouzel, J.; Morgan, V.; Delmotte, M.; Ciais, P.; Hammer, C.; Johnsen, S.; Lipenkov, V.Y.; Mosley-Thompson, E.; et al. Holocene climate variability in Antarctica based on 11 ice-core isotopic records. Quat. Res. 2000, 54, 348–358. [Google Scholar] [CrossRef]
- Trenberth, K.; Caron, J. Estimates of meridional atmosphere and ocean heat transports. J. Clim. 2001, 14, 3433–3443. [Google Scholar] [CrossRef]
- Marsland, S.J.; Bindoff, N.; Williams, G.D.; Budd, W.F. Modeling water mass formation in the Mertz Glacier Polynya and Adélie Depression, East Antarctica. J. Geophys. Res. Space Phys. 2004, 109. [Google Scholar] [CrossRef]
- Villalba, R.; Lara, A.; Masiokas, M.H.; Urrutia, R.; Luckman, B.H.; Marshall, G.J.; Mundo, I.A.; Christie, D.A.; Cook, E.R.; Neukom, R.; et al. Unusual Southern Hemisphere tree growth patterns induced by changes in the Southern Annular Mode. Nat. Geosci. 2012, 5, 793–798. [Google Scholar] [CrossRef]
- Hessl, A.; Allen, K.J.; Vance, T.; Abram, N.J.; Saunders, K.M. Reconstructions of the Southern Annular Mode (SAM) during the last millennium. Prog. Phys. Geog. Earth Environ. 2017, 41, 834–849. [Google Scholar] [CrossRef]
- Turney, C.S.M.; Jones, R.T.; Fogwill, C.; Hatton, J.; Williams, A.N.; Hogg, A.; Thomas, Z.A.; Palmer, J.; Mooney, S.; Reimer, R.W. A 250-year periodicity in Southern Hemisphere westerly winds over the last 2600 years. Clim. Past 2016, 12, 189–200. [Google Scholar] [CrossRef] [Green Version]
- National Snow and Ice Data Center, University of Colorado, Boulder. Available online: https://nsidc.org/ (accessed on 12 March 2019).
- Bazin, L.; Landais, A.; Lemieux-Dudon, B.; Kele, H.T.M.; Veres, D.; Parrenin, F.; Martinerie, P.; Ritz, C.; Capron, E.; Lipenkov, V.; et al. An optimized multi-proxy, multi-site Antarctic ice and gas orbital chronology (AICC2012): 120–800 ka. Clim. Past 2013, 9, 1715–1731. [Google Scholar] [CrossRef]
- Seidov, D. Meltwater and the global ocean conveyor: Northern versus southern connections. Glob. Planet. Chang. 2001, 30, 257–270. [Google Scholar] [CrossRef]
- Kleiven, H.F.; Kissel, C.; Laj, C.; Ninnemann, S.; Richter, T.O.; Cortijo, E. Reduced North Atlantic Deep Water coeval with the glacial Lake Agassiz freshwater outburst. Science 2008, 319, 60–64. [Google Scholar] [CrossRef] [PubMed]
- Galaasen, E.V.; Ninnemann, U.S.; Irvali, N.; Kleiven, H.F.; Rosenthal, Y.; Kissel, C.; Hodell, D.A. Rapid reductions in North Atlantic Deep Water during the peak of the last interglacial period. Sci. Exp. 2014, 343, 1129–1132. [Google Scholar] [CrossRef] [PubMed]
- Masuda, S.; Awaji, T.; Sugiura, N.; Matthews, J.P.; Toyoda, T.; Kawai, Y.; Doi, T.; Kouketsu, S.; Igarashi, H.; Katsumata, K.; et al. Simulated rapid warming of abyssal North Pacific waters. Sci. Exp. 2010, 329, 319–322. [Google Scholar] [CrossRef] [PubMed]
- Meredith, M.P.; Gordon, A.L.; Garabato, A.C.N.; Abrahamsen, P.; Huber, B.A.; Jullion, L.; Venables, H.J. Synchronous intensification and warming of Antarctic Bottom Water outflow from the Weddell Gyre. Geophys. Res. Lett. 2011, 38. [Google Scholar] [CrossRef] [Green Version]
- Yuan, X.; Martinson, D.G. Antarctic sea ice extent variability and its global connectivity. J. Clim. 2000, 13, 1697–1717. [Google Scholar] [CrossRef]
- Vettoretti, G.; Peltier, W.R. Interhemispheric air temperature phase relationships in the nonlinear Dansgaard-Oeschger oscillation. Geophys. Res. Lett. 2015, 42, 1180–1189. [Google Scholar] [CrossRef]
- Blunier, T.; Nunberg, J.H. Timing of millennial-scale climate change in Antarctica and Greenland during the last glacial period. Science 2001, 291, 109–112. [Google Scholar] [CrossRef] [PubMed]
- Bromwich, D.H. Snowfall in high southern latitudes. Rev. Geophys. 1988, 26, 149–168. [Google Scholar] [CrossRef] [Green Version]
- Baggett, C.; Feldstein, S.; Lee, S. An investigation of the presence of atmospheric rivers over the North Pacific during planetary-scale wave life cycles and their role in Arctic warming. J. Atmos. Sci. 2016, 73, 4329–4347. [Google Scholar] [CrossRef]
- Feldstein, S.B.; Held, I.M. Barotropic decay of baroclinic waves in a two-layer beta-plane model. J. Atmos. Sci. 1989, 46, 3416–3430. [Google Scholar] [CrossRef]
- Yokoyama, Y.; Lambeck, K.; De Deckker, P.; Johnston, P.; Fifield, L.K. Timing of the Last Glacial Maximum from observed sea-level minima. Nature 2000, 406, 713–716. [Google Scholar] [CrossRef] [PubMed]
- Huybers, P. Early Pleistocene glacial cycles and the integrated summer insolation forcing. Science 2006, 313, 508–511. [Google Scholar] [CrossRef] [PubMed]
- Huybers, P. Combined obliquity and precession pacing of late Pleistocene deglaciations. Nature 2011, 480, 229–232. [Google Scholar] [CrossRef] [PubMed]
- Heinrich, H. Origin and consequences of cyclic ice rafting in the northeast Atlantic Ocean during the past 130,000 years. Quat. Res. 1988, 29, 142–152. [Google Scholar] [CrossRef]
- Dansgaard, W.; Johnsen, S.J.; Clausen, H.B.; Dahl-Jensen, D.; Gundestrup, N.S.; Hammer, C.U.; Hvidberg, C.S.; Steffensen, J.P.; Svelnbjörnsdottir, A.E.; Jouzel, J.; et al. Evidence for general instability of past climate from a 250-kyr ice-core record. Nature 1993, 364, 218–220. [Google Scholar] [CrossRef]
- Bond, G.; Broecker, W.; Johnsen, S.; McManus, J.; Labeyrie, L.; Jouzel, J.; Bonani, G. Correlations between climate records from North Atlantic sediments and Greenland ice. Nature 1993, 365, 143–147. [Google Scholar] [CrossRef]
- Bond, G.C.; Lotti, R. Iceberg Discharges into the North Atlantic on millennial time scales during the last glaciation. Science 1995, 267, 1005–1010. [Google Scholar] [CrossRef]
- Bond, G. A Pervasive millennial-scale cycle in North Atlantic Holocene and glacial climates. Science 1997, 278, 1257–1266. [Google Scholar] [CrossRef]
- Bond, G.C.; Showers, W.; Elliot, M.; Evans, M.N.; Lotti, R.; Hajdas, I.; Bonani, G.; Johnsen, S. The North Atlantic’s 1–2 kyr Climate Rhythm: Relation to Heinrich Events, Dansgaard/Oeschger Cycles and the Little Ice Age. In Mechanisms of Global Climate Change at Millennial Time Scales; Clark, P.U., Webb, R.S., Keigwin, L.D., Eds.; American Geophysical Union: Washington, DC, USA, 1999; pp. 35–68. ISBN 0-87590-095-X. [Google Scholar]
- Bond, G.; Kromer, B.; Beer, J.; Muscheler, R.; Evans, M.N.; Showers, W.; Hoffmann, S.; Lotti-Bond, R.; Hajdas, I.; Bonani, G. Persistent solar influence on North Atlantic climate during the Holocene. Science 2001, 294, 2130–2136. [Google Scholar] [CrossRef]
- Ditlevsen, P.D.; Andersen, K.K.; Svensson, A. The DO-climate events are probably noise induced: Statistical investigation of the claimed 1470 years cycle. Clim. Past 2007, 3, 129–134. [Google Scholar] [CrossRef]
- Obrochta, S.P.; Miyahara, H.; Yokoyama, Y.; Crowley, T.J. A re-examination of evidence for the North Atlantic “1500-year cycle” at Site 609. Quat. Sci. Rev. 2012, 55, 23–33. [Google Scholar] [CrossRef]
- Vasiliev, S.S.; Dergachev, V.A. The~2400-year cycle in atmospheric radiocarbon concentration: Bispectrum of 14C data over the last 8000 years. Ann. Geophys. 2002, 20, 115–120. [Google Scholar] [CrossRef]
- Usoskin, I.; Gallet, Y.; Lopes, F.; Kovaltsov, G.A.; Hulot, G. Solar activity during the Holocene: The Hallstatt cycle and its consequence for grand minima and maxima. Astron. Astrophys. 2016, 587. [Google Scholar] [CrossRef]
- Scafetta, N.; Milani, F.; Bianchini, A.; Ortolani, S. On the astronomical origin of the Hallstatt oscillation found in radiocarbon and climate records throughout the Holocene. Earth Sci. Rev. 2016, 162, 24–43. [Google Scholar] [CrossRef] [Green Version]
- Broecker, W.S.; Peacock, S.L.; Walker, S.; Weiss, R.; Farbach, E.; Schroeder, M.; Mikolajewicz, U.; Heinze, C.; Key, R.; Peng, T.-H.; et al. How much deep water is formed in the Southern Ocean? J. Geophys. Res. Space Phys. 1998, 103, 15833–15843. [Google Scholar] [CrossRef]
- Harris, P.T. Ripple cross-laminated sediments on the East Antarctic shelf: Evidence for episodic bottom water production during the Holocene? Mar. Geol. 2000, 170, 317–330. [Google Scholar] [CrossRef]
- Harris, P.T.; Brancolini, G.; Armand, L.; Busetti, M.; Beaman, R.J.; Giorgetti, G.; Presti, M.; Trincardi, F. Continental shelf drift deposit indicates non-steady state Antarctic bottom water production in the Holocene. Mar. Geol. 2001, 179, 1–8. [Google Scholar] [CrossRef]
- Olbers, D.; Borowski, D.; Völker, C.; Wölff, J.O. The dynamical balance, transport and circulation of the Antarctic Circumpolar Current. Antarct. Sci. 2004, 16, 439–470. [Google Scholar] [CrossRef] [Green Version]
- Tamura, T.; Ohshima, K.I.; Nihashi, S. Mapping of sea ice production for Antarctic coastal polynyas. Geophys. Res. Lett. 2008, 35, L07606. [Google Scholar] [CrossRef]
- Kusahara, K.; Hasumi, H.; Williams, G.D. Impact of the Mertz Glacier Tongue calving on dense water formation and export. Nat. Commun. 2011, 2, 159. [Google Scholar] [CrossRef] [PubMed]
- Van Sebille, E.; Spence, P.; Mazloff, M.R.; England, M.H.; Rintoul, S.R.; Saenko, O.A. Abyssal connections of Antarctic Bottom Water in a Southern Ocean state estimate. Geophys. Res. Lett. 2013, 40, 2177–2182. [Google Scholar] [CrossRef]
- Ohshima, K.I.; Fukamachi, Y.; Williams, G.D.; Nihashi, S.; Roquet, F.; Kitade, Y.; Tamura, T.; Hirano, D.; Herraiz-Borreguero, L.; Field, I.; et al. Antarctic Bottom Water production by intense sea-ice formation in the Cape Darnley polynya. Nat. Geosci. 2013, 6, 235–240. [Google Scholar] [CrossRef]
- Purkey, S.G.; Johnson, G.C. Antarctic bottom water warming and freshening: Contributions to sea level rise, ocean freshwater budgets, and global heat gain. J. Clim. 2013, 26, 6105–6122. [Google Scholar] [CrossRef]
- Waugh, D.W. Changes in the ventilation of the southern oceans. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2014, 372, 20130269. [Google Scholar] [CrossRef] [PubMed]
- Toggweiler, J.R.; Russell, J.L.; Carson, S.R. Midlatitude westerlies, atmospheric CO2, and climate change during the ice ages. Paleoceanography 2006, 21, PA2005. [Google Scholar] [CrossRef]
- Watson, A.J.; Garabato, A.C.N. The role of Southern Ocean mixing and upwelling in glacial-interglacial atmospheric CO2 change. Tellus B Chem. Phys. Meteorol. 2006, 58, 73–87. [Google Scholar] [CrossRef]
- Bouttes, N.; Paillard, D.; Roche, D.M. Impact of brine-induced stratification on the glacial carbon cycle. Clim. Past 2010, 6, 575–589. [Google Scholar] [CrossRef] [Green Version]
- Skinner, L.C.; Fallon, S.; Waelbroeck, C.; Michel, E.; Barker, S. Ventilation of the deep Southern Ocean and deglacial CO2 rise. Science 2010, 328, 1147–1151. [Google Scholar] [CrossRef] [PubMed]
- Völker, C.; Köhler, P. Responses of ocean circulation and carbon cycle to changes in the position of the Southern Hemisphere westerlies at Last Glacial Maximum. Paleoceanography 2013, 28, 726–739. [Google Scholar] [CrossRef] [Green Version]
- Ferrari, R.; Jansen, M.F.; Adkins, J.F.; Burke, A.; Stewart, A.L.; Thompson, A.F. Antarctic sea ice control on ocean circulation in present and glacial climates. Proc. Natl. Acad. Sci. USA 2014, 111, 8753–8758. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Watson, A.J.; Vallis, G.K.; Nikurashin, M. Southern Ocean buoyancy forcing of ocean ventilation and glacial atmospheric CO2. Nat. Geosci. 2015, 8, 861–864. [Google Scholar] [CrossRef]
- Porter, S.E.; Parkinson, C.L.; Mosley-Thompson, E. Bellingshausen sea ice extent recorded in an Antarctic Peninsula ice core. J. Geophys. Res. Atmos. 2016, 121, 886. [Google Scholar] [CrossRef]
- Parkinson, C.L. Southern Ocean sea ice and its wider linkages: Insights revealed from models and observations. Antarct. Sci. 2004, 16, 387–400. [Google Scholar] [CrossRef]
- Turner, J.; Bindschadler, R.; Convey, P.; di Prisco, G.; Fahrbach, E.; Gutt, J.; Hodgson, D.; Mayewski, P.; Summerhayes, C. (Eds.) Antarctic Climate Change and the Environment; Scientific Committee on Antarctic Research/Scott Polar Research Institute: Cambridge, UK, 2009; ISBN 978-0-948277-22-1. [Google Scholar]
- Tomczak, M.; Godfrey, J.S. Regional Oceanography: An Introduction; Elsevier Science Inc.: Tarrytown, NY, USA, 1994. [Google Scholar]
- Moreno, P.I.; Francois, J.P.; Villa-Martínez, R.; Moy, C.M. Millennial-scale variability in Southern Hemisphere westerly wind activity over the last 5000 years in SW Patagonia. Quat. Sci. Rev. 2009, 28, 25–38. [Google Scholar] [CrossRef]
- Lamy, F.; Hebbeln, D.; Röhl, U.; Wefer, G. Holocene rainfall variability in southern Chile: A marine record of latitudinal shifts of the Southern Westerlies. Earth Planet Sci. Lett. 2001, 185, 369–382. [Google Scholar] [CrossRef]
- McDermott, F. Centennial-scale Holocene climate variability revealed by a high-resolution speleothem delta O-18 record from SW Ireland. Science 2005, 309, 1816. [Google Scholar] [CrossRef]
- Hall, A.; Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Clim. 2002, 15, 3043–3057. [Google Scholar] [CrossRef]
- Stott, L.; Timmermann, A.; Thunell, R. Southern Hemisphere and deep-sea warming led deglacial atmospheric CO2 rise and tropical warming. Science 2007, 318, 435–438. [Google Scholar] [CrossRef]
- Anderson, R.F.; Ali, S.; Bradtmiller, L.I.; Nielsen, S.H.H.; Fleisher, M.Q.; Anderson, B.E.; Burckle, L.H. Wind-driven upwelling in the Southern Ocean and the deglacial rise in atmospheric CO2. Science 2009, 323, 1443–1448. [Google Scholar] [CrossRef]
- Denton, G.H.; Anderson, R.F.; Toggweiler, J.R.; Edwards, R.L.; Schaefer, J.M.; Putnam, A.E. The Last Glacial Termination. Science 2010, 328, 1652–1656. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moreno, P.; Francois, J.; Moy, C.; Villa-Martínez, R. Covariability of the Southern Westerlies and atmospheric CO2 during the Holocene. Geology 2010, 38, 727–730. [Google Scholar] [CrossRef]
- Yu, J.; Broecker, W.S.; Elderfield, H.; Jin, Z.; McManus, J.; Zhang, F. Loss of carbon from the deep sea since the Last Glacial Maximum. Science 2010, 330, 1084–1087. [Google Scholar] [CrossRef]
- Skinner, L.; Scrivner, A.; Vance, D.; Barker, S.; Fallon, S.; Waelbroeck, C. North Atlantic versus Southern Ocean contributions to a deglacial surge in deep ocean ventilation. Geology 2013, 41, 667–670. [Google Scholar] [CrossRef]
- Skinner, L.C.; Waelbroeck, C.; Scrivner, A.E.; Fallon, S.J. Radiocarbon evidence for alternating northern and southern sources of ventilation of the deep Atlantic carbon pool during the last deglaciation. Proc. Natl. Acad. Sci. USA 2014, 111, 5480–5484. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Burke, A.; Robinson, L.F. The Southern Ocean’s role in carbon exchange during the last deglaciation. Science 2012, 335, 557–561. [Google Scholar] [CrossRef]
- Hayakawa, H.; Shibuya, K.; Aoyama, Y.; Nogi, Y.; Doi, K. Ocean bottom pressure variability in the Antarctic Divergence Zone off Lützow-Holm Bay, East Antarctica. Deep Sea Res. Part I Oceanogr. Res. Pap. 2012, 60, 22–31. [Google Scholar] [CrossRef]
- Spence, P.; Griffies, S.M.; England, M.; Hogg, A.M.; Saenko, O.A.; Jourdain, N. Rapid subsurface warming and circulation changes of Antarctic coastal waters by poleward shifting winds. Geophys. Res. Lett. 2014, 41, 4601–4610. [Google Scholar] [CrossRef] [Green Version]
- Prasanna, K.; Ghosh, P.; Kumar, N.A. Stable isotopic signature of Southern Ocean deep water CO2 ventilation. Deep Sea Res. Part II Top. Stud. Oceanogr. 2015, 118, 177–185. [Google Scholar] [CrossRef]
- Greene, C.A.; Blankenship, D.D.; Gwyther, D.E.; Silvano, A.; Van Wijk, E. Wind causes Totten Ice Shelf melt and acceleration. Sci. Adv. 2017, 3, e1701681. [Google Scholar] [CrossRef]
- Menviel, L.; Spence, P.; Yu, J.; Chamberlain, M.A.; Matear, R.J.; Meissner, K.J.; England, M.H. Southern Hemisphere westerlies as a driver of the early deglacial atmospheric CO2 rise. Nat. Commun. 2018, 9, 2503. [Google Scholar] [CrossRef] [PubMed]
- Tamura, T.; Williams, G.; Fraser, A.; Ohshima, K. Potential regime shift in decreased sea ice production after the Mertz Glacier calving. Nat. Commun. 2012, 3, 826. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Rignot, E. Rapid bottom melting widespread near Antarctic ice sheet grounding lines. Science 2002, 296, 2020–2023. [Google Scholar] [CrossRef] [PubMed]
- Shepherd, A.; Wingham, D.; Rignot, E. Warm ocean is eroding West Antarctic ice sheet. Geophys. Res. Lett. 2004, 31, L23402. [Google Scholar] [CrossRef]
- Pritchard, H.D.; Ligtenberg, S.R.M.; Fricker, H.A.; Vaughan, D.G.; Broeke, M.R.V.D.; Padman, L. Antarctic ice-sheet loss driven by basal melting of ice shelves. Nature 2012, 484, 502–505. [Google Scholar] [CrossRef] [PubMed]
- Depoorter, M.A.; Bamber, J.L.; Griggs, J.A.; Lenaerts, J.T.M.; Ligtenberg, S.R.M.; Broeke, M.R.V.D.; Moholdt, G. Calving fluxes and basal melt rates of Antarctic ice shelves. Nature 2013, 502, 89–92. [Google Scholar] [CrossRef]
- Rignot, E.; Jacobs, S.; Mouginot, J.; Scheuchl, B. Ice-shelf melting around Antarctica. Science 2013, 341, 266–270. [Google Scholar] [CrossRef]
- Schmidtko, S.; Heywood, K.J.; Thompson, A.F.; Aoki, S. Multidecadal warming of Antarctic waters. Science 2014, 346, 1227–1231. [Google Scholar] [CrossRef] [Green Version]
- Gille, S.T. How ice shelves melt. Science 2014, 346, 1180–1181. [Google Scholar] [CrossRef]
- Paolo, F.S.; Fricker, H.A.; Padman, L. Volume loss from Antarctic ice shelves is accelerating. Science 2015, 348, 327–331. [Google Scholar] [CrossRef] [Green Version]
- Buizert, C.; Sigl, M.; Severi, M.; Markle, B.R.; Wettstein, J.J.; McConnell, J.R.; Pedro, J.B.; Sodemann, H.; Goto-Azuma, K.; Kawamura, K.; et al. Abrupt ice-age shifts in southern westerly winds and Antarctic climate forced from the north. Nature 2018, 563, 681–685. [Google Scholar] [CrossRef] [PubMed]
- Carnot, S. Réflexions sur la puissance motrice du feu et sur les machines propres à développer cette puissance. Annales scientifiques de l’École Normale Supérieure 1872, 1, 393–457. [Google Scholar] [CrossRef]
- Kleidon, A.; Lorenz, R. Entropy Production by Earth System Processes. In Non-equilibrium Thermodynamics and the Production of Entropy. Understanding Complex Systems; Kleidon, A., Lorenz, R.D., Eds.; Springer: Berlin/Heidelberg, Germany, 2005; pp. 1–20. ISBN 978-3-540-22495-2. [Google Scholar]
- Laliberté, F.; Zika, J.; Mudryk, L.; Kushner, P.J.; Kjellsson, J.; Döös, K. Constrained work output of the moist atmospheric heat engine in a warming climate. Science 2015, 347, 540–543. [Google Scholar] [CrossRef] [PubMed]
- Blunden, J.; Arndt, D.S.; Hartfield, G. (Eds.) State of the Climate in 2017. Bull. Amer. Meteor. Soc. 2018, 99, Si–S310. [Google Scholar] [CrossRef]
- Gong, D.; Wang, S. Antarctic oscillation: Concept and applications. Chin. Sci. Bull. 1998, 43, 734–738. [Google Scholar] [CrossRef]
- Lovenduski, N.S.; Gruber, N. Impact of the Southern Annular Mode on Southern Ocean circulation and biology. Geophys. Res. Lett. 2005, 32, L11603. [Google Scholar] [CrossRef]
- Gillett, N.P.; Kell, T.D.; Jones, P.D. Regional climate impacts of the Southern Annular Mode. Geophys. Res. Lett. 2006, 33, L23704. [Google Scholar] [CrossRef]
- Hauck, J.; Völker, C.; Wang, T.; Hoppema, M.; Losch, M.; Wolf-Gladrow, D.A. Seasonally different carbon flux changes in the Southern Ocean in response to the southern annular mode. Glob. Biogeochem. Cycles 2013, 27, 1236–1245. [Google Scholar] [CrossRef] [Green Version]
- Langlais, C.E.; Rintoul, S.R.; Zika, J.D. Sensitivity of Antarctic Circumpolar Current transport and eddy activity to wind patterns in the Southern Ocean. J. Phys. Oceanogr. 2015, 45, 1051–1067. [Google Scholar] [CrossRef]
- Glasby, G.P. Antarctic Sector of the Pacific; Elsevier: New York, NY, USA, 1990; ISBN 0-444-88510-2. [Google Scholar]
- Gille, S.T. Meridional displacement of the Antarctic Circumpolar Current. Phil. Trans. R. Soc. A 2014, 372, 20130273. [Google Scholar] [CrossRef]
- Couldrey, M.P.; Jullion, L.; Garabato, A.C.N.; Rye, C.; Herraiz-Borreguero, L.; Brown, P.J.; Meredith, M.P.; Speer, K.L.; Herraiz-Borreguero, L. Remotely induced warming of Antarctic Bottom Water in the eastern Weddell gyre. Geophys. Res. Lett. 2013, 40, 2755–2760. [Google Scholar] [CrossRef] [Green Version]
- Knauss, J.A. Introduction to Physical Oceanography, 2nd ed.; Prentice-Hall, Inc.: Upper Saddle River, NJ, USA, 1997; pp. 152–156. [Google Scholar]
- Karsten, R.; Jones, H.; Marshall, J. The role of eddy transfer in setting the stratification and transport of a circumpolar current. J. Phys. Oceanogr. 2002, 32, 39–54. [Google Scholar] [CrossRef]
- Bryden, H.L.; Cunningham, S.A. How wind-forcing and air-sea heat exchange determine the meridional temperature gradient and stratification for the Antarctic Circumpolar Current. J. Geophys. Res. 2003, 108, 3275. [Google Scholar] [CrossRef]
- Thompson, A.F.; Heywood, K.J.; Schmidtko, S.; Stewart, A.L. Eddy transport as a key component of the Antarctic overturning circulation. Nat. Geosci. 2014, 7, 879–884. [Google Scholar] [CrossRef]
- Stewart, A.L.; Thompson, A.F. Eddy-mediated transport of warm Circumpolar Deep Water across the Antarctic Shelf Break. Geophys. Res. Lett. 2015, 42, 432–440. [Google Scholar] [CrossRef]
- Dierssen, H.M.; Smith, R.C.; Vernet, M. Glacial meltwater dynamics in coastal waters west of the Antarctic peninsula. Proc. Natl. Acad. Sci. USA 2002, 99, 1790–1795. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Van der Pol, B. On “relaxation-oscillations”. Lond. Edin. Dub. Philosoph. Mag. J. Sci. (Philosoph. Mag. Since 1949) 1926, 11, 978–992. [Google Scholar] [CrossRef]
- Lorenz, E.N. Deterministic non-periodic flow. J. Atmos. Sci. 1963, 20, 130–141. [Google Scholar] [CrossRef]
- Källén, E.; Crafoord, C.; Ghil, M. Free oscillations in a climate model with ice-sheet dynamics. J. Atmos. Sci. 1979, 36, 2292–2303. [Google Scholar] [CrossRef]
- Ghil, M.; Le Treut, H. A climate model with cryodynamics and geodynamics. J. Geophys. Res. Ocean 1981, 86, 5262–5270. [Google Scholar] [CrossRef]
- Yiou, P.; Ghil, M.; Jouzel, J.; Paillard, D.; Vautard, R. Nonlinear variability of the climatic system from singular and power spectra of Late Quaternary records. Clim. Dyn. 1994, 9, 371–389. [Google Scholar] [CrossRef]
- Paillard, D. Glacial cycles: Toward a new paradigm. Rev. Geophys. 2001, 39, 325–346. [Google Scholar] [CrossRef] [Green Version]
- Crucifix, M. Oscillators and relaxation phenomena in Pleistocene climate theory. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 2012, 370, 1140–1165. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shevenell, A.E.; Ingalls, A.E.; Domack, E.W.; Kelly, C. Holocene Southern Ocean surface temperature variability west of the Antarctic Peninsula. Nature 2011, 470, 250–254. [Google Scholar] [CrossRef] [PubMed]
- Latif, M.; Martin, T.; Reintges, A.; Park, W. Southern Ocean decadal variability and predictability. Curr. Clim. Chang. Rep. 2017, 3, 163–173. [Google Scholar] [CrossRef]
- Etourneau, J.; Collins, L.G.; Willmott, V.; Kim, J.H.; Barbara, L.; Leventer, A.; Schouten, S.; Damste, J.S.S.; Bianchini, A.; Klein, V.; et al. Holocene climate variations in the western Antarctic Peninsula: Evidence for sea ice extent predominantly controlled by changes in insolation and ENSO variability. Clim. Past 2013, 9, 1431–1446. [Google Scholar] [CrossRef]
- Koffman, B.G.; Kreutz, K.J.; Breton, D.J.; Kane, E.J.; Winski, D.A.; Birkel, S.D.; Kurbatov, A.V.; Handley, M.J. Centennial-scale shifts in the position of the Southern Hemisphere westerly wind belt over the past millennium. Clim. Past Discuss. 2013, 9, 3125–3174. [Google Scholar] [CrossRef]
- Pedro, J.; Martin, T.; Steig, E.J.; Jochum, M.; Park, W.; Rasmussen, S.O. Southern Ocean deep convection as a driver of Antarctic warming events. Geophys. Res. Lett. 2016, 43, 2192–2199. [Google Scholar] [CrossRef] [Green Version]
- Martin, T.; Park, W.; Latif, M. Multi-centennial variability controlled by Southern Ocean convection in the Kiel Climate Model. Clim. Dyn. 2013, 40, 2005–2022. [Google Scholar] [CrossRef]
- DeConto, R.; Pollard, D.; Harwood, D. Sea ice feedback and Cenozoic evolution of Antarctic climate and ice sheets. Paleoceanography 2007, 22, 3214. [Google Scholar] [CrossRef]
- Pollard, D.; DeConto, R.M. Modelling West Antarctic ice sheet growth and collapse through the past five million years. Nature 2009, 458, 329–332. [Google Scholar] [CrossRef]
- Cavalieri, D.J.; Martin, S. A Passive Microwave Study of Polynyas along the Antarctic Wilkes Land Coast. In Antarctic Research Series; American Geophysical Union (AGU): Washington, DC, USA, 1985; Volume 43, pp. 227–252. [Google Scholar]
- Williams, G.D.; Herraiz-Borreguero, L.; Roquet, F.; Tamura, T.; Ohshima, K.I.; Fukamachi, Y.; Fraser, A.D.; Gao, L.; Chen, H.; McMahon, C.R.; et al. The suppression of Antarctic bottom water formation by melting ice shelves in Prydz Bay. Nat. Commun. 2016, 7, 12577. [Google Scholar] [CrossRef] [PubMed]
- Nihashi, S.; Ohshima, K.I. Circumpolar Mapping of Antarctic coastal polynyas and landfast sea ice: Relationship and variability. J. Clim. 2015, 28, 3650–3670. [Google Scholar] [CrossRef]
- Roberts, A.; Allison, I.; Lytle, V.I. Sensible- and latent-heat-flux estimates over the Mertz Glacier polynya, East Antarctica, from in-flight measurements. Ann. Glaciol. 2001, 33, 377–384. [Google Scholar] [CrossRef] [Green Version]
- Maqueda, M.A.M.; Willmott, A.J.; Biggs, N.R.T. Polynya dynamics: A review of observations and modeling. Rev. Geophys. 2004, 42, 1–37. [Google Scholar] [CrossRef]
- Fusco, G.; Budillon, G.; Spezie, G. Surface heat fluxes and thermohaline variability in the Ross Sea and in Terra Nova Bay polynya. Cont. Shelf Res. 2009, 29, 1887–1895. [Google Scholar] [CrossRef]
- Fiedler, E.K.; Lachlan-Cope, T.A.; Renfrew, I.A.; King, J.C. Convective heat transfer over thin ice covered coastal polynyas. J. Geophys. Res. Space Phys. 2010, 115, 10051. [Google Scholar] [CrossRef]
- De Lavergne, C.; Palter, J.B.; Galbraith, E.D.; Bernardello, R.; Marinov, I. Cessation of deep convection in the open Southern Ocean under anthropogenic climate change. Nat. Clim. Chang. 2014, 4, 278–282. [Google Scholar] [CrossRef]
- Paul, S.; Willmes, S.; Heinemann, G. Long-term coastal-polynya dynamics in the southern Weddell Sea from MODIS thermal-infrared imagery. Cryosphere 2015, 9, 2027–2041. [Google Scholar] [CrossRef] [Green Version]
- Ohshima, K.I.; Nihashi, S.; Iwamoto, K. Global view of sea-ice production in polynyas and its linkage to dense/bottom water formation. Geosci. Lett. 2016, 3, 13. [Google Scholar] [CrossRef]
- Parish, T.R.; Bromwich, D.H. Continental-scale simulation of the Antarctic katabatic wind regime. J. Clim. 1991, 4, 135–146. [Google Scholar] [CrossRef]
- Massom, R.A.; Harris, P.; Michael, K.J.; Potter, M. The distribution and formative processes of latent-heat polynyas in East Antarctica. Ann. Glaciol. 1998, 27, 420–426. [Google Scholar] [CrossRef] [Green Version]
- Parish, T.R.; Cassano, J.J. The Role of katabatic winds on the Antarctic surface wind regime. Mon. Weather Rev. 2003, 131, 317–333. [Google Scholar] [CrossRef]
- Rusciano, E.; Budillon, G.; Fusco, G.; Spezie, G. Evidence of atmosphere-sea-ice-ocean coupling in the Terra Nova Bay polynya (Ross Sea—Antarctica). Cont. Shelf Res. 2013, 61, 112–124. [Google Scholar] [CrossRef]
- Jacobs, S.S.; Giulivi, C.F. Large multidecadal salinity trends near the Pacific–Antarctic continental margin. J. Clim. 2010, 23, 4508–4524. [Google Scholar] [CrossRef]
- Lax, J.N.; Schwerdtfeger, W. Terrain-induced vertical motion and occurrence of ice crystal fall at South Pole in summer. Antarct. J. U.S. 1976, 9, 144–145. [Google Scholar]
- Ohtake, T.; Inoue, M. Formation Mechanism of Ice Crystal Precipitation in the Antarctic Atmosphere. In Proceedings of the 8th International Conference on Cloud Physics, Laboratoire Associe de Meteorologie, Clermont-Ferrand, France; 1980; pp. 221–224. [Google Scholar]
- Smiley, V.N.; Whitcomb, B.M.; Morley, B.M.; Warburton, J.A. Lidar determinations of atmospheric ice crystal layers at South Pole during clear-sky precipitation. J. Appl. Meteorol. 1980, 19, 1074–1090. [Google Scholar] [CrossRef]
- Inoue, M.; Ohtake, T.; Wakahama, G. Summer precipitation onto the south polar plateau. Merm. Natl. Polar Res. Spec. Issue Jpn. 1984, 34, 70–86. [Google Scholar]
- Birnbaum, G.; Brauner, R.; Ries, H. Synoptic situations causing high precipitation rates on the Antarctic plateau: Observations from Kohnen Station, Dronning Maud Land. Antarct. Sci. 2006, 18, 279–288. [Google Scholar] [CrossRef]
- Jullion, L.; Garabato, A.C.N.; Meredith, M.P.; Jones, S.C. Wind-controlled export of Antarctic Bottom Water from the Weddell Sea. Geophys. Res. Lett. 2010, 37, l09609. [Google Scholar] [CrossRef]
- Nicolas, J.P.; Bromwich, D.H. Climate of West Antarctica and influence of marine air intrusions. J. Clim. 2011, 24, 49–67. [Google Scholar] [CrossRef]
- Scott, R.C.; Lubin, D. Unique manifestations of mixed-phase cloud microphysics over Ross Island and the Ross Ice Shelf, Antarctica. Geophys. Res. Lett. 2016, 43, 2936–2945. [Google Scholar] [CrossRef]
- Murphey, B.B.; Hare, T.; Hogan, A.W.; Lieser, K.; Toman, J.; Woodgates, T. Vernal atmospheric mixing in the Antarctic. J. Appl. Meteorol. 1991, 30, 494–507. [Google Scholar] [CrossRef]
- Bromwich, D.H.; Nicolas, J.P.; Hines, K.M.; Kay, J.E.; Key, E.L.; Lazzara, M.A.; Lubin, D.; McFarquhar, G.M.; Gorodetskaya, I.V.; Grosvenor, D.P.; et al. Tropospheric clouds in Antarctica. Rev. Geophys. 2012, 50, 50. [Google Scholar] [CrossRef]
- Parish, T.R.; Bromwich, D.H. Reexamination of the near-surface airflow over the Antarctic continent and implications on atmospheric circulations at high southern latitudes. Mon. Weather. Rev. 2007, 135, 1961–1973. [Google Scholar] [CrossRef]
- Elverhøi, A.; Elverh, A. Evidence for a late Wisconsin glaciation of the Weddell Sea. Nature 1981, 293, 641–642. [Google Scholar] [CrossRef]
- Anderson, J.B.; Andrews, J.T. Radiocarbon constraints on ice sheet advance and retreat in the Weddell Sea, Antarctica. Geology 1999, 27, 179–182. [Google Scholar] [CrossRef]
- Anderson, J.B.; Shipp, S.S.; Lowe, A.L.; Wellner, J.S.; Mosola, A.B. The Antarctic ice sheet during the Last Glacial Maximum and its subsequent retreat history: A review. Quat. Sci. Rev. 2002, 21, 49–70. [Google Scholar] [CrossRef]
- Stolldorf, T.; Schenke, H.W.; Anderson, J.B. LGM ice sheet extent in the Weddell Sea: Evidence for diachronous behavior of Antarctic Ice Sheets. Quat. Sci. Rev. 2012, 48, 20–31. [Google Scholar] [CrossRef]
- Livingstone, S.J.; Cofaigh, C.Ó.; Stokes, C.R.; Hillenbrand, C.D.; Vieli, A.; Jamieson, S.S. Antarctic palaeo-ice streams. Earth Sci. Rev. 2012, 111, 90–128. [Google Scholar] [CrossRef] [Green Version]
- Hillenbrand, C.D.; Bentley, M.J.; Stolldorf, T.D.; Hein, A.S.; Kuhn, G.; Graham, A.G.; Fogwill, C.J.; Kristoffersen, Y.; Smith, J.A.; Anderson, J.B.; et al. Reconstruction of changes in the Weddell Sea sector of the Antarctic Ice Sheet since the Last Glacial Maximum. Quat. Sci. Rev. 2014, 100, 111–136. [Google Scholar] [CrossRef]
- Clark, P.U.; Dyke, A.S.; Shakun, J.D.; Carlson, A.E.; Clark, J.; Wohlfarth, B.; Mitrovica, J.X.; Hostetler, S.W.; McCabe, A.M. The Last Glacial Maximum. Science 2009, 325, 710–714. [Google Scholar] [CrossRef] [Green Version]
- Weber, M.E.; Clark, P.U.; Ricken, W.; Mitrovica, J.X.; Hostetler, S.W.; Kuhn, G. Interhemispheric ice-sheet synchronicity during the Last Glacial Maximum. Science 2011, 334, 1265–1269. [Google Scholar] [CrossRef]
- Bentley, M.J.; Cofaigh, C.Ó.; Anderson, J.B.; Conway, H.; Davies, B.; Graham, A.G.; Hillenbrand, C.D.; Hodgson, D.A.; Jamieson, S.S.; Larter, R.D.; et al. A community-based geological reconstruction of Antarctic ice sheet deglaciation since the Last Glacial Maximum. Quat. Sci. Rev. 2014, 100, 1–9. [Google Scholar] [CrossRef]
- Hein, A.S.; Marrero, S.M.; Woodward, J.; Dunning, S.A.; Winter, K.; Westoby, M.J.; Freeman, S.P.H.T.; Shanks, R.P.; Sugden, D.E. Mid-Holocene pulse of thinning in the Weddell Sea sector of the West Antarctic ice sheet. Nat. Commun. 2016, 7, 12511. [Google Scholar] [CrossRef] [Green Version]
- Kwok, R.; Comiso, J.C. Spatial patterns of variability in Antarctic surface temperature: Connections to the Southern Hemisphere Annular Mode and the Southern Oscillation. Geophys. Res. Lett. 2002, 29, 50-1. [Google Scholar] [CrossRef]
- Turner, J.; Colwell, S.R.; Marshall, G.J.; Carleton, A.M.; Jones, P.D.; Lagun, V.; Reid, P.A.; Iagovkina, S.; Lachlan-Cope, T.A. Antarctic climate change during the last 50 years. Int. J. Clim. 2005, 25, 279–294. [Google Scholar] [CrossRef]
- Nicolas, J.P.; Bromwich, D.H. New reconstruction of Antarctic near-surface temperatures: Multidecadal trends and reliability of global re-analyses. J. Clim. 2014, 27, 8070–8093. [Google Scholar] [CrossRef]
- Broeke, M.R.V.D.; Van Lipzig, N.P.M. Changes in Antarctic temperature, wind and precipitation in response to the Antarctic Oscillation. Ann. Glaciol. 2004, 39, 119–126. [Google Scholar] [CrossRef] [Green Version]
- Kaufman, D.S.; Ager, T.A.; Anderson, N.J.; Anderson, P.M.; Andrews, J.T.; Bartlein, P.J.; Brubaker, L.B.; Coats, L.L.; Cwynar, L.C.; Duvall, M.L.; et al. Holocene thermal maximum in the western Arctic (0–180 W). Quatern. Sci. Rev. 2004, 23, 529–560. [Google Scholar] [CrossRef]
- Kraus, M.; Matthiessen, J.; Stein, R. A Holocene Marine Pollen Record from the Northern Yenisei Estuary (Southeastern Kara Sea, Siberia). In: Stein, R., Fahl, K., Fütterer, D.K. and Galimov, E. (eds.) (2003): Siberian River Run-Off in the Kara Sea: Characterization, Quantification, Variability and Environmental Significance. Proc. in Marine Sci. 2003, 6, 435–456. [Google Scholar]
- An, Z.; Porter, S.C.; Kutzbach, J.E.; Xihao, W.; Suming, W.; Xiaodong, L.; Xiaoqiang, L.; Weijian, Z. Asynchronous Holocene optimum of the East Asian monsoon. Quatern. Sci. Rev. 2000, 19, 743–762. [Google Scholar] [CrossRef]
- Zhou, W.; Yu, X.; Jull, A.J.T.; Burr, G.; Xiao, J.Y.; Lu, X.; Xiana, F. High-resolution evidence from southern China of an early Holocene optimum and a mid-Holocene dry event during the past 18,000 years. Quatern. Res. 2004, 62, 39–48. [Google Scholar] [CrossRef]
- SuYun, W.; HouYan, L.; JiaQi, L.; Negendank, J.F.W. The early Holocene optimum inferred from a high-resolution pollen record of Huguangyan Maar Lake in southern China. Chinese Sci. Bull. 2007, 52, 2829–2836. [Google Scholar] [CrossRef]
- Rintoul, S.R.; Hughes, C.W.; Olbers, D. The Antarctic circumpolar current system. Internat. Geophys. 2001, 77, 271–302. [Google Scholar] [CrossRef]
- Liu, Y.; Cai, Q.; Song, H.; An, Z.; Linderholm, H.W. Amplitudes, rates, periodicities and causes of temperature variations in the past 2485 years and future trends over the central-eastern Tibetan Plateau. Chinese Sci. Bull. 2011, 56, 2986–2994. [Google Scholar] [CrossRef] [Green Version]
- Bambach, R.K. Phanerozoic biodiversity mass extinctions. Annu. Rev. Earth Planet Sci. 2006, 34, 127–155. [Google Scholar] [CrossRef]
- Galgani, L.; Stolle, C.; Endres, S.; Schulz, K.; Engel, A. Effects of ocean acidification on the biogenic composition of the sea-surface microlayer: Results from a mesocosm study. J. Geophys. Res. Oceans 2014, 119, 7911–7924. [Google Scholar] [CrossRef] [Green Version]
- Doney, S.C.; Fabry, V.J.; Feely, R.A.; Kleypas, J.A. Ocean acidification: The other CO2 problem. Annu. Rev. Mar. Sci. 2009, 1, 169–192. [Google Scholar] [CrossRef]
- Weinbauer, M.G.; Mari, X.; Gattuso, J.P. Effects of Ocean Acidification on the Diversity and Activity of Heterotrophic Marine Microorganisms. In Ocean Acidification; Gattuso, J.P., Hansson, L., Eds.; Oxford University Press: New York, NY, USA, 2012; pp. 83–98. ISBN 978-0-19-959108-4. [Google Scholar]
- Teixidó, N.; Gambi, M.C.; Parravacini, V.; Kroeker, K.; Micheli, F.; Villéger, S.; Ballesteros, E. Functional biodiversity loss along natural CO2 gradients. Nat. Commun. 2018, 9, 5149. [Google Scholar] [CrossRef]
- Lupton, J.; Lilley, M.; Butterfield, D.; Evans, L.; Embley, R.; Massoth, G.; Christenson, B.; Nakamura, K.I.; Schmidt, M. Venting of a separate CO2-rich gas phase from submarine arc volcanoes: Examples from the Mariana and Tonga-Kermadec arcs. J. Geophys. Res. 2008, 113, B08S12. [Google Scholar] [CrossRef]
- McNeil, B.I.; Matear, R.J. Southern Ocean acidification: A tipping point at 450-ppm atmospheric CO2. Proc. Natl. Acad. Sci. USA 2008, 105, 18860–18864. [Google Scholar] [CrossRef]
- Keeling, R.; Piper, S.; Bollenbacher, A.; Walker, S. Atmospheric CO2 Records from Sites in the SIO Air Sampling Network. In Carbon Dioxide Information Analysis Center (CDIAC) Datasets; ORNL Environmental Sciences Division: Oak Ridge, TN, USA, 2009. [Google Scholar]
1. Cycle Parameter Correlated with Period | 2. ACO Temperature Proxies ([11], this Paper) | 3. AAO, Patagonia Pollen [88] | 4. AAO, Patagonia Pollen [13] | 5. AAO, Fe in North Atlantic Sediment Core [89] | 6. AAO, Speleotherm δ18O from Ireland [90] | 7. AAO, Falkland Islands Pollen [38] |
---|---|---|---|---|---|---|
Amplitude at cycleonset | r = −0.30 p < 0.0001 n = 624 | r = 0.15 p = 0.51 n = 22 | r = 0.03 p = 0.89 n = 24 | r = 0.47 p = 0.02 n = 24 | r = −0.04 p = 0.87 n = 20 | r = 0.21 p = 0.40 n = 18 |
Cycle amplitude | r = 0.21 p < 0.0001 n = 545 | r = −0.09 p = 0.75 n = 15 | r = 0.51 p = 0.01 n = 24 | r = 0.51 p = 0.01 n = 23 | r = 0.18 p = 0.50 n = 16 | r = 0.44 p = 0.12 n = 14 |
Cycle symmetry (duration) | r = −0.05 p = 0.48 n = 545 | r = −0.17 p = 0.45 n = 22 | r = −0.09 p = 0.68 n = 24 | r = 0.00 p = 1.0 n = 24 | r = 0.09 p = 0.71 n = 20 | r = −0.14 p = 0.59 n = 17 |
Cycle symmetry (rate) | r = 0.02 p = 0.48 n = 545 | r = 0.24 p = 0.39 n = 15 | r = 0.03 p = 0.91 n = 17 | r = −0.04 p = 0.87 n = 19 | r = 0.32 p = 0.37 n = 10 | r = −0.50 p = 0.07 n = 14 |
Warming duration | r = 0.77 p < 0.0001 n = 545 | r = 0.63 p = 0.001 n = 24 | r = 0.35 p = 0.09, n = 24 | r = 0.38 p = 0.07 n = 24 | r = 0.54 p = 0.01 n = 20 | r = 0.69 p = 0.002 n = 18 |
Cooling duration | r = 0.79 p < 0.0001 n = 545 | r = 0.75 p < 0.0001 n = 24 | r = 0.73 p < 0.0001 n = 24 | r = 0.31 p = 0.14 n = 24 | r = 0.41 p = 0.07 n = 20 | r = 0.73 p = 0.001 n = 18 |
Warming rate | r = −0.30 p < 0.0001 n = 545 | r = −0.40 p = 0.11 n = 18 | r = 0.02 p = 0.93 n = 24 | r = 0.10 p = 0.70 n = 17 | r = 0.21 p = 0.44 n = 16 | r = 0.004 p = 1.00 n = 14 |
Cooling rate | r = −0.20 p < 0.0001 n = 545 | r = −0.50 p = 0.04 n = 17 | r = −0.04 p = 0.85 n = 24 | r = −0.03 p = 0.91 n = 18 | r = 0.17 p = 0.53 n = 16 | r = 0.27 p = 0.35 n = 14 |
1. Cycles Compared, AAO Location, AAO Proxy, References | 2. Mean Periods of Cycles (y) | 3. Mean Duration Symmetries (Warming/Cooling) | 4. Mean Rate Symmetries (Warming/Cooling) |
---|---|---|---|
ACO v. AAO, Patagonia, pollen [88] | 145 (n = 21) 137 (n = 22) p = 0.70 | 1.36 (n = 22) 0.84 (n = 14) p = 0.79 | 1.26 (n = 23) 1.58 (n = 14) p = 0.39 |
ACO v. AAO, Patagonia, pollen [13,88] | 144 (n = 24) 120 (n = 24) p = 0.12 | 1.33 (n = 23) 1.27 (n = 24) p = 0.83 | 1.00 (n = 22) 1.39 (n = 23) p = 0.27 |
ACO v. AAO, NA, Fe in Sediment Core, [13,89] | 118 (n = 16) 107 (n = 24) p = 0.40 | 1.33 (n = 26) 1.26 (n = 24) p = 0.76 | 1.00 (n = 22) 1.75 (n = 20) p = 0.32 |
ACO v. AAO, δ18O in in Irish speleotherm [13,90] | 144 (n = 24) 146 (n = 20) p = 0.93 | 1.33 (n = 23) 1.25 (n = 20) p = 0.81 | 1.00 (n = 22) 0.66 (n = 13) p = 0.17 |
ACO v. AAO, Falkland Islands, pollen [38] | 143 (n = 18) 132 (n = 18) p = 0.49 | 1.42 (n = 18) 1.06 (n = 18) p = 0.20 | 1.26 (n = 18) 1.19 (n = 14) p = 0.88 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, W.J.; Taylor, P.J.; Davis, W.B. The Origin and Propagation of the Antarctic Centennial Oscillation. Climate 2019, 7, 112. https://doi.org/10.3390/cli7090112
Davis WJ, Taylor PJ, Davis WB. The Origin and Propagation of the Antarctic Centennial Oscillation. Climate. 2019; 7(9):112. https://doi.org/10.3390/cli7090112
Chicago/Turabian StyleDavis, W. Jackson, Peter J. Taylor, and W. Barton Davis. 2019. "The Origin and Propagation of the Antarctic Centennial Oscillation" Climate 7, no. 9: 112. https://doi.org/10.3390/cli7090112
APA StyleDavis, W. J., Taylor, P. J., & Davis, W. B. (2019). The Origin and Propagation of the Antarctic Centennial Oscillation. Climate, 7(9), 112. https://doi.org/10.3390/cli7090112