Is Barocaloric an Eco-Friendly Technology? A TEWI Comparison with Vapor Compression under Different Operation Modes
Abstract
:1. Introduction
2. The Active Barocaloric Technology for Cooling and Heat Pumping
3. Materials of the Investigation
3.1. Barocaloric Refrigerant
3.2. Auxiliary Fluids
4. The TEWI Analysis
5. The Operating Conditions of Investigation
- the set point temperature range was 255 ÷ 290 K;
- the frequency of repeating ABR cycle was 1.25 Hz;
- the adiabatic variation of applied hydrostatic pressure was Δp = 0.390 GPa;
- the velocity of the HTF during the flowing phases varied by 0.04 ÷ 0.2 m/s;
- the nanoparticle volume fraction of the Cu-50%EG/50%W nanofluids was increased from 2% to 10%.
- the set point temperature range was 278 ÷ 298 K;
- the frequency of repeating ABR cycle was 1.25 Hz;
- the adiabatic variations of applied hydrostatic pressure were: Δp = 0.273 GPa and Δp = 0.390 GPa;
- the velocity of the HTF during the flowing phases varied by 0.15 ÷ 0.25 m/s;
- the nanoparticle volume fraction of the Al2O3-water nanofluids was increased from 2% to 10%.
6. Results
7. Conclusions
Author Contributions
Funding
Conflicts of Interest
Nomenclature
Roman symbols | |
C | specific heat, J kg−1 K−1 |
CO2 | CO2 contribution to global warming, kgCO2 |
H | annual operating hours per year, hr yr−1 |
h | height of the regenerator, m |
k | thermal conductivity, W m−1 K−1 |
L | length of the regenerator in fluid flow direction, m |
P | percent annual refrigerant leak rate, % yr−1 |
p | pressure, Pa |
Q | power density associated to barocaloric effect, W m−3 |
q | number of ABR cycles, - |
RC | refrigerant charge, kg |
T | temperature, K |
TEWI | total equivalent warming impact, kg CO2 |
t | time, s |
u | longitudinal fluid velocity, m s−1 |
v | orthogonal fluid velocity, m s−1 |
V | lifetime of the system, yr |
x | longitudinal spatial coordinate, m |
y | orthogonal spatial coordinate, m |
Greek symbols | |
α | CO2 emission from power conversion, kgCO2 kWh yr−1 |
Δ | finite difference, - |
δ | infinitesimal difference, - |
infinitesimal quantity, - | |
θ | period of the ABR cycle, s |
μ | dynamic viscosity, Pa s |
ν | cinematic viscosity, m2 s−1 |
ρ | density, kg m−3 |
φ | volume fraction, % |
τ | period of each step of the ABR cycle, s |
Subscripts | |
ad | adiabatic |
ABR | active barocaloric refrigerator |
bf | base fluid |
C | cold heat exchanger |
cool | cooling |
D | decompression |
H | hot heat exchanger |
hp | heat pump |
L | regular operation lifetime |
nf | nanofluid |
np | nanoparticles |
p | pump for fluid motion |
R | refrigerant recycling |
ref | refrigeration |
s | solid |
VC | vapor compression |
References
- Brown, D.R.; Stout, T.B.; Dirks, J.A.; Fernandez, N. The prospects of alternatives to vapor compression technology for space cooling and food refrigeration applications. Energy Eng. 2012, 109, 7–20. [Google Scholar] [CrossRef]
- Goetzler, W.; Zogg, R.; Young, J.; Johnson, C. Alternatives to vapor-compression HVAC technology. Ashrae J. 2014, 56, 12. [Google Scholar]
- Brown, J.S.; Domanski, P.A. Review of alternative cooling technologies. Appl. Eng. 2014, 64, 252–262. [Google Scholar]
- Czernuszewicz, A.; Kaleta, J.; Lewandowski, D. Multicaloric effect: Toward a breakthrough in cooling technology. Energy Convers. Manag. 2018, 178, 335–342. [Google Scholar] [CrossRef]
- Fähler, S.; Rößler, U.K.; Kastner, O.; Eckert, J.; Eggeler, G.; Emmerich, H.; Entel, P.; Müller, S.; Quandt, E.; Albe, K. Caloric effects in ferroic materials: New concepts for cooling. Adv. Eng. Mat. 2012, 14, 10–19. [Google Scholar] [CrossRef]
- Kitanovski, A.; Plaznik, U.; Tomc, U.; Poredoš, A. Present and future caloric refrigeration and heat-pump technologies. Int. J. Refrig. 2015, 57, 288–298. [Google Scholar] [CrossRef]
- Manosa, L.; Planes, A.; Acet, M. Advanced materials for solid-state refrigeration. J. Mater. Chem. A 2013, 1, 4925–4936. [Google Scholar] [CrossRef] [Green Version]
- Ohnishi, T.; Soejima, K.; Yamashita, K.; Wada, H. Magnetocaloric Properties of (MnFeRu) 2 (PSi) as Magnetic Refrigerants near Room Temperature. Magnetochemistry 2017, 3, 6. [Google Scholar] [CrossRef]
- Thang, N.; Dijk, N.; Brück, E. Tuneable giant magnetocaloric effect in (Mn, Fe) 2 (P, Si) materials by Co-B and Ni-B co-doping. Materials 2016, 10, 14. [Google Scholar] [CrossRef]
- Scott, J.F. Electrocaloric materials. Ann. Rev. Mater. Res. 2011, 41, 229–240. [Google Scholar] [CrossRef]
- Sun, X.; Huang, H.; Jafri, H.M.; Wang, J.; Wen, Y.; Dang, Z.M. Wide Electrocaloric Temperature Range Induced by Ferroelectric to Antiferroelectric Phase Transition. Appl. Sci. 2019, 9, 1672. [Google Scholar] [CrossRef]
- Jiang, Z.Y.; Zheng, G.P.; Zheng, X.C.; Wang, H. Exceptionally high negative electro-caloric effects of poly (VDF–co–TrFE) based nanocomposites tuned by the geometries of barium titanate nanofillers. Polymers 2017, 9, 315. [Google Scholar] [CrossRef] [PubMed]
- Wu, Y.; Ertekin, E.; Sehitoglu, H. Elastocaloric cooling capacity of shape memory alloys–role of deformation temperatures, mechanical cycling, stress hysteresis and inhomogeneity of transformation. Acta Mater. 2017, 135, 158–176. [Google Scholar] [CrossRef]
- Strässle, T.; Furrer, A. Cooling by adiabatic (DE) pressurization-the barocaloric effect. Int. J. High Press. Res. 2000, 17, 325–333. [Google Scholar] [CrossRef]
- Chiba, Y. Enhancements of thermal performances of an active magnetic refrigeration device based on nanofluids. Mechanics 2017, 23, 31–38. [Google Scholar] [CrossRef]
- Mugica, I.; Roy, S.; Poncet, S.; Bouchard, J.; Nesreddine, H. Exergy analysis of a parallel-plate active magnetic regenerator with nanofluids. Entropy 2017, 19, 464. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. Enhancing the Heat Transfer in an Active Barocaloric Cooling System Using Ethylene-Glycol Based Nanofluids as Secondary Medium. Energies 2019, 12, 2902. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. Electrocaloric refrigeration: An innovative, emerging, eco-friendly refrigeration technique. J. Phys. Conf. Ser. 2017, 796, 012019. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. The environmental impact of solid-state materials working in an active caloric refrigerator compared to a vapor compression cooler. Int. J. Heat Technol. 2018, 36, 1155–1162. [Google Scholar] [CrossRef]
- Greco, A.; Aprea, C.; Maiorino, A.; Masselli, C. A Review of the state of the art of the solid-state caloric cooling processes at room-temperature before 2019. Int. J. Refrig. 2019, 106, 66–88. [Google Scholar] [CrossRef]
- UNEP. Montreal Protocol on Substances That Deplete the Ozone Layer; United Nation Environment Program (UNEP): New York, NY, USA, 1987. [Google Scholar]
- United Nations. Kyoto Protocol to the United Nation Framework Convention on Climate Change; UN: Kyoto, Japan, 1997. [Google Scholar]
- Heath, E.A. Amendment to the Montreal Protocol on Substances that Deplete the Ozone Layer (Kigali Amendment). Int. Leg. Mater. 2017, 56, 193–205. [Google Scholar] [CrossRef] [Green Version]
- Greco, A.; Mastrullo, R.; Palombo, A. R407C as an alternative to R22 in vapour compression plant: An experimental study. Int. J. Energy Res. 1997, 21, 1087–1098. [Google Scholar] [CrossRef]
- Greco, A.; Vanoli, G.P. Flow boiling heat transfer with HFC mixtures in a smooth horizontal tube. Part II: Assessment of predictive methods. Exp. Fluid Sci. 2005, 29, 199–208. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A. The substitution of R134a with R744: An exergetic analysis based on experimental data. Int. J. Refrig. 2013, 36, 2148–2159. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. The drop-in of HFC134a with HFO1234ze in a household refrigerator. Int. J. Therm. Sci. 2018, 127, 117–125. [Google Scholar] [CrossRef]
- Crossley, S.; Mathur, N.D.; Moya, X. New developments in caloric materials for cooling applications. AIP Adv. 2015, 5, 067153. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.; Metallo, A. HFO1234ze as drop-in replacement for R134a in domestic refrigerators: An environmental impact analysis. Energy Procedia 2016, 101, 964–971. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C.; Metallo, A. HFO1234yf as a drop-in replacement for R134a in domestic refrigerators: A life cycle climate performance analysis. Int. J. Heat Technol. 2016, 34, S212–S218. [Google Scholar] [CrossRef]
- Bell, I.H.; Domanski, P.A.; McLinden, M.O.; Linteris, G.T. The hunt for nonflammable refrigerant blends to replace R-134a. Int. J. Refrig. 2019, 104, 484–495. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. A comparison between rare earth and transition metals working as magnetic materials in an AMR refrigerator in the room temperature range. Appl. Eng. 2015, 91, 767–777. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. Energy performances and numerical investigation of solid-state magnetocaloric materials used as refrigerant in an active magnetic regenerator. Therm. Sci. Eng. Prog. 2018, 6, 370–379. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. A comparison between different materials in an active electrocaloric regenerative cycle with a 2D numerical model. Int. J. Refrig. 2016, 69, 369–382. [Google Scholar] [CrossRef]
- Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. Solid-state refrigeration: A comparison of the energy performances of caloric materials operating in an active caloric regenerator. Energy 2018, 165, 439–455. [Google Scholar] [CrossRef]
- Aprea, C.; Cardillo, G.; Greco, A.; Maiorino, A.; Masselli, C. A comparison between experimental and 2D numerical results of a packed-bed active magnetic regenerator. Appl. Eng. 2015, 90, 376–383. [Google Scholar] [CrossRef]
- Imamura, W.; Usuda, E.O.; Paixão, L.S.; Bom, N.M.; Gomes, A.M.; Carvalho, A.M.G. Supergiant barocaloric effects in acetoxy silicone rubber around room temperature. arXiv, 2017; arXiv:1710.01761. [Google Scholar]
- ASHRAE. Fundamentals: Si Edition; ASHRAE: Atlanta, GA, USA, 2009. [Google Scholar]
- Mohamad, N.A.; Azis, N.; Jasni, J.; Kadir, A.; Abidin, M.Z.; Yunus, R.; Yaakub, Z. Impact of Fe3O4, CuO and Al2O3 on the AC Breakdown Voltage of Palm Oil and Coconut Oil in the Presence of CTAB. Energies 2019, 12, 1605. [Google Scholar] [CrossRef]
- Irfan, S.A.; Shafie, A.; Yahya, N.; Zainuddin, N. Mathematical Modeling and Simulation of Nanoparticle-Assisted Enhanced Oil Recovery—A Review. Energies 2019, 12, 1575. [Google Scholar] [CrossRef]
- Hussain, M.I.; Kim, J.H.; Kim, J.T. Nanofluid-Powered Dual-Fluid Photovoltaic/Thermal (PV/T) System: Comparative Numerical Study. Energies 2019, 12, 775. [Google Scholar] [CrossRef]
- Fal, J.; Mahian, O.; Żyła, G. Nanofluids in the Service of High Voltage Transformers: Breakdown Properties of Transformer Oils with Nanoparticles, a Review. Energies 2018, 11, 2942. [Google Scholar] [CrossRef]
- Kristiawan, B.; Santoso, B.; Wijayanta, A.; Aziz, M.; Miyazaki, T. Heat transfer enhancement of TiO2/water nanofluid at laminar and turbulent flows: A numerical approach for evaluating the effect of nanoparticle loadings. Energies 2018, 11, 1584. [Google Scholar] [CrossRef]
- Sun, X.H.; Yan, H.; Massoudi, M.; Chen, Z.H.; Wu, W.T. Numerical simulation of nanofluid suspensions in a geothermal heat exchanger. Energies 2018, 11, 919. [Google Scholar] [CrossRef]
- Bellos, E.; Tzivanidis, C. Optimization of a solar-driven trigeneration system with nanofluid-based parabolic trough collectors. Energies 2017, 10, 848. [Google Scholar] [CrossRef]
- Bianco, V.; Vafai, K.; Manca, O.; Nardini, S. Heat Transfer Enhancement with Nanofluids; CRC Press: Boca Raton, FL, USA, 2015. [Google Scholar]
- Hamilton, R.L.; Crosser, O.K. Thermal conductivity of heterogeneous two-component systems. Ind. Eng. Chem. Fund. 1962, 1, 187–191. [Google Scholar] [CrossRef]
- Brinkman, H.C. The viscosity of concentrated suspensions and solutions. J. Chem. Phys. 1952, 20, 571. [Google Scholar] [CrossRef]
Material | Tpeak [K] | Δp [GPa] | ∆Tad,max [K] | Density [kg/m3] | Thermal Conductivity [W/mK] |
---|---|---|---|---|---|
ASR | 298 | 0.390 | 41.1 | 960 | 1.48 |
Material | Specific Heat [J/kgK] | Density [kg/m3] | Thermal Conductivity [W/mK] |
---|---|---|---|
Al2O3 | 765 | 3970 | 36 |
Cu | 383 | 8933 | 401 |
© 2019 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Aprea, C.; Greco, A.; Maiorino, A.; Masselli, C. Is Barocaloric an Eco-Friendly Technology? A TEWI Comparison with Vapor Compression under Different Operation Modes. Climate 2019, 7, 115. https://doi.org/10.3390/cli7090115
Aprea C, Greco A, Maiorino A, Masselli C. Is Barocaloric an Eco-Friendly Technology? A TEWI Comparison with Vapor Compression under Different Operation Modes. Climate. 2019; 7(9):115. https://doi.org/10.3390/cli7090115
Chicago/Turabian StyleAprea, Ciro, Adriana Greco, Angelo Maiorino, and Claudia Masselli. 2019. "Is Barocaloric an Eco-Friendly Technology? A TEWI Comparison with Vapor Compression under Different Operation Modes" Climate 7, no. 9: 115. https://doi.org/10.3390/cli7090115
APA StyleAprea, C., Greco, A., Maiorino, A., & Masselli, C. (2019). Is Barocaloric an Eco-Friendly Technology? A TEWI Comparison with Vapor Compression under Different Operation Modes. Climate, 7(9), 115. https://doi.org/10.3390/cli7090115