Modeling the Impacts of Climate Change on Crop Yield and Irrigation in the Monocacy River Watershed, USA
Abstract
:1. Introduction
- (1)
- to assess the impact of future climate changes on watershed hydrology;
- (2)
- to investigate the impact of future climate changes on crop yields;
- (3)
- to evaluate the effects of irrigation as an adaptive strategy on crop yields; and
- (4)
- to identify the potential hydrological components that influence the crop yields.
2. Materials and Methods
2.1. Study Area
2.2. Hydrologic Model
2.2.1. Model Input and Data Collection
2.2.2. Future Climate Data
2.2.3. Management Scenarios
2.3. Model Setup, Calibration, and Validation
2.4. Simulation Scenarios for Future Evaluation
3. Results and Discussion
3.1. Evaluation of SWAT Performance
3.1.1. Model Performance for Hydrology
3.1.2. Model Performance for Crop Yield
3.2. Future Climate Projections
3.3. Impact of Future Climate Projections
3.3.1. Impact on Water Balance
3.3.2. Impact on Crop Yield
3.4. Selecting Important Predictors for Adaptation
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Vaghefi, S.A.; Abbaspour, K.C.; Faramarzi, M.; Srinivasan, R.; Arnold, J.G. Modeling Crop Water Productivity Using a Coupled SWAT–MODSIM Model. Water 2017, 9, 157. [Google Scholar] [CrossRef] [Green Version]
- Pathak, T.B.; Maskey, M.L.; Dahlberg, J.A.; Kearns, F.; Bali, K.M.; Zaccaria, D. Climate Change Trends and Impacts on California Agriculture: A Detailed Review. Agronomy 2018, 8, 25. [Google Scholar] [CrossRef] [Green Version]
- Paul, M.; Rajib, M.A.; Ahiablame, L. Spatial and Temporal Evaluation of Hydrological Response to Climate and Land Use Change in Three South Dakota Watersheds. J. Am. Water Resour. Assoc. 2017, 53, 69–88. [Google Scholar] [CrossRef]
- Rajib, A.; Ahiablame, L.; Paul, M. Modeling the effects of future land use change on water quality under multiple scenarios: A case study of low-input agriculture with hay/pasture production. Sustain. Water Qual. Ecol. 2016, 8, 50–66. [Google Scholar] [CrossRef] [Green Version]
- USGCRP. Impacts, Risks, and Adaptation in the United States: Fourth National Climate Assessment; Reidmiller, D.R., Avery, C.W., Easterling, D.R., Kunkel, K.E., Lewis, K.L.M., Maycock, T.K., Stewart, B.C., Eds.; U.S. Global Change Research Program: Washington, DC, USA, 2018. [Google Scholar]
- Vaghefi, S.A.; Mousavi, S.J.; Abbaspour, K.C.; Srinivasan, R.; Yang, H. Analyses of the impact of climate change on water resources components, drought and wheat yield in semiarid regions: Karkheh River Basin in Iran. Hydrol. Process. 2014, 28, 2018–2032. [Google Scholar] [CrossRef]
- Paul, M. Impacts of Land Use and Climate Changes on Hydrological Processes in South Dakota Watersheds. Master’s Thesis, South Dakota State University, Brookings, SD, USA, 2016. [Google Scholar]
- Ahiablame, L.; Sinha, T.; Paul, M.; Ji, J.-H.; Rajib, A. Streamflow response to potential land use and climate changes in the James River watershed, Upper Midwest United States. J. Hydrol. Reg. Stud. 2017, 14, 150–166. [Google Scholar] [CrossRef]
- Kukal, M.S.; Irmak, S. Climate-Driven Crop Yield and Yield Variability and Climate Change Impacts on the U.S. Great Plains Agricultural Production. Sci. Rep. 2018, 8, 1–18. [Google Scholar] [CrossRef] [Green Version]
- Mourtzinis, S.; Specht, J.E.; Lindsey, L.E.; Wiebold, W.J.; Ross, J.; Nafziger, E.D.; Kandel, H.J.; Mueller, N.; DeVillez, P.L.; Arriaga, F.J.; et al. Climate-induced reduction in US-wide soybean yields underpinned by region- and in-season-specific responses. Nat. Plants 2015, 1, 14026. [Google Scholar] [CrossRef]
- Smith, W.; Grant, B.; Desjardins, R.; Kroebel, R.; Li, C.; Qian, B.; Worth, D.; McConkey, B.; Drury, C. Assessing the effects of climate change on crop production and GHG emissions in Canada. Agric. Ecosyst. Environ. 2013, 179, 139–150. [Google Scholar] [CrossRef]
- Goldblum, D. Sensitivity of Corn and Soybean Yield in Illinois to Air Temperature and Precipitation: The Potential Impact of Future Climate Change. Phys. Geogr. 2009, 30, 27–42. [Google Scholar] [CrossRef]
- Ozturk, I.; Sharif, B.; Baby, S.; Jabloun, M.; Olesen, J.E. The long-term effect of climate change on productivity of winter wheat in Denmark: A scenario analysis using three crop models. J. Agric. Sci. 2017, 155, 733–750. [Google Scholar] [CrossRef]
- Chesapeake Bay Foundation. Climate Change and the Chesapeake Bay: Challenges, Impacts, and the Multiple Benefits of Agricultural Conservation Work; Reports; Chesapeake Bay Foundation: Annapolis, MD, USA, 2007; Available online: https://umaryland.on.worldcat.org/search?queryString=no%3A+192021227#/oclc/192021227 (accessed on 30 October 2019).
- Hayhoe, K.; Wake, C.P.; Huntington, T.G.; Luo, L.; Schwartz, M.D.; Sheffield, J.; Wood, E.; Anderson, B.; Bradbury, J.; DeGaetano, A.; et al. Past and future changes in climate and hydrological indicators in the US Northeast. Clim. Dyn. 2007, 28, 381–407. [Google Scholar] [CrossRef]
- Luck, M.; Landis, M.; Gassert, F. Aqueduct Water Stress Projections: Decadal Projections of Water Supply and Demand Using CMIP5 GCMs; Techical Note; World Resources Institute: Washington, DC, USA, 2015. [Google Scholar]
- Altieri, M.A.; Nicholls, C.I.; Henao, A.; Lana, M.A. Agroecology and the design of climate change-resilient farming systems. Agron. Sustain. Dev. 2015, 35, 869–890. [Google Scholar] [CrossRef] [Green Version]
- Uniyal, B.; Dietrich, J.; Vu, N.Q.; Jha, M.K.; Arumí, R.J.L. Simulation of regional irrigation requirement with SWAT in different agro-climatic zones driven by observed climate and two reanalysis datasets. Sci. Total Environ. 2019, 649, 846–865. [Google Scholar] [CrossRef]
- Gharibdousti, S.R.; Kharel, G.; Miller, R.B.; Linde, E.; Stoecker, A. Projected Climate Could Increase Water Yield and Cotton Yield but Decrease Winter Wheat and Sorghum Yield in an Agricultural Watershed in Oklahoma. Water 2019, 11, 105. [Google Scholar] [CrossRef] [Green Version]
- Thomas, A. Agricultural irrigation demand under present and future climate scenarios in China. Glob. Planet. Chang. 2008, 60, 306–326. [Google Scholar] [CrossRef]
- Moriondo, M.; Bindi, M.; Kundzewicz, Z.W.; Szwed, M.; Choryński, A.; Matczak, P.; Radziejewski, M.; McEvoy, D.; Wreford, A. Impact and adaptation opportunities for European agriculture in response to climatic change and variability. Mitig. Adapt. Strat. Glob. Chang. 2010, 15, 657–679. [Google Scholar] [CrossRef]
- Stricevic, R.; Cosic, M.; Djurovic, N.; Pejic, B.; Maksimovic, L. Assessment of the FAO AquaCrop model in the simulation of rainfed and supplementally irrigated maize, sugar beet and sunflower. Agric. Water Manag. 2011, 98, 1615–1621. [Google Scholar] [CrossRef]
- USDA-NASS. Cropland Data Layer. Available online: https://www.nass.usda.gov/Research_and_Science/ (accessed on 15 June 2019).
- Upper Monocacy River Watershed Characterization Plan Prepared by Carroll County Bureau of Resource Management. Available online: https://www.carrollcountymd.gov/media/10356/upper-monocacy-river-characterization-plan.pdf (accessed on 15 March 2019).
- Schultz, C.; Palmer, J. Seasonal Steady-State Ground Water/Stream Flow Model of the Upper Monocacy River Basin; ICPRB: Rockville, MD, USA, 2008; p. 46. [Google Scholar]
- Arnold, J.G.; Moriasi, D.N.; Gassman, P.W.; Abbaspour, K.C.; White, M.J.; Srinivasan, R.; Santhi, C.; Harmel, R.; Van Griensven, A.; Van Liew, M.W. SWAT: Model use, calibration, and validation. Trans. ASABE 2012, 55, 1491–1508. [Google Scholar] [CrossRef]
- Arnold, J.G.; Srinivasan, R.; Muttiah, R.S.; Williams, J.R. Large area hydrologic modeling and assessment part I: Model development. J. Am. Water Resour. Assoc. 1998, 34, 73–89. [Google Scholar] [CrossRef]
- Abbaspour, K.C.; Rouholahnejad, E.; Vaghefi, S.; Srinivasan, R.; Yang, H.; Kløve, B. A continental-scale hydrology and water quality model for Europe: Calibration and uncertainty of a high-resolution large-scale SWAT model. J. Hydrol. 2015, 524, 733–752. [Google Scholar] [CrossRef] [Green Version]
- Baker, T.J.; Miller, S. Using the Soil and Water Assessment Tool (SWAT) to assess land use impact on water resources in an East African watershed. J. Hydrol. 2013, 486, 100–111. [Google Scholar] [CrossRef]
- Ahmadzadeh, H.; Morid, S.; Delavar, M.; Srinivasan, R. Using the SWAT model to assess the impacts of changing irrigation from surface to pressurized systems on water productivity and water saving in the Zarrineh Rud catchment. Agric. Water Manag. 2016, 175, 15–28. [Google Scholar] [CrossRef]
- Neitsch, S.L.; Arnold, J.G.; Kiniry, J.R.; Williams, J.R. Soil and Water Assessment Tool Theoretical Documentation Version 2009; Texas Water Resources Institute: Tamu, TX, USA, 2011. [Google Scholar]
- Winchell, M.; Srinivasan, R.; Diluzio, M.; Arnold, J. Arcswat Interface for Swat 2012: User Guider; Blackland Research Center: Temple, TX, USA, 2013. [Google Scholar]
- US Department of Interior. National Elevation Dataset; US Department of Interior: Washington, DC, USA, 2006.
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Chua, V.P.; Chan, N.W. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmos. Res. 2017, 189, 1–10. [Google Scholar] [CrossRef]
- Reclamation, U. Downscaled CMIP3 and CMIP5 Climate and Hydrology Projections: Release of Hydrology Projections, Comparison with Preceding Information, and Summary of User Needs; Bureau of Reclamation, Technical Services Center: Denver, CO, USA, 2014. [Google Scholar]
- Change, I.C. Mitigation of Climate Change; IPCC: Geneva, Switzerland, 2014; p. 1454. [Google Scholar]
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. FAO Irrigation and Drainage Paper No. 56; FAO: Rome, Italy, 1998; p. 156. [Google Scholar]
- Sibbons, J.L.H.; Monteith, J.L.; Penman, H.L.; Priestle, C. The horizontal transport of heat and moisture—A micrometeorological study. Q. J. R. Meteorol. Soc. 1965, 91, 236. [Google Scholar]
- Chu, T.; Shirmohammadi, A.; Montas, H.; Abbott, L.; Sadeghi, A. Watershed Level BMP Evaluation with SWAT Model. In Proceedings of the 2005 ASAE Annual Meeting, Tampa, FL, USA, 17–20 July 2005. [Google Scholar]
- Sadeghi, A.M.; Yoon, K.; Graff, C.; Mccarty, G.; McConnell, L.; Shirmohammadi, A.; Hively, D.; Sefton, K. Assessing the Performance of SWAT and AnnAGNPS Models in a Coastal Plain Watershed, Choptank River, Maryland, U.S.A. In Proceedings of the 2007 ASAE Annual Meeting, Minneapolis, MN, USA, 17–20 June 2007. [Google Scholar]
- Sexton, A.M.; Shirmohammadi, A.; Sadeghi, A.M.; Montas, H.J. Impact of Parameter Uncertainty on Critical SWAT Output Simulations. Trans. ASABE 2011, 54, 461–471. [Google Scholar] [CrossRef]
- Sexton, A.M.; Sadeghi, A.M.; Zhang, X.; Srinivasan, R.; Shirmohammadi, A. Using NEXRAD and Rain Gauge Precipitation Data for Hydrologic Calibration of SWAT in a Northeastern Watershed. Trans. ASABE 2010, 53, 1501–1510. [Google Scholar] [CrossRef]
- Abbaspour, K.C. SWAT Calibration and Uncertainty Program—A User Manual; Swiss Federal Institute of Aquatic Science and Technology: Eawag, Switzerland, 2013. [Google Scholar]
- Paul, M.; Negahban-Azar, M. Sensitivity and uncertainty analysis for streamflow prediction using multiple optimization algorithms and objective functions: San Joaquin Watershed, California. Model. Earth Syst. Environ. 2018, 4, 1509–1525. [Google Scholar] [CrossRef]
- Moriasi, D.N.; Gitau, M.W.; Pai, N.; Daggupati, P. Hydrologic and Water Quality Models: Performance Measures and Evaluation Criteria. Trans. ASABE 2015, 58, 1763–1785. [Google Scholar] [CrossRef] [Green Version]
- Srinivasan, R.; Zhang, X.; Arnold, J.G. SWAT Ungauged: Hydrological Budget and Crop Yield Predictions in the Upper Mississippi River Basin. Trans. ASABE 2010, 53, 1533–1546. [Google Scholar] [CrossRef]
- Woznicki, S.A.; Nejadhashemi, A.P.; Parsinejad, M. Climate change and irrigation demand: Uncertainty and adaptation. J. Hydrol. Reg. Stud. 2015, 3, 247–264. [Google Scholar] [CrossRef]
- Tyralis, H.; Papacharalampous, G.A.; Langousis, A. A Brief Review of Random Forests for Water Scientists and Practitioners and Their Recent History in Water Resources. Water 2019, 11, 910. [Google Scholar] [CrossRef] [Green Version]
- Iorgulescu, I.; Beven, K.J. Nonparametric direct mapping of rainfall-runoff relationships: An alternative approach to data analysis and modeling? Water Resour. Res. 2004, 40, W08403. [Google Scholar] [CrossRef] [Green Version]
- Breiman, L.; Friedman, J.H.; Olshen, R.A.; Stone, C.J. Classification and Regression Trees; CRC Press: Boca Raton, FL, USA, 1984. [Google Scholar]
- Flerchinger, G.N.; Cooley, K. A ten-year water balance of a mountainous semi-arid watershed. J. Hydrol. 2000, 237, 86–99. [Google Scholar] [CrossRef]
- Hu, Q.; Buyanovsky, G. Climate Effects on Corn Yield in Missouri. J. Appl. Meteorol. 2003, 42, 1626–1635. [Google Scholar] [CrossRef]
- Xie, X.; Cui, Y. Development and test of SWAT for modeling hydrological processes in irrigation districts with paddy rice. J. Hydrol. 2011, 396, 61–71. [Google Scholar] [CrossRef]
- Mustek, J.T.; Dusek, D.A. Irrigated Corn Yield Response to Water. Trans. ASAE 1980, 23, 0092–0098. [Google Scholar] [CrossRef] [Green Version]
- Lewis, J. Estimating Irrigation Water Requirements to Optimize Crop Growth (FS-447); University of Maryland Extension: Cumberland, MD, USA, 2014. [Google Scholar]
- Sun, H.; Zhang, X.; Liu, X.; Ju, Z.; Shao, L. The long-term impact of irrigation on selected soil properties and grain production. J. Soil Water Conserv. 2018, 73, 310–320. [Google Scholar] [CrossRef]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
Land Use/Cover | Area (acres) | Area (km2) | Watershed Area (%) |
Forest | 189,307.88 | 766.10 | 36.24 |
Agricultural Land | 268,109.67 | 1085.06 | 51.33 |
Urban Area | 68,957.65 | 255.12 | 12.07 |
Grassland | 1243.05 | 5.03 | 0.24 |
Water | 662.31 | 2.68 | 0.13 |
Agricultural Land | Area (acres) | Area (km2) | Watershed Area (%) |
Hay | 75,540.25 | 305.70 | 14.46 |
Corn | 68,321.40 | 276.49 | 13.08 |
Pasture | 58,279.52 | 235.85 | 11.16 |
Soybean | 56,368.50 | 228.12 | 10.79 |
Winter Wheat | 8315.58 | 33.65 | 1.59 |
Alfalfa | 935.82 | 3.79 | 0.18 |
Apple | 362.05 | 1.47 | 0.07 |
CMIP5 Model | Description |
---|---|
CCSM4 | US National Centre for Atmospheric Research, Community Climate System Model |
GFDL-ESM2M | National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluid Dynamics Laboratory Earth System Model |
MIROC-ESM | University of Tokyo, National Institute for Environmental Studies, and Japan Agency for Marine-Earth Science and Technology (MIROC) Earth System Model |
IPSL-CM5A-LR | Institute Pierre-Simon Laplace Climate Model 5A, Low-Resolution |
Parameter | Definition | Initial Range | Calibrated Value |
---|---|---|---|
Soil Water | |||
SOL_K | Soil saturated hydraulic conductivity (mm/hr) | −25 to 25 | 7.15 |
SOL_AWC | Available soil water capacity (mm H2O/mm soil) | −25 to 25 | 19.15 |
Groundwater | |||
ALPHA_BF | Baseflow recession constant (days) | 0.01 to1 | 0.878 |
GW_DELAY | Groundwater delay (days) | 1 to 500 | 32.50 |
GW_REVAP | Groundwater “revap” coefficient | 0.01 to 0.2 | 0.087 |
REVAPMN | Re-evaporation threshold (mm H2O) | 0.01 to 500 | 495.5 |
GWQMN | Threshold groundwater depth for return flow (mm H2O) | 0.01 to 5000 | 3745 |
Surface Runoff | |||
CN2 | Curve number for moisture condition II | −0.3 to 0.3 | 0.064 |
EPCO | Plant uptake compensation factor | 0.01 to 1 | 0.643 |
ESCO | Soil evaporation compensation factor | 0.01 to 1 | 0.939 |
Channel Flow | |||
CH_N(2) | Main channel Manning’s n | 0.01 to 0.15 | 0.023 |
CH_K(2) | Main channel hydraulic conductivity (mm/hr) | 5 to 500 | 491.5 |
Snow | |||
SFTMP | Snowfall temperature (°C) | 0 to 5 | 2.1 |
SMFMN | Melt factor for snow on December 21 (mm H2O/°C-day) | 0 to 10 | 7.1 |
SMFMX | Melt factor for snow on June 21 (mm H2O/°C-day) | 0 to 10 | 7.3 |
SMTMP | Snow melt base temperature (°C) | −2 to 5 | 3.1 |
TIMP | Snow pack temperature lag factor | 0 to 1 | 0.35 |
Measure | Very Good | Good | Satisfactory | Not Satisfactory |
---|---|---|---|---|
R2 > 0.85 | 0.0.75 < R2 ≤ 0.85 | 0.60 < R2 ≤ 0.75 | R2 ≤ 0.6 | |
NSE > 0.80 | 0.70 < NSE ≤ 0.80 | 0.50 < NSE ≤ 0.70 | NSE ≤ 0.50 | |
PBIAS < ±5 | ±5 ≤ PBIAS < ±10 | ±10 ≤ PBIAS < ±15 | PBIAS ≥ ±15 |
Categories | Model | Simulation Period | Climate Data |
---|---|---|---|
Baseline Scenario | Calibrated | 1986–2000 | NCDC Data |
CCSM4 | |||
GFDL-ESM2M | |||
MIROC-ESM | |||
IPSL-CM5A-LR | |||
With “Current Rainfed” and “Adaptive Irrigation” Management | RCPs 4.5/6.0/8.5 | 2025–2099 | CCSM4 |
GFDL-ESM2M | |||
MIROC-ESM | |||
IPSL-CM5A-LR |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Paul, M.; Dangol, S.; Kholodovsky, V.; Sapkota, A.R.; Negahban-Azar, M.; Lansing, S. Modeling the Impacts of Climate Change on Crop Yield and Irrigation in the Monocacy River Watershed, USA. Climate 2020, 8, 139. https://doi.org/10.3390/cli8120139
Paul M, Dangol S, Kholodovsky V, Sapkota AR, Negahban-Azar M, Lansing S. Modeling the Impacts of Climate Change on Crop Yield and Irrigation in the Monocacy River Watershed, USA. Climate. 2020; 8(12):139. https://doi.org/10.3390/cli8120139
Chicago/Turabian StylePaul, Manashi, Sijal Dangol, Vitaly Kholodovsky, Amy R. Sapkota, Masoud Negahban-Azar, and Stephanie Lansing. 2020. "Modeling the Impacts of Climate Change on Crop Yield and Irrigation in the Monocacy River Watershed, USA" Climate 8, no. 12: 139. https://doi.org/10.3390/cli8120139
APA StylePaul, M., Dangol, S., Kholodovsky, V., Sapkota, A. R., Negahban-Azar, M., & Lansing, S. (2020). Modeling the Impacts of Climate Change on Crop Yield and Irrigation in the Monocacy River Watershed, USA. Climate, 8(12), 139. https://doi.org/10.3390/cli8120139