Intraseasonal Precipitation Variability over West Africa under 1.5 °C and 2.0 °C Global Warming Scenarios: Results from CORDEX RCMs
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Region
2.2. Data
2.2.1. RCM Data
2.2.2. Observational Data
2.3. Data Analysis
3. Results
3.1. RCM Performance Assessment
3.2. Future Precipitation Changes over West Africa
3.2.1. Future Precipitation Changes over the WA-N Sub-Region
3.2.2. Future Precipitation Changes over the WA-S Sub-Region
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Daron, J.D. Regional Climate Messages for West Africa. In Climate System Analysis Group (CSAG); University of Cape Town: Cape Town, South Africa, 2014; Available online: https://bit.ly/3geaCHu (accessed on 12 October 2020).
- Diffenbaugh, N.S.; Giorgi, F. Climate change hotspots in the CMIP5 global climate model ensemble. Clim. Chang. 2012, 114, 813–822. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; Van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef] [PubMed]
- Mora, C.; Frazier, A.G.; Longman, R.J.; Dacks, R.S.; Walton, M.M.; Tong, E.J.; Sanchez, J.J.; Kaiser, L.R.; Stender, Y.O.; Anderson, J.M.; et al. The projected timing of climate departure from recent variability. Nature 2013, 502, 183–187. [Google Scholar] [CrossRef] [PubMed]
- Meehl, G.A.; Covey, C.; Delworth, T.; Latif, M.; McAvaney, B.; Mitchell, J.F.B.; Stouffer, R.J.; Taylor, K.E. THE WCRP CMIP3 Multimodel Dataset: A New Era in Climate Change Research. Bull. Am. Meteorol. Soc. 2007, 88, 1383–1394. [Google Scholar] [CrossRef] [Green Version]
- Fontaine, B.; Roucou, P.; Monerie, P.-A. Changes in the African monsoon region at medium-term time horizon using 12 AR4 coupled models under the A1b emissions scenario. Atmos. Sci. Lett. 2011, 12, 83–88. [Google Scholar] [CrossRef]
- Monerie, P.-A.; Fontaine, B.; Roucou, P. Expected future changes in the African monsoon between 2030 and 2070 using some CMIP3 and CMIP5 models under a medium-low RCP scenario. J. Geophys. Res. Atmos. 2012, 117. [Google Scholar] [CrossRef] [Green Version]
- Mounkaila, M.S.; Abiodun, B.J.; Omotosho, J.B. Assessing the capability of CORDEX models in simulating onset of rainfall in West Africa. Theor. Appl. Climatol. 2014, 119, 255–272. [Google Scholar] [CrossRef]
- Dee, D.P.; Uppala, S.M.; Simmons, A.J.; Berrisford, P.; Poli, P.; Kobayashi, S.; Andrae, U.; Balmaseda, M.A.; Balsamo, G.; Bauer, P.; et al. The ERA-Interim reanalysis: Configuration and performance of the data assimilation system. Q. J. R. Meteorol. Soc. 2011, 137, 553–597. [Google Scholar] [CrossRef]
- Diaconescu, E.P.; Gachon, P.; Scinocca, J.; Laprise, R. Evaluation of daily precipitation statistics and monsoon onset/retreat over western Sahel in multiple data sets. Clim. Dyn. 2015, 45, 1325–1354. [Google Scholar] [CrossRef] [Green Version]
- Diallo, I.; Sylla, M.B.; Giorgi, F.; Gaye, A.T.; Camara, M. Multimodel GCM-RCM Ensemble-Based Projections of Temperature and Precipitation over West Africa for the Early 21st Century. Int. J. Geophys. 2012, 2012, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Crétat, J.; Vizy, E.K.; Cook, K.H. The relationship between African easterly waves and daily rainfall over West Africa: Observations and regional climate simulations. Clim. Dyn. 2015, 44, 385–404. [Google Scholar] [CrossRef]
- Poan, E.D.; Gachon, P.; Dueymes, G.; Diaconescu, E.; Laprise, R.; Sanda, I.S. West African monsoon intraseasonal activity and its daily precipitation indices in regional climate models: Diagnostics and challenges. Clim. Dyn. 2016, 47, 3113–3140. [Google Scholar] [CrossRef] [Green Version]
- Akinsanola, A.; Ajayi, V.; Adejare, A.; Adeyeri, O.; Gbode, I.; Ogunjobi, K.; Nikulin, G.; Abolude, A. Evaluation of rainfall simulations over West Africa in dynamically downscaled CMIP5 global circulation models. Theor. Appl. Climatol. 2018, 132, 437–450. [Google Scholar] [CrossRef]
- Gnitou, G.T.; Ma, T.; Tan, G.; Ayugi, B.; Nooni, I.K.; Alabdulkarim, A.; Tian, Y. Evaluation of the Rossby Centre Regional Climate Model Rainfall Simulations over West Africa Using Large-Scale Spatial and Temporal Statistical Metrics. Atmosphere 2019, 10, 802. [Google Scholar] [CrossRef] [Green Version]
- Dosio, A.; Jones, R.G.; Jack, C.; Lennard, C.; Nikulin, G.; Hewitson, B. What can we know about future precipitation in Africa? Robustness, significance and added value of projections from a large ensemble of regional climate models. Clim. Dyn. 2019, 53, 5833–5858. [Google Scholar] [CrossRef] [Green Version]
- Eyring, V.; Bony, S.; Meehl, G.A.; Senior, C.A.; Stevens, B.; Stouffer, R.J.; Taylor, K.E. Overview of the Coupled Model Intercomparison Project Phase 6 (CMIP6) experimental design and organization. Geosci. Model Dev. 2016, 9, 1937–1958. [Google Scholar] [CrossRef] [Green Version]
- Ajibola, F.O.; Zhou, B.; Gnitou, G.T.; Onyejuruwa, A. Evaluation of the Performance of CMIP6 HighResMIP on West African Precipitation. Atmosphere 2020, 11, 1053. [Google Scholar] [CrossRef]
- Rummukainen, M. Added value in regional climate modeling. Wiley Interdiscip. Rev. Clim. Chang. 2016, 7, 145–159. [Google Scholar] [CrossRef]
- Gutowski, W.J., Jr.; Giorgi, F.; Timbal, B.; Frigon, A.; Jacob, D.; Kang, H.-S.; Raghavan, K.; Lee, B.; Lennard, C.; Nikulin, G.; et al. WCRP COordinated Regional Downscaling EXperiment (CORDEX): A diagnostic MIP for CMIP6. Geosci. Model Dev. 2016, 9, 4087–4095. [Google Scholar] [CrossRef] [Green Version]
- Froidurot, S.; Diedhiou, A. Characteristics of wet and dry spells in the West African monsoon system. Atmospheric Sci. Lett. 2017, 18, 125–131. [Google Scholar] [CrossRef]
- Omotosho, J.B.; Abiodun, B.J. A numerical study of moisture build-up and rainfall over West Africa. Meteorol. Appl. 2007, 14, 209–225. [Google Scholar] [CrossRef]
- Abiodun, B.J.; Adeyewa, Z.D.; Oguntunde, P.G.; Salami, A.T.; Ajayi, V.O. Modeling the impacts of reforestation on future climate in West Africa. Theor. Appl. Climatol. 2012, 110, 77–96. [Google Scholar] [CrossRef]
- Akinsanola, A.A.; Ogunjobi, K.O.; Gbode, I.E.; Ajayi, V.O. Assessing the Capabilities of Three Regional Climate Models over CORDEX Africa in Simulating West African Summer Monsoon Precipitation. Adv. Meteorol. 2015, 2015, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Maranan, M.; Fink, A.H.; Knippertz, P. Rainfall types over southern West Africa: Objective identification, climatology and synoptic environment. Q. J. R. Meteorol. Soc. 2018, 144, 1628–1648. [Google Scholar] [CrossRef] [Green Version]
- Nikulin, G.; Jones, C.; Giorgi, F.; Asrar, G.; Büchner, M.; Cerezo-Mota, R.; Christensen, O.B.; Déqué, M.; Fernandez, J.; Hänsler, A.; et al. Precipitation Climatology in an Ensemble of CORDEX-Africa Regional Climate Simulations. J. Clim. 2012, 25, 6057–6078. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Moss, R.H.; Taylor, K.E.; Eyring, V.; Stouffer, R.J.; Bony, S.; Stevens, B. Climate Model Intercomparisons: Preparing for the Next Phase. Eos Trans. Am. Geophys. Union 2014, 95, 77–78. [Google Scholar] [CrossRef] [Green Version]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Yan, Y.; Lu, R.; Li, C. Relationship between the Future Projections of Sahel Rainfall and the Simulation Biases of Present South Asian and Western North Pacific Rainfall in Summer. J. Clim. 2019, 32, 1327–1343. [Google Scholar] [CrossRef]
- Gudoshava, M.; Misiani, H.O.; Segele, Z.T.; Jain, S.; Ouma, J.O.; Otieno, G.; Anyah, R.; Indasi, V.S.; Endris, H.S.; Osima, S.; et al. Projected effects of 1.5 °C and 2 °C global warming levels on the intra-seasonal rainfall characteristics over the Greater Horn of Africa. Environ. Res. Lett. 2020, 15, 034037. [Google Scholar] [CrossRef]
- Ogega, O.M.; Alobo, M. Impact of 1.5 °C and 2 °C global warming scenarios on malaria transmission in East Africa. AAS Open Res. 2020, 3, 22. [Google Scholar] [CrossRef]
- Funk, C.; Peterson, P.; Landsfeld, M.; Pedreros, D.; Verdin, J.; Shukla, S.; Husak, G.; Rowland, J.; Harrison, L.; Hoell, A.; et al. The climate hazards infrared precipitation with stations—A new environmental record for monitoring extremes. Sci. Data 2015, 2, 150066. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Maidment, R.I.; Grimes, D.; Black, E.; Tarnavsky, E.; Young, M.; Greatrex, H.; Allan, R.P.; Stein, T.H.M.; Nkonde, E.; Senkunda, S.; et al. A new, long-term daily satellite-based rainfall dataset for operational monitoring in Africa. Sci. Data 2017, 4, 170063. [Google Scholar] [CrossRef] [PubMed]
- Adler, R.F.; Huffman, G.J.; Chang, A.; Ferraro, R.; Xie, P.; Janowiak, J.; Rudolf, B.; Schneider, U.; Curtis, S.; Bolvin, B.; et al. The Version-2 Global Precipitation Climatology Project (GPCP) Monthly Precipitation Analysis (1979–Present). J. Hydrometeorol. 2003, 4, 1147–1167. [Google Scholar] [CrossRef]
- Akinyemi, D.F.; Ayanlade, O.S.; Nwaezeigwe, J.O.; Ayanlade, A. A Comparison of the Accuracy of Multi-satellite Precipitation Estimation and Ground Meteorological Records Over Southwestern Nigeria. Remote Sens. Earth Syst. Sci. 2020, 3, 1–12. [Google Scholar] [CrossRef]
- Harrison, L.; Funk, C.; Peterson, P. Identifying changing precipitation extremes in Sub-Saharan Africa with gauge and satellite products. Environ. Res. Lett. 2019, 14, 085007. [Google Scholar] [CrossRef]
- Diaconescu, E.P.; Gachon, P.; Laprise, R. On the Remapping Procedure of Daily Precipitation Statistics and Indices Used in Regional Climate Model Evaluation. J. Hydrometeorol. 2015, 16, 2301–2310. [Google Scholar] [CrossRef] [Green Version]
- Zhou, R.-G.; Hu, W.; Fan, P.; Ian, H. Quantum realisation of the bilinear interpolation method for NEQR. Sci. Rep. 2017, 7, 2511. [Google Scholar] [CrossRef]
- Epstein, E.S. A Spectral Climatology. J. Clim. 1988, 1, 88–107. [Google Scholar] [CrossRef] [Green Version]
- Narapusetty, B.; Delsole, T.; Tippett, M.K. Optimal Estimation of the Climatological Mean. J. Clim. 2009, 22, 4845–4859. [Google Scholar] [CrossRef]
- Knutti, R.; Sedláček, J.; Sanderson, B.M.; Lorenz, R.; Fischer, E.M.; Eyring, V. A climate model projection weighting scheme accounting for performance and interdependence. Geophys. Res. Lett. 2017, 44, 1909–1918. [Google Scholar] [CrossRef] [Green Version]
- Knutti, R.; Masson, D.; Gettelman, A. Climate model genealogy: Generation CMIP5 and how we got there. Geophys. Res. Lett. 2013, 40, 1194–1199. [Google Scholar] [CrossRef]
- Reichler, T.; Kim, J. How Well Do Coupled Models Simulate Today’s Climate? Bull. Am. Meteorol. Soc. 2008, 89, 303–312. [Google Scholar] [CrossRef]
- Masson, D.; Knutti, R. Spatial-Scale Dependence of Climate Model Performance in the CMIP3 Ensemble. J. Clim. 2011, 24, 2680–2692. [Google Scholar] [CrossRef]
- Chen, W.; Jiang, Z.; Li, L. Probabilistic Projections of Climate Change over China under the SRES A1B Scenario Using 28 AOGCMs. J. Clim. 2011, 24, 4741–4756. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.-H.; Li, W.; Xu, J.; Li, L. Extreme Precipitation Indices over China in CMIP5 Models. Part I: Model Evaluation. J. Clim. 2015, 28, 8603–8619. [Google Scholar] [CrossRef]
- Ogega, O.M.; Koske, J.; Kung’u, J.B.; Scoccimarro, E.; Endris, H.S.; Mistry, M.N. Heavy precipitation events over East Africa in a changing climate: Results from CORDEX RCMs. Clim. Dyn. 2020, 55, 993–1009. [Google Scholar] [CrossRef]
- Weigel, A.P.; Knutti, R.; Liniger, M.A.; Appenzeller, C. Risks of Model Weighting in Multimodel Climate Projections. J. Clim. 2010, 23, 4175–4191. [Google Scholar] [CrossRef]
- Peterson, T.C.; Folland, C.; Gruza, G.; Hogg, W.; Plummer, N. Report on the Activities of the Working Group on Climate Change Detection and Related Rapporteurs; World Meteorological Organization (WMO): Geneva, Switzerland, 2001. [Google Scholar]
- Dike, V.N.; Lin, Z.; Ibe, C.C. Intensification of Summer Rainfall Extremes over Nigeria during Recent Decades. Atmosphere 2020, 11, 1084. [Google Scholar] [CrossRef]
- Osima, S.; Indasi, V.S.; Zaroug, M.; Endris, H.S.; Gudoshava, M.; Misiani, H.O.; Nimusiima, A.; Anyah, R.O.; Otieno, G.; Ogwang, B.A.; et al. Projected climate over the Greater Horn of Africa under 1.5 °C and 2 °C global warming. Environ. Res. Lett. 2018, 13, 065004. [Google Scholar] [CrossRef]
- Bhatti, A.S.; Wang, G.; Ullah, W.; Ullah, S.; Hagan, D.F.T.; Nooni, I.K.; Lou, D.; Ullah, I. Trend in Extreme Precipitation Indices Based on Long Term In Situ Precipitation Records over Pakistan. Water 2020, 12, 797. [Google Scholar] [CrossRef] [Green Version]
- Iler, A.M.; Inouye, D.W.; Schmidt, N.M.; Høye, T.T. Detrending phenological time series improves climate-phenology analyses and reveals evidence of plasticity. Ecology 2017, 98, 647–655. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Nikulin, G.; Lennard, C.; Dosio, A.; Kjellström, E.; Chen, Y.; Hänsler, A.; Kupiainen, M.; Laprise, R.; Mariotti, L.; Maule, C.F.; et al. The effects of 1.5 and 2 degrees of global warming on Africa in the CORDEX ensemble. Environ. Res. Lett. 2018, 13, 065003. [Google Scholar] [CrossRef]
- Ashaley, J.; Anornu, G.K.; Awotwi, A.; Gyamfi, C.; Anim-Gyampo, M. Performance evaluation of Africa CORDEX regional climate models: Case of Kpong irrigation scheme, Ghana. Spat. Inf. Res. 2020, 28, 735–753. [Google Scholar] [CrossRef]
- Nicholson, S.E. The West African Sahel: A Review of Recent Studies on the Rainfall Regime and Its Interannual Variability. ISRN Meteorol. 2013, 2013, 1–32. [Google Scholar] [CrossRef]
- Vogel, P.; Knippertz, P.; Fink, A.H.; Schlueter, A.; Gneiting, T. Skill of Global Raw and Postprocessed Ensemble Predictions of Rainfall over Northern Tropical Africa. Weather Forecast. 2018, 33, 369–388. [Google Scholar] [CrossRef]
- Fink, A.H. Spatiotemporal variability of the relation between African Easterly Waves and West African Squall Lines in 1998 and 1999. J. Geophys. Res. Atmos. 2003, 108, 1–17. [Google Scholar] [CrossRef]
- Mathon, V.; Laurent, H. Life cycle of Sahelian mesoscale convective cloud systems. Q. J. R. Meteorol. Soc. 2001, 127, 377–406. [Google Scholar] [CrossRef]
- Laing, A.G.; Fritsch, J.M.; Negri, A.J. Contribution of Mesoscale Convective Complexes to Rainfall in Sahelian Africa: Estimates from Geostationary Infrared and Passive Microwave Data. J. Appl. Meteorol. 1999, 38, 957–964. [Google Scholar] [CrossRef]
- Mbaye, M.L.; Sylla, M.B.; Tall, M. Impacts of 1.5 and 2.0 °C Global Warming on Water Balance Components over Senegal in West Africa. Atmosphere 2019, 10, 712. [Google Scholar] [CrossRef] [Green Version]
- Weber, T.; Haensler, A.; Rechid, D.; Pfeifer, S.; Eggert, B.; Jacob, D. Analyzing Regional Climate Change in Africa in a 1.5, 2, and 3 °C Global Warming World. Earth’s Future 2018, 6, 643–655. [Google Scholar] [CrossRef]
- Dosio, A.; Turner, A.G.; Tamoffo, A.T.; Sylla, M.B.; Lennard, C.; Jones, R.G.; Terray, L.; Nikulin, G.; Hewitson, B. A tale of two futures: Contrasting scenarios of future precipitation for West Africa from an ensemble of regional climate models. Environ. Res. Lett. 2020, 15, 064007. [Google Scholar] [CrossRef]
- Vizy, E.K.; Cook, K.H. Mid-Twenty-First-Century Changes in Extreme Events over Northern and Tropical Africa. J. Clim. 2012, 25, 5748–5767. [Google Scholar] [CrossRef]
- Sylla, M.B.; Gaye, A.T.; Jenkins, G.S. On the Fine-Scale Topography Regulating Changes in Atmospheric Hydrological Cycle and Extreme Rainfall over West Africa in a Regional Climate Model Projections. Int. J. Geophys. 2012, 2012, 1–15. [Google Scholar] [CrossRef]
- Haensler, A.; Saeed, F.; Jacob, D. Assessing the robustness of projected precipitation changes over central Africa on the basis of a multitude of global and regional climate projections. Clim. Chang. 2013, 121, 349–363. [Google Scholar] [CrossRef] [Green Version]
- Salack, S.; Klein, C.; Giannini, A.; Sarr, B.; Worou, O.N.; Belko, N.; Bliefernicht, J.; Kunstman, H. Global warming induced hybrid rainy seasons in the Sahel. Environ. Res. Lett. 2016, 11, 104008. [Google Scholar] [CrossRef]
- Economic Community of West African States. Proceedings of the ECOWAS Hydromet Forum and Disaster Risk Reduction (DRR) Platform, Abuja, Nigeria, 19–21 September 2018; Bamba, A., Banu, Z., Cheney, D., Dingel, C., Djuma, A., Fukuor, G., Ibrahim, M.S., Kablan, M.K.A., Koffi, K.V., Kouadio, K., Eds.; Economic Community of West African States (ECOWAS), Humanitarian and Social Affairs Directorate, ECOWAS Comission: Abuja, Nigeria, 2018; Available online: https://bit.ly/3g7Ldzi (accessed on 10 September 2020).
- Deque, M.; Calmanti, S.; Christensen, O.B.; Dell’Aquila, A.; Maule, C.F.; Haensler, A.; Nikulin, G.; Teichmann, C. A multi-model climate response over tropical Africa at +2 °C. Clim. Serv. 2017, 7, 87–95. [Google Scholar] [CrossRef] [Green Version]
- Zahiri, E.-P.; Bamba, I.; Famien, A.M.; Koffi, A.K.; Ochou, A.D. Mesoscale extreme rainfall events in West Africa: The cases of Niamey (Niger) and the Upper Ouémé Valley (Benin). Weather Clim. Extrem. 2016, 13, 15–34. [Google Scholar] [CrossRef] [Green Version]
- Tazen, F.; Diarra, A.; Kabore, R.F.W.; Ibrahim, B.; Bologo/traoré, M.; Traoré, K.; Karambiri, H. Trends in flood events and their relationship to extreme rainfall in an urban area of Sahelian West Africa: The case study of Ouagadougou, Burkina Faso. J. Flood Risk Manag. 2019, 12, e12507. [Google Scholar] [CrossRef] [Green Version]
Institute | RCM | Ensemble | Driving Model |
Climate Limited-Area Modelling (CLM) Community | CLMcom COSMOCLM (CCLM4) | r1i1p1 | MOHC-HadGEM2-ES |
MPI-M-MPI-ESM-LR | |||
CNRM-CERFACS-CNRM-CM5 | |||
r12i1p1 | ICHEC-EC-EARTH | ||
Max Planck Institute (MPI), Germany | MPI-CSC-REMO2009 (REMO2009) | r12i1p1 | ICHEC-EC-EARTH |
r1i1p1 | MPI-M-MPI-ESM-LR | ||
Sveriges Meteorologiska och Hydrologiska Institut (SMHI), Sweden | SMHI Rossby Centre Regional Atmospheric Model (RCA4) | r1i1p1 | CSIRO-QCCCE-CSIRO-Mk3-6-0 |
MIROC-MIROC5 | |||
MOHC-HadGEM2-ES | |||
NCC-NorESM1-M | |||
MPI-M-MPI-ESM-LR | |||
IPSL-IPSL-CM5A-MR | |||
NOAA-GFDL-GFDL-ESM2M | |||
CCCma-CanESM2 | |||
CNRM-CERFACS-CNRM-CM5 | |||
ICHEC-EC-EARTH | |||
r12i1p1 | ICHEC-EC-EARTH | ||
r2i1p1 | MPI-M-MPI-ESM-LR | ||
r3i1p1 | MPI-M-MPI-ESM-LR | ||
ICHEC-EC-EARTH | |||
Koninklijk Nederlands Meteorologisch Instituut (KNMI), Netherlands | KNMI Regional Atmospheric Climate Model, version 2.2 (RACMO22T) | r1i1p1 | MOHC-HadGEM2-ES |
ICHEC-EC-EARTH | |||
Danish Meteorological Institute (DMI) | DMI-HIRHAM5 (HIRHAM5) | r3i1p1 | ICHEC-EC-EARTH |
r1i1p1 | NCC-NorESM1-M |
Descriptor | Acronym | Description | Unit |
Simple precipitation intensity index | SDII | Mean precipitation amount on a wet day. Let RRij be the daily precipitation amount on wet day w (RR ≥ 1 mm) in period j. If W represents the number of wet days in j then the simple precipitation intensity index SDIIj = sum (RRwj)/W | mm/day |
Number of wet days index | R1mm | Defined as the number of days with precipitation ≥ 1 mm/day | Days |
Number of wet days with moderate intensity precipitation | R10mm | Defined as the number of days with precipitation ≥ 10 mm/day and representing moderate intensity precipitation days | Days |
Number of wet days with heavy intensity precipitation | R30mm | Defined as the number of days with precipitation ≥ 30 mm/day and representing heavy intensity precipitation days | Days |
Consecutive wet days | CWD | Maximum length of wet spell, maximum number of consecutive days with RR ≥ 1 mm: Let RRij be the daily precipitation amount on day I in period j. Count the largest number of consecutive days where: RRij ≥ 1 mm | Days |
Mean annual daily precipitation | ANN | For every adjacent sequence t_1, ..., t_n of timesteps of the same year it is: o(t, x) = mean{i(t’, x), t1 < t’ ≤ tn}; computed for January-December of every year in the series | mm/day |
Mean daily precipitation for JJAS season | JJAS | For every adjacent sequence t_1, ..., t_n of timesteps of the same year it is: o(t, x) = mean{i(t’, x), t1 < t’ ≤ tn}; computed for June-September of every year in the series | mm/day |
Reference dataset | Criterion | RCM | Driving GCM |
CHIRPS | PCCs | RCA4 | CNRM-CERFACS-CNRM-CM5 (r1i1p1), MPI-M-MPI-ESM-LR (r2i1p1), ICHEC-EC-EARTH (r3i1p1) |
REMO2009 | Ensemble mean | ||
HIRHAM5 | Ensemble mean | ||
IVS | RCA4 | NCC-NorESM1-M (r1i1p1), CCCma-CanESM2 (r1i1p1), ICHEC-EC-EARTH (r3i1p1) | |
RACMO22T | MOHC-HadGEM2-ES (r1i1p1) | ||
HIRHAM5 | Ensemble mean | ||
Both PCCs and IVS | CCLM4 | MOHC-HadGEM2-ES (r1i1p1) | |
RCA4 | NCC-NorESM1-M (r1i1p1), IPSL-IPSL-CM5A-MR (r1i1p1), CNRM-CERFACS-CNRM-CM5 (r1i1p1), ICHEC-EC-EARTH (r12i1p1), ICHEC-EC-EARTH (r3i1p1) | ||
CCLM4 | Ensemble mean | ||
RACMO22T | Ensemble mean | ||
TAMSAT3 | PCCs | RCA4 | CSIRO-QCCCE-CSIRO-Mk3-6-0 (r1i1p1), NCC-NorESM1-M (r1i1p1), IPSL-IPSL-CM5A-MR (r1i1p1), CNRM-CERFACS-CNRM-CM5 (r1i1p1), ICHEC-EC-EARTH (r1i1p1) |
IVS | RCA4 | CCCma-CanESM2 (r1i1p1), | |
CCLM4 | MOHC-HadGEM2-ES (r1i1p1), ICHEC-EC-EARTH (r12i1p1), Ensemble mean | ||
RACMO22T | MOHC-HadGEM2-ES (r1i1p1) | ||
Both PCCs and IVS | CCLM4 | MOHC-HadGEM2-ES (r1i1p1), | |
RCA4 | MPI-M-MPI-ESM-LR (r1i1p1), IPSL-IPSL-CM5A-MR (r1i1p1), NCC-NorESM1-M (r1i1p1), CCCma-CanESM2 (r1i1p1), ICHEC-EC-EARTH (r12i1p1), MPI-M-MPI-ESM-LR (r3i1p1) | ||
RACMO22T | Ensemble mean |
Reference dataset | Criterion | RCM | Driving GCM |
CHIRPS | PCCs | RCA4 | CNRM-CERFACS-CNRM-CM5 (r1i1p1), CCCma-CanESM2 (r1i1p1), MPI-M-MPI-ESM-LR (r3i1p1), |
RACMO22T | MOHC-HadGEM2-ES (r1i1p1) | ||
HIRHAM5 | ICHEC-EC-EARTH (r3i1p1) | ||
IVS | RCA4 | CCCma-CanESM2 (r1i1p1) | |
RACMO22T | MOHC-HadGEM2-ES (r1i1p1) | ||
CCLM4 | MPI-M-MPI-ESM-LR (r1i1p1), ICHEC-EC-EARTH (r12i1p1), Ensemble mean | ||
Both PCCs and IVS | CCLM4 | MPI-M-MPI-ESM-LR (r1i1p1), ICHEC-EC-EARTH (r12i1p1) | |
RCA4 | CCCma-CanESM2 (r1i1p1), ICHEC-EC-EARTH (r3i1p1), | ||
RACMO22T | MOHC-HadGEM2-ES (r1i1p1), Ensemble mean | ||
HIRHAM5 | ICHEC-EC-EARTH (r3i1p1), Ensemble mean | ||
TAMSAT3 | PCCs | RCA4 | MOHC-HadGEM2-ES (r1i1p1), MPI-M-MPI-ESM-LR (r2i1p1) |
HIRHAM5 | ICHEC-EC-EARTH (r3i1p1), NCC-NorESM1-M (r1i1p1) | ||
CCLM4 | CNRM-CERFACS-CNRM-CM5 (r1i1p1) | ||
IVS | CCLM4 | MOHC-HadGEM2-ES (r1i1p1), Ensemble mean | |
RCA4 | MOHC-HadGEM2-ES (r1i1p1) | ||
RACMO22T | MOHC-HadGEM2-ES (r1i1p1), Ensemble mean | ||
Both PCCs and IVS | CCLM4 | MOHC-HadGEM2-ES (r1i1p1), ICHEC-EC-EARTH (r12i1p1), MPI-M-MPI-ESM-LR (r1i1p1) | |
RCA4 | MOHC-HadGEM2-ES (r1i1p1), | ||
HIRHAM5 | ICHEC-EC-EARTH (r3i1p1), NCC-NorESM1-M (r1i1p1), Ensemble mean | ||
RACMO22T | MOHC-HadGEM2-ES (r1i1p1), |
Reference dataset | Criterion | RCM | Driving GCM |
CHIRPS | PCCs | RCA4 | CNRM-CERFACS-CNRM-CM5 (r1i1p1), MPI-M-MPI-ESM-LR (r2i1p1), ICHEC-EC-EARTH (r3i1p1), |
HIRHAM5 | ICHEC-EC-EARTH (r3i1p1), Ensemble mean | ||
IVS | RCA4 | CCCma-CanESM2 (r1i1p1), ICHEC-EC-EARTH (r3i1p1), | |
RACMO22T | MOHC-HadGEM2-ES (r1i1p1), | ||
CCLM4 | ICHEC-EC-EARTH (r12i1p1), Ensemble mean | ||
Both PCCs and IVS | CCLM4 | ICHEC-EC-EARTH (r12i1p1), Ensemble mean | |
RCA4 | NCC-NorESM1-M (r1i1p1), CCCma-CanESM2 (r1i1p1), ICHEC-EC-EARTH (r3i1p1), | ||
RACMO22T | MOHC-HadGEM2-ES (r1i1p1), Ensemble mean | ||
HIRHAM5 | ICHEC-EC-EARTH (r3i1p1) | ||
TAMSAT3 | PCCs | RCA4 | CSIRO-QCCCE-CSIRO-Mk3-6-0 (r1i1p1), MOHC-HadGEM2-ES (r1i1p1), IPSL-IPSL-CM5A-MR (r1i1p1), CNRM-CERFACS-CNRM-CM5 (r1i1p1), MPI-M-MPI-ESM-LR (r2i1p1) |
IVS | CCLM4 | ICHEC-EC-EARTH (r12i1p1), MOHC-HadGEM2-ES (r1i1p1), Ensemble mean | |
RCA4 | CCCma-CanESM2 (r1i1p1) | ||
RACMO22T | MOHC-HadGEM2-ES (r1i1p1) | ||
Both PCCs and IVS | CCLM4 | MOHC-HadGEM2-ES (r1i1p1), MPI-M-MPI-ESM-LR (r1i1p1), ICHEC-EC-EARTH (r12i1p1), Ensemble mean | |
RCA4 | CCCma-CanESM2 (r1i1p1) | ||
HIRHAM5 | Ensemble mean | ||
RACMO22T | MOHC-HadGEM2-ES (r1i1p1), Ensemble mean |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ogega, O.M.; Gyampoh, B.A.; Mistry, M.N. Intraseasonal Precipitation Variability over West Africa under 1.5 °C and 2.0 °C Global Warming Scenarios: Results from CORDEX RCMs. Climate 2020, 8, 143. https://doi.org/10.3390/cli8120143
Ogega OM, Gyampoh BA, Mistry MN. Intraseasonal Precipitation Variability over West Africa under 1.5 °C and 2.0 °C Global Warming Scenarios: Results from CORDEX RCMs. Climate. 2020; 8(12):143. https://doi.org/10.3390/cli8120143
Chicago/Turabian StyleOgega, Obed M., Benjamin A. Gyampoh, and Malcolm N. Mistry. 2020. "Intraseasonal Precipitation Variability over West Africa under 1.5 °C and 2.0 °C Global Warming Scenarios: Results from CORDEX RCMs" Climate 8, no. 12: 143. https://doi.org/10.3390/cli8120143
APA StyleOgega, O. M., Gyampoh, B. A., & Mistry, M. N. (2020). Intraseasonal Precipitation Variability over West Africa under 1.5 °C and 2.0 °C Global Warming Scenarios: Results from CORDEX RCMs. Climate, 8(12), 143. https://doi.org/10.3390/cli8120143