Climate Change and Thermal Comfort in Greece
Abstract
:1. Introduction
2. Materials and Methods
3. Results
3.1. Annual Thom’s Discomfort Index (TDI) Values
3.2. Summer TDI Variation
3.3. Intra-Annual TDI Variation
3.4. Frequency of TDI Occurrence
3.5. Maps of TDI
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
amsl | above mean-sea level |
EURO-CORDEX | European Coordinated Regional Climate Downscaling Experiment (Europe) |
HNMS | Hellenic National Meteorological Service (Greece) |
IERSD | Institute of Environmental Research and Sustainable Development (NOA, Greece) |
IPCC | Intergovernmental Panel for Climate Change |
MOCI | Mediterranean Outdoor Comfort Index |
MPI-M | Max Planck Institute for Meteorology (Germany) |
MRM | Meteorological Radiation Model |
NOA | National Observatory of Athens (Greece) |
NOAA | National Oceanic and Atmospheric Administration (USA) |
PET | Popular Events Tracking (model) |
PMV | Predicted Mean Vote (model) |
RCA | Rossby Centre Regional Atmospheric (model) |
RCP | Representative Concentration Pathway |
RH | relative humidity |
SET | Standard Effective Temperature (model) |
SMHI | Swedish Meteorological and Hydrological Institute (Sweden) |
TDI | Thom’s Discomfort Index |
KRIPIS-THESPIA | Development of synergistic and integrated methods and tools for monitoring, management and forecasting of environmental parameters and pressures (research programme, Greece) |
TMM | Typical Meteorological Month |
TMY | Typical Meteorological Year |
WMO | World Meteorological Organisation |
References
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II, and III to the 5th Assessment Report of the IPCC; Pachauti, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014. [Google Scholar]
- NOAA. Climate at a Glance: Global Time Series 2018. Available online: https://www.ncdc.noaa.gov/cag/ (accessed on 10 December 2020).
- Sheridan, S.C.; Allen, M.J. Changes in the Frequency and Intensity of Extreme Temperature Events and Human Health Concerns. Curr. Clim. Change Rep. 2015, 1, 155–162. [Google Scholar] [CrossRef]
- Kjellstrom, T.; Briggs, D.; Freyberg, C.; Lemke, B.; Otto, M.; Hyatt, O. Heat, Human Performance, and Occupational Health: A Key Issue for the Assessment of Global Climate Change Impacts. Annu. Rev. Public Health 2016, 37, 97–112. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Matthews, T. Humid heat and climate change. Prog. Phys. Geogr. Earth Environ. 2017, 42, 391–405. [Google Scholar] [CrossRef] [Green Version]
- Matthews, T.; Wilby, R.L.; Murphy, C. Communicating the deadly consequences of global warming for human heat stress. Proc. Natl. Acad. Sci. USA 2017, 114, 3861–3866. [Google Scholar] [CrossRef] [Green Version]
- Yang, R.; Zhang, H.; You, S.; Zheng, W.; Zheng, X.; Ye, T. Study on the thermal comfort index of solar radiation conditions in winter. Build. Environ. 2020, 167, 106456. [Google Scholar] [CrossRef]
- Adegoke, O.O.; Dombo, T.P. Spatial modelling of human thermal comfort in Akure metropolis using Thom’s discomfort index. Int. J. Environ. Bioenergy 2019, 14, 40–55. [Google Scholar]
- Cohen, P.; Potchter, O.; Matzarakis, A. Human thermal perception of Coastal Mediterranean outdoor urban environments. Appl. Geogr. 2013, 37, 1–10. [Google Scholar] [CrossRef]
- Epstein, Y.; Moran, D.S. Thermal comfort and the heat stress index. Ind. Health 2006, 44, 388–398. [Google Scholar] [CrossRef] [Green Version]
- Golasi, I.; Salata, F.; Vollaro, E.D.L.; Coppi, M.; Vollaro, A.D.L. Thermal Perception in the Mediterranean Area: Comparing the Mediterranean Outdoor Comfort Index (MOCI) to Other Outdoor Thermal Comfort Indices. Energies 2016, 9, 550. [Google Scholar] [CrossRef] [Green Version]
- Honjo, T. Thermal comfort in outdoor environment. Global Environ. Res. 2009, 13, 43–47. [Google Scholar]
- Yang, B.; Olofsson, T.; Nair, G.; Kabanishi, A. Outdoor thermal comfort under subarctic climate of north Sweden—A pilot study in Umeå. Sustain. Cities Soc. 2017, 28, 387–397. [Google Scholar] [CrossRef]
- Yousif, T.A.; Tahir, H.M.M. Application of Thom’s thermal discomfort index in Khartoum State, Sudan. J. Forest Prod. Ind. 2013, 2, 36–38. [Google Scholar]
- Djongyang, N.; Tchinda, R.; Njomo, D. Thermal comfort: A review paper. Renew. Sustain. Energy Rev. 2010, 14, 2626–2640. [Google Scholar] [CrossRef]
- Angouridakis, V.E.; Makrogiannis, T.J. The Discomfort-Index in Thessaloniki, Greece. Int. J. Biometeorol. 1982, 26, 53–59. [Google Scholar] [CrossRef]
- Giles, B.D.; Balafoutis, C.; Maheras, P. Too hot for comfort: The heatwaves in Greece in 1987 and 1988. Int. J. Biometeorol. 1990, 34, 98–104. [Google Scholar] [CrossRef]
- Paliatsos, A.G.; Nastos, P.T. Relation between air pollution episodes and discomfort index in the greater Athens area, Greece. Glob. Nest J. 1999, 1, 91–97. [Google Scholar] [CrossRef]
- Tselepidaki, I.; Santamouris, M.; Moustris, C.; Poulopoulou, G. Analysis of the summer discomfort index in Athens, Greece, for cooling purposes. Energy Build. 1992, 18, 51–56. [Google Scholar] [CrossRef]
- Tsitoura, M.; Tsoutsos, T.; Daras, T. Evaluation of comfort conditions in urban open spaces. Application in the island of Crete. Energy Convers. Manag. 2014, 86, 250–258. [Google Scholar] [CrossRef]
- Stathopoulou, M.I.; Cartalis, C.; Keramitsoglou, I.; Santamouris, M. Thermal remote sensing of Thom’s discomfort index (DI): Comparison with in-situ measurements. Remote Sens. 2005, 5983, 59830. [Google Scholar] [CrossRef]
- Pantavou, K.; Santamouris, M.; Asimakopoulos, D.; Theoharatos, G. Empirical calibration of thermal indices in an urban outdoor Mediterranean environment. Build. Environ. 2014, 80, 283–292. [Google Scholar] [CrossRef]
- Pantavou, K.; Theoharatos, G.; Santamouris, M.; Asimakopoulos, D. Outdoor thermal sensation of pedestrians in a Mediterranean climate and a comparison with UTCI. Build. Environ. 2013, 66, 82–95. [Google Scholar] [CrossRef]
- Katavoutas, G.; Founda, D. Intensification of thermal risk in Mediterranean climates: Evidence from the comparison of rational and simple indices. Int. J. Biometeorol. 2019, 63, 1251–1264. [Google Scholar] [CrossRef] [PubMed]
- Kambezidis, H.D.; Psiloglou, B.E.; Kaskaoutis, D.G.; Karagiannis, D.; Petrinoli, K.; Gavriil, A.; Kavadias, K. Generation of typical meteorological years for 33 locations in Greece: Adaptation to the needs of various applications. Theor. Appl. Clim. 2020, 141, 1–18. [Google Scholar] [CrossRef]
- Thom, E.C. The Discomfort Index. Weatherwise 1959, 12, 57–61. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E.; Karagiannis, D.; Dumka, U.C.; Kaskaoutis, D.G. Recent improvements of the Meteorological Radiation Model for solar irradiance estimates under all-sky conditions. Renew. Energy 2016, 93, 142–158. [Google Scholar] [CrossRef]
- Kambezidis, H.D.; Psiloglou, B.E.; Karagiannis, D.; Dumka, U.C.; Kaskaoutis, D.G. Meteorological Radiation Model (MRM v6.1): Improvements in diffuse radiation estimates and a new approach for implementation of cloud products. Renew. Sustain. Energy Rev. 2017, 74, 616–637. [Google Scholar] [CrossRef]
- Strandberg, G.; Kjellström, E.; Poska, A.; Wagner, S.; Gaillard, M.-J.; Trondman, A.-K.; Mauri, A.; Davis, B.A.S.; Kaplan, J.O.; Birks, H.J.B.; et al. Regional climate model simulations for Europe at 6 and 0.2 k BP: Sensitivity to changes in anthropogenic deforestation. Clim. Past 2014, 10, 661–680. [Google Scholar] [CrossRef] [Green Version]
- Popke, D.; Stevens, B.; Voigt, A. Climate and climate change in a radiative-convective equilibrium version of ECHAM6. J. Adv. Model. Earth Syst. 2013, 5, 1–14. [Google Scholar] [CrossRef]
- ELOT. Information and Documentation: Conversion of Greek Characters into Latin Characters; Standard 743; Hellenic Organisation for Standardisation: Athens, Greece, 2001. [Google Scholar]
- ISO. Information and Documentation: Conversion of Greek Characters into Latin Characters; Standard 843; International Standardisation Organisation: Geneva, Switzerland, 1997. [Google Scholar]
- Papanastasiou, D.K.; Melas, D.; Kambezidis, H.D. Heat waves characteristics and their relation to air quality in Athens. Global Nest J. 2014, 16, 919–928. [Google Scholar] [CrossRef] [Green Version]
- Kambezidis, H.D.; Larissi, I.K.; Nastos, P.T.; Paliatsos, A.G. Spatial variability and trends of the rain intensity over Greece. Adv. Geosci. 2010, 26, 65–69. [Google Scholar] [CrossRef] [Green Version]
- Mimikou, M.A.; Baltas, E.A. Assessment of Climate Change Impacts in Greece: A General Overview. Am. J. Clim. Change 2013, 2, 46–56. [Google Scholar] [CrossRef]
- Giannakopoulos, C.; Kostopoulou, E.; Varotsos, K.V.; Tziotziou, K.; Plitharas, A. An integrated assessment of climate change impacts for Greece in the near future. Reg. Environ. Change 2011, 11, 829–843. [Google Scholar] [CrossRef] [Green Version]
- Commission on the Study of the Climate Change Impacts. The Environmental, Economic and Social Impacts of Climate Change in Greece, 1st ed.; Bank of Greece: Athens, Greece, 2011; pp. 68–70. ISBN 978-960-7032-49-2. (In Greek) [Google Scholar]
- Tung, K.-K.; Chen, X. Understanding the Recent Global Surface Warming Slowdown: A Review. Climate 2018, 6, 82. [Google Scholar] [CrossRef] [Green Version]
Description | TDI Class | Range (°C) |
---|---|---|
No discomfort | A | <21 |
Under 50% of the population feels discomfort | B | 21–23.99 |
Over 50% of the population feels discomfort | C | 24–26.99 |
Most of the population feels discomfort | D | 27–28.99 |
Everyone feels discomfort | E | 29–31.99 |
State of medical emergency | F | ≥32 |
Nr. | Station Name 1 (Region in Greek/English language) 1 | Station’s World Meteorological Organisation code (16xxx) | Latitude (deg N) | Longitude (deg E) | Elevation (m amsl) |
---|---|---|---|---|---|
1 | Serres (Kentriki Makedonia/Central Macedonia) | 606 | 41.083 | 23.567 | 34.5 |
2 | Kastoria (Dytiki Makedonia/Western Macedonia) | 614 | 40.450 | 21.283 | 660.9 |
3 | Mikra, outskirts of Thessaloniki (Kentriki Makedonia/Central Macedonia) | 622 | 40.517 | 22.967 | 4.8 |
4 | Alexandroupoli (Anatoliki Makedonia and Thraki/Eastern Macedonia and Thrace) | 627 | 40.850 | 25.933 | 3.5 |
5 | Kozani (Dytiki Makedonia/Western Macedonia) | 632 | 40.283 | 21.783 | 625.0 |
6 | Kerkyra, known as Corfu (Ionioi Nisoi/Ionian Islands) | 641 | 39.617 | 19.917 | 4.0 |
7 | Ioannina (Ipiros/Epirus) | 642 | 39.700 | 20.817 | 484.0 |
8 | Larisa (Thessalia/Thessaly) | 648 | 39.650 | 22.450 | 73.6 |
9 | Limnos (Voreio Aigaio/Northern Aegean) | 650 | 39.917 | 25.233 | 4.6 |
10 | Anchialos (Thessalia/Thessaly) | 665 | 39.217 | 22.800 | 15.3 |
11 | Lesvos (Voreio Aigaio/Northern Aegean) | 667 | 39.067 | 26.600 | 4.8 |
12 | Agrinio (Dytiki Ellada/Western Greece) | 672 | 38.617 | 21.383 | 25.0 |
13 | Lamia (Sterea Ellada) | 675 | 38.850 | 22.400 | 17.4 |
14 | Andravida (Dytiki Ellada/Western Greece) | 682 | 37.917 | 21.283 | 15.1 |
15 | Skyros (Sterea Ellada) | 684 | 38.900 | 24.550 | 17.9 |
16 | Araxos (Dytiki Ellada/Western Greece) | 687 | 38.133 | 21.417 | 11.7 |
17 | Tanagra (Sterea Ellada) | 699 | 38.317 | 23.550 | 139.0 |
18 | Chios (Voreio Aigaio/Northern Aegean) | 706 | 38.350 | 26.150 | 4.0 |
19 | Tripoli (Peloponissos/Peloponnese) | 710 | 37.533 | 22.400 | 652.0 |
20 | Elliniko (Attica) | 716 | 37.900 | 23.750 | 15.0 |
21 | Zakynthos, known as Zante (Ionioi Nisoi/Ionian Islands) | 719 | 37.783 | 20.900 | 7.9 |
22 | Samos (Voreio Aigaio/Northern Aegean) | 723 | 37.700 | 26.917 | 7.3 |
23 | Kalamata (Peloponissos/Peloponnese) | 726 | 37.067 | 22.000 | 11.1 |
24 | Naxos (Notio Aigaio/Southern Aegean) | 732 | 37.100 | 25.533 | 9.8 |
25 | Methoni (Peloponissos/Peloponnese) | 734 | 36.833 | 21.700 | 52.4 |
26 | Spata (Attiki/Attica) | 741 | 37.967 | 23.917 | 67.0 |
27 | Kythira (Attiki/Attica) | 743 | 36.133 | 23.017 | 166.8 |
28 | Thira, known as Santorini (Notio Aigaio/Southern Aegean) | 744 | 36.417 | 25.433 | 36.5 |
29 | Souda (Kriti/Crete) | 746 | 35.550 | 24.117 | 140.0 |
30 | Rodos, known as Rhodes (Notio Aigaio/Southern Aegean) | 749 | 36.400 | 28.117 | 11.5 |
31 | Irakleio, also written as Heraklion (Kriti/Crete) | 754 | 35.333 | 25.183 | 39.3 |
32 | Siteia (Kriti/Crete) | 757 | 35.120 | 26.100 | 115.6 |
33 | Kasteli (Kriti/Crete) | 760 | 35.120 | 25.333 | 335.0 |
Station | Jan | Feb | Mar | Apr | May | Jun | Jul | Aug | Sep | Oct | Nov | Dec |
---|---|---|---|---|---|---|---|---|---|---|---|---|
Agrinio | 1999 | 2004 | 2000 | 1994 | 2001 | 1997 | 2000 | 1999 | 2004 | 1988 | 2010 | 1994 |
Irakleio | 1995 | 2001 | 2004 | 1994 | 1997 | 1987 | 2003 | 1996 | 1996 | 1997 | 2004 | 2003 |
Kastoria | 1987 | 1988 | 2005 | 1985 | 1995 | 1996 | 1996 | 1998 | 1991 | 1994 | 1989 | 2008 |
Tripoli | 1999 | 1985 | 1993 | 1993 | 1995 | 1987 | 1987 | 1986 | 1986 | 1991 | 2004 | 1994 |
Parameter | Period | ||||||
---|---|---|---|---|---|---|---|
Historical 1985–2014 | RCP 4.5 2021–2050 | RCP 4.5 2046–2075 | RCP 4.5 2071–2100 | RCP 8.5 2021–2050 | RCP 8.5 2046–2075 | RCP 8.5 2071–2100 | |
Annual average TDI | 15.89 (±1.70) | 16.32 (±1.63) | 16.52 (±1.60) | 16.74 (±1.65) | 16.22 (±1.64) | 17.33 (±1.60) | 18.40 (±1.54) |
Annual average ΔTDI | 0 | 0.43 (±0.48) | 0.64 (±0.51) | 0.85 (±0.54) | 0.33 (±0.51) | 1.44 (±0.50) | 2.51 (±0.51) |
Parameter | Period | ||||||
---|---|---|---|---|---|---|---|
Historical 1985–2014 | RCP 4.5 2021–2050 | RCP 4.5 2046–2075 | RCP 4.5 2071–2100 | RCP 8.5 2021–2050 | RCP 8.5 2046–2075 | RCP 8.5 2071–2100 | |
Summer average TDI | 22.37 (±1.02) | 22.47 (±0.81) | 22.72 (±0.83) | 22.91 (±0.91) | 22.71 (±0.86) | 23.43 (±0.87) | 24.53 (±0.88) |
Summer average ΔTDI | 0 | 0.10 (±0.56) | 0.35 (±0.59) | 0.55 (±0.58) | 0.34 (±0.58) | 1.07 (±1.22) | 2.16 (±0.58) |
IPCC Scenario, Period | Equation | R2 |
---|---|---|
RCP 4.5, 2021–2050 | TDI = −0.0003 t6 + 0.0127 t5 − 0.2110 t4 + 1.5271 t3 − 4.6786 t2 + 6.7114 t + 6.8759 | 0.9997 |
RCP 4.5, 2046–2075 | TDI = −0.00009 t6 + 0.0053 t5 − 0.0986 t4 + 0.7052 t3 − 1.6694 t2 + 1.6710 t + 9.8182 | 0.9975 |
RCP 4.5, 2071–2100 | TDI = −0.0002 t6 + 0.0102 t5 − 0.1697 t4 + 1.1906 t3 − 3.2756 t2 + 4.0542 t + 8.7419 | 0.9995 |
RCP 8.5, 2021–2050 | TDI = −0.0003 t6 + 0.0138 t5 − 0.2226 t4 + 1.5943 t3 − 4.9267 t2 + 7.5063 t + 5.4503 | 0.9991 |
RCP 8.5, 2046–2075 | TDI = −0.0003 t6 + 0.0113 t5 − 0.1791 t4 + 1.2151 t3 − 3.2224 t2 + 3.7653 t + 9.5427 | 0.9998 |
RCP 8.5, 2071–2100 | TDI = −0.0003 t6 + 0.0119 t5 − 0.2000 t4 + 1.4613 t3 − 4.5338 t2 + 6.7582 t + 8.6553 | 0.9997 |
historical (1985–2014) | TDI = −0.0003 t6 + 0.0130 t5 − 0.2113 t4 + 1.4895 t3 − 4.3529 t2 + 5.9352 t + 6.6504 | 0.9997 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kambezidis, H.D.; Psiloglou, B.E.; Varotsos, K.V.; Giannakopoulos, C. Climate Change and Thermal Comfort in Greece. Climate 2021, 9, 10. https://doi.org/10.3390/cli9010010
Kambezidis HD, Psiloglou BE, Varotsos KV, Giannakopoulos C. Climate Change and Thermal Comfort in Greece. Climate. 2021; 9(1):10. https://doi.org/10.3390/cli9010010
Chicago/Turabian StyleKambezidis, Harry D., Basil E. Psiloglou, Konstantinos V. Varotsos, and Christos Giannakopoulos. 2021. "Climate Change and Thermal Comfort in Greece" Climate 9, no. 1: 10. https://doi.org/10.3390/cli9010010
APA StyleKambezidis, H. D., Psiloglou, B. E., Varotsos, K. V., & Giannakopoulos, C. (2021). Climate Change and Thermal Comfort in Greece. Climate, 9(1), 10. https://doi.org/10.3390/cli9010010