Dynamical Downscaling of Surface Air Temperature and Wind Field Variabilities over the Southeastern Levantine Basin, Mediterranean Sea
Abstract
:1. Introduction
2. Data and Methods of Analysis
2.1. Data Used
2.1.1. Data Used to Force RegCM-SVN
- Data of air temperature, geopotential height, relative humidity, and zonal/meridional wind components were obtained from ERA5 hourly data on 38 different pressure levels from 1979 to 2018 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form [accessed on 28 September 2020]) [21] with a grid spacing of 0.25° × 0.25°. Replacing the old version of ERA-Interim, ERA5 provides data on a denser spatial and temporal grid together with a significant improvement in core dynamics and model physics [22]. ERA5 presents a long-term record of world climate and weather by assimilating observational data (from ground sensors and satellites) using the integrated forecasting system (IFS). It is an improvement over earlier re-analyses to be used for climate and meteorological scientific analyses [23].
- ERA5 sea surface temperature (SST) is also obtained using the ERA5 reanalysis database during the years of 1979–2018 using ERA5 reanalysis on a single level database during the years of 1979–2018 [24].
- Static surface dataset is freely available via (http://climadods.ictp.it/Data/RegCM_Data/SURFACE/ [accessed on 15 August 2020]) [25] and used to describe RegCM-SVN surface boundary conditions:
- GTOPO_DEM_30s, Digital Terrain Model Elevation with 30 arc seconds () spatial grid point.
- GLCC_BATS_30, Global Land Cover Characteristics with a spatial grid point of 30 arc seconds.
- GLZB_SOIL_30s, STATSGO/FAO soil texture with a spatial grid point of 30 arc seconds.
- ETOPO_BTM_30s, lake bathymetric datasets with a spatial grid point of 30 arc seconds.
2.1.2. ERA5 Hourly Data on Single Levels from 1979 to 2018
2.1.3. WMO Observed Data from 2007 to 2018
2.2. Method of Analyses
2.2.1. RegCM-SVN Model
2.2.2. RegCM-SVN Verification Analyses
2.2.3. Spatial and Temporal Distribution of Annual T2m, U10, and V10 over SEL
2.2.4. Seasonal Characteristics of Surface Air Temperature and Wind Speed
2.2.5. Variability of SEL Surface Air Temperature and Surface Wind
- (a)
- Seasonality analysis (Fourier analysis)
- (b)
- Probability density
3. Results
3.1. RegCM-SVN Verification
3.1.1. Spatial Verification
3.1.2. Verification Using Atmospheric Observations over the Five Studied Stations
- (a)
- Surface air temperature (T2m) verification
- (b)
- Wind direction verification
- (c)
- Wind speed (UV10) verification
3.2. Spatial and Temporal Distribution of T2m, Wind Speed, and Direction over SEL
3.3. Seasonal Characteristics of Surface Air Temperature and Wind Speed over SEL
- (i)
- Seasonal surface air temperature
- (ii)
- Seasonal surface wind speed
3.4. Variability of SEL Surface Air Temperature and Surface Wind
- (a)
- Seasonality analysis (Fourier analysis)
- (b)
- Probability density
4. Summary and Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Giorgi, F.; Lionello, P. Climate change projections for the Mediterranean region. Glob. Planet Chang. 2008, 63, 90–104. [Google Scholar] [CrossRef]
- Le, J.A.; El-Askary, H.M.; Allali, M.; Sayed, E.; Sweliem, H.; Piechota, T.C.; Struppa, D.C. Characterizing El Niño-southern oscillation effects on the Blue Nile yield and the Nile river basin precipitation using empirical mode decomposition. Earth Syst. Environ. 2020, 4, 699–711. [Google Scholar] [CrossRef]
- Ehsan, M.A.; Nicolì, D.; Kucharski, F.; Almazroui, M.; Tippett, M.K.; Bellucci, A.; Ruggieri, P.; Kang, I.S. Atlantic Ocean influence on Middle East summer surface air temperature. NPJ Clim. Atmos. Sci. 2020, 3, 1–8. [Google Scholar] [CrossRef] [Green Version]
- Raicich, F.; Pinardi, N.; Navarra, A. Teleconnections between Indian monsoon and Sahel rainfall and the Mediterranean Sea. Int. J. Climatol. 2003, 23, 173–186. [Google Scholar] [CrossRef]
- Abdel-Basset, H.; Hasanean, H.M. Heat wave over Egyptian during the summer of 1998. Int. J. Climatol. 2006, 31, 133–145. [Google Scholar]
- Tyrlis, E.; Lelieveld, J.; Steil, B. The summer circulation in the eastern Mediterranean and the Middle East: Influence of the South Asian monsoon. Clim. Dyn. 2013, 40, 1103–1123. [Google Scholar] [CrossRef] [Green Version]
- Saaroni, H.; Ziv, B.; Osetinsky, I.; Alpert, P. Factors governing the interannual variation and the long-term trend of the 850 hPa temperature over Israel. Q. J. R. Meteorol. Soc. 2010, 136, 305–318. [Google Scholar] [CrossRef]
- Chronis, T.; Papadopoulos, V.; Nikolopoulos, E.I. QuickSCAT observations of extreme wind events over the Mediterranean and Black Seas during 2000–2008. Int. J. Climatol. 2011, 31, 2068–2077. [Google Scholar] [CrossRef]
- De Vries, A.J.; Tyrlis, E.; Edry, D.; Krichak, S.O.; Steil, B.; Lelieveld, J. Extreme precipitation events in the Middle East: Dynamics of the active Red Sea trough. J. Geophys. Res. Atmos. 2013, 118, 7087–7108. [Google Scholar] [CrossRef]
- Saaroni, H.; Bitan, A.; Alpert, P.; Ziv, B. Continental polar outbreaks into the Levant and eastern Mediterranean. Int. J. Climatol. 1996, 16, 1175–1191. [Google Scholar] [CrossRef]
- Nastos, P.T.; Zerefos, C.S. Spatial and temporal variability of consecutive dry and wet days in Greece. Atmos. Res. 2009, 94, 616–628. [Google Scholar] [CrossRef]
- Saaroni, H.; Ziv, B.; Bitan, A.; Alpert, P. Easterly wind storms over Israel. Theor. Appl. Climatol. 1998, 59, 61–77. [Google Scholar] [CrossRef]
- Haggag, M.; El-Badry, H. Mesoscale numerical study of quasi-stationary convective system over Jeddah in November 2009. Atmos. Clim. Sci. 2013, 3, 73–86. [Google Scholar] [CrossRef] [Green Version]
- Zerefos, C.S.; Repapis, C. The climate of the Eastern Mediterranean and Greece: Past, present and future. In The Environmental, Economic and Social Impacts of Climate Change in Greece; Bank of Greece: Athens, Greece, 2011; pp. 1–126. [Google Scholar]
- Lionello, P.; Bhend, J.; Buzzi, A.; Della-Marta, P.M.; Krichak, S.O.; Jansa, A.; Maheras, P.; Sanna, A.; Trigo, I.F.; Trigo, R. Cyclones in the Mediterranean region: Climatology and effects on the environment. In Mediterranean Climate Variability; Elsevier: Amsterdam, The Netherlands, 2006; Volume 4, pp. 325–372. [Google Scholar]
- Shaltout, M.; El Gindy, A.; Omstedt, A. Recent climate trends and future scenarios in the Egyptian Mediterranean coast based on six global climate models. Geofiz. J. 2013, 30, 19–41, UDC 551.581.1, 551.588.7. [Google Scholar]
- IPCC. Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., Gomis, M.I., et al., Eds.; Cambridge University Press: Cambridge, UK, 2021; Available online: https://www.ipcc.ch/report/ar6/wg1/#FullReport (accessed on 29 August 2021).
- Tuel, A.; El Tahir, A.B. Why is the Mediterranean a climate change hot spot? J. Clim. 2020, 33, 5829–5843. [Google Scholar] [CrossRef]
- Abdelwares, M.; Lelieveld, J.; Hadjinicolaou, P.; Zittis, G.; Wagdy, A.; Haggag, M. Evaluation of a regional climate model for the Eastern Nile Basin: Terrestrial and atmospheric water balance. Atmosphere 2019, 10, 736. [Google Scholar] [CrossRef] [Green Version]
- Osman, M.; Zittis, G.; Haggag, M.; Abdeldayem, A.W.; Lelieveld, J. Optimizing regional climate model output for hydro-climate applications in the Eastern Nile Basin. Earth Syst. Environ. 2021, 5, 185–200. [Google Scholar] [CrossRef]
- ERA5 on 38 Different Pressure Levels. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-pressure-levels?tab=form/ (accessed on 28 September 2020).
- Hersbach, H.; Bell, B.; Berrisford, P.; Hirahara, S.; Horanyi, A.; Muñoz-Sabater, J.; Nicolas, J.; Peubey, C.; Radu, R.; Schepers, D.; et al. The ERA5 global reanalysis. Q. J. R. Meteorol. Soc. 2020, 146, 1999–2049. [Google Scholar] [CrossRef]
- Copernicus Climate Change Service (C3S). ERA5: Fifth Generation of ECMWF Atmospheric Reanalysis of the Global Climate. Copernicus Climate Change Service Climate Data Store (CDS). 2020. Available online: https://cds.climate.copernicus.eu/cdsapp#!/home (accessed on 4 October 2020).
- ERA5 on Single Level. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=form/ (accessed on 30 September 2020).
- Static Surface Dataset. Available online: http://climadods.ictp.it/Data/RegCM_Data/SURFACE/ (accessed on 15 August 2020).
- Giorgi, F.; Anyah, R.O. The road towards RegCM4. Clim. Res. 2012, 52, 3–6. [Google Scholar] [CrossRef] [Green Version]
- Grell, G.A.; Dudhia, J.; Stauffer, D.R. Description of the Fifth-Generation Penn State/NCAR Mesoscale Model (MM5); Technical Note NCAR/TN-398+STR; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 1994. [Google Scholar] [CrossRef]
- Kiehl, J.T.; Hack, J.J.; Bonan, G.B.; Boville, B.A.; Briegleb, B.P. Description of the NCAR Community Climate Model (CCM3); PB-97-131528/XAB.; Technical Note NCAR/TN-420-STR; National Center for Atmospheric Research, Climate and Global Dynamics: Boulder, CO USA, 1996. [Google Scholar]
- Holtslag, A.A.M.; de Bruijn, E.I.F. A high resolution air mass transformation model for short-range weather forecasting. Mon. Weather Rev. 1990, 118, 1561–1575. [Google Scholar] [CrossRef]
- Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J. Biosphere-Atmosphere Transfer Scheme (BATS) Version 1 as Coupled to the NCAR Community Climate Model; Technical Note NCAR/TN-387+STR, NCAR; National Center for Atmospheric Research (NCAR): Boulder, CO, USA, 1993. [Google Scholar] [CrossRef]
- Grell, G. Prognostic evaluation of assumptions used by cumulus parameterizations. Mon. Weather Rev. 1993, 121, 764–787. [Google Scholar] [CrossRef] [Green Version]
- Pal, J.S.; Eltahir, E.A.B.; Small, E.E. Simulation of regional-scale water and energy budgets—Representation of subgrid cloud and precipitation processes within RegCM. J. Geophys. Res. 2000, 105, 29579–29594. [Google Scholar] [CrossRef] [Green Version]
- Zeng, X.; Zhao, M.; Dickinson, R.E. Intercomparison of bulk aerodynamic algorithms for the computation of sea surface fluxes using TOGA COARE and TAO data. J. Clim. 1998, 11, 2628–2644. [Google Scholar] [CrossRef]
- Shaltout, M. Recent sea surface temperature trends and future scenarios for the Red Sea. Oceanologia 2019, 61, 484–504. [Google Scholar] [CrossRef]
- Lee, E.; Varaiya, P. Chapter 12. The Z transformation. In Structure and Interpretation of Signals and Systems; No. 9, September 2003; Addison-Wesley: Boston, MA, USA, 2002; Volume 48, ISBN -10:0201745518. [Google Scholar]
- Parsons, S.; Boonman, A.M.; Obrist, M.K. Advantages and disadvantages of techniques for transforming and analyzing chiropteran echolocation calls. J. Mammal. 2000, 81, 927–938. [Google Scholar] [CrossRef] [Green Version]
- Beniston, M.; Keller, F.; Koffi, B.; Goyette, S. Estimates of snow accumulation and volume in the Swiss Alps under changing climatic conditions. Theor. Appl. Climatol. 2003, 76, 125–140. [Google Scholar] [CrossRef] [Green Version]
- Christensen, J.H.; Hewitson, B.; Busuioc, A.; Chen, A.; Gao, X.; Held, I.; Jones, R.; Kolli, R.K.; Kwon, W.T.; Laprise, R.; et al. Regional climate projections. In Climate Change 2007: The Physical Science Basis; Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Solomon, S., Qin, D., Manning, M., Chen, Z., Marquis, M., Averyt, K.B., Tignor, M., Miller, H.L., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2007. [Google Scholar]
- Yasunaga, K.; Muroi, C.; Kato, T.; Yoshizaki, M.; Kurihara, K.; Kusunoki, S.; Wakazuki, Y.; Hashimoto, A.; Kanada, S.; Oouchi, K.; et al. Changes in the Baiu frontal activity in the future climate simulated by super-high-resolution global and cloud-resolving regional climate models. J. Meteorol. Soc. Jpn. 2006, 84, 199–220. [Google Scholar] [CrossRef]
- Goyette, S.; Brasseur, O.; Beniston, M. Application of a new wind gust parameterisation: Multi-scale case studies performed with the Canadian RCM. J. Geophys. Res. 2003, 108, 4371–4389. [Google Scholar] [CrossRef]
- Almazroui, M. RegCM4 in climate simulation over CORDEX-MENA/Arab domain: Selection of suitable domain, convection and land-surface schemes. Int. J. Climatol. 2016, 36, 236–251. [Google Scholar] [CrossRef]
- Tsimplis, M.N.; Calafat, F.M.; Marcos, M.; Jordà, G.; Gomis, D.; Fenoglio-Marc, L.; Struglia, M.V.; Josey, S.A.; Chambers, D. The effect of the NAO on sea level and on mass changes in the Mediterranean Sea. J. Geophys. Res. Oceans 2013, 118, 944–952. [Google Scholar] [CrossRef] [Green Version]
- Mohamed, B.; Mohamed, A.; Alam El-Din, K.; Nagy, H.; Shaltout, M. Inter-annual variability and trends of sea level and sea surface temperature in the Mediterranean Sea over the last 25 years. Pure Appl. Geophys. 2019, 176, 3787–3810. [Google Scholar] [CrossRef]
- Shaltout, M.; Omstedt, A. Recent sea surface temperature trends and future scenarios for the Mediterranean Sea. Oceanologia 2014, 56, 411–443. [Google Scholar] [CrossRef] [Green Version]
- Lopez-Bustins, J.A.; Martin-Vide, J.; Sánchez-Lorenzo, A. Iberia winter rainfall trends based upon changes in teleconnection and circulation patterns. Glob. Planet. Chang. 2008, 63, 171–176. [Google Scholar] [CrossRef]
- Hanssen-Bauer, I.; Achberger, C.; Benestad, R.E.; Chen, D.; Førland, E.J. Statistical downscaling of climate scenarios over Scandinavia. Clim. Res. 2005, 29, 255–268. [Google Scholar] [CrossRef] [Green Version]
- Usha, K.H.; Nair, V.S.; Babu, S.S. Modeling of aerosol induced snow albedo feedbacks over the Himalayas and its implications on regional climate. Clim. Dyn. 2020, 54, 4191–4210. [Google Scholar] [CrossRef]
- Park, S.; Bretherton, C.S. A new moist turbulence parameterization in the community atmosphere model. J. Clim. 2009, 22, 3422–3448. [Google Scholar] [CrossRef]
- Park, J.; Oh, S.; Suh, M. Impacts of boundary conditions on the precipitation simulation of RegCM4 in the CORDEX East Asia domain. J. Geophys. Res. Atmos. 2013, 118, 1652–1667. [Google Scholar] [CrossRef]
- Tiwari, P.R.; Kar, S.C.; Mohanty, U.C.; Dey, S.; Palash Sinha, P.; Raju, P.V.S.; Shekhar, M.S. The role of land surface schemes in the regional climate model (RegCM) for seasonal scale simulations over Western Himalaya. Atmósfera 2015, 28, 129–142. [Google Scholar] [CrossRef] [Green Version]
- Domroes, M.; El-Tantawi, A. Recent temporal and spatial temperature changes in Egypt. Int. J. Climatol. 2005, 25, 51–63. [Google Scholar] [CrossRef]
- Tonbol, K.M.; El-Geziry, T.M.; Elbessa, M. Evaluation of changes and trends in air temperature within the Southern Levantine basin. Weather RMETS 2018, 73, 2. [Google Scholar] [CrossRef]
- Hamed, A.A. Atmospheric Circulation Features Over the South Eastern Part of the Mediterranean Sea in Relation with Weather Conditions and Wind Waves at Alexandria. Master’s Thesis, Alexandria University, Faculty of Science, Alexandria Governorate, Egypt, 1979. [Google Scholar]
- Hamed, A.A. Atmospheric Circulation over the Southeastern Part of the Mediterranean Sea in Relation with Weather Conditions and Wind Waves Along the Egyptian Coast. Ph.D. Thesis, Alexandria University, Faculty of Science, Alexandria Governorate, Egypt, 1983. [Google Scholar]
- Meligy, M.M. Wave and Surge Forecasting Along the Egyptian Coast of the Mediterranean. Master’s Thesis, Arab Academy for Science and Technology and Maritime Transport, Alexandria Governorate, Egypt, 2000. [Google Scholar]
- Elsharkawy, M.S.; El-Geziry, T.M.; Sharaf El-Din, S.H. General Characteristics of Surface Waves off Port Said, Egyp. J. Environ. Sci. Toxicol. Food Technol. (IOSR-JESTFT) 2016, 10, 2319–2399. [Google Scholar] [CrossRef]
- Mahfouz, B.M.; Osman, A.; Saber, S.; Kanhalafallah, H. Assessment of Weather and Climate Variability over Western Harbor of Alexandria, Egypt; Zoology Department, Faculty of Science, Ain Shams University: Cairo, Egypt, 2020; Volume 24, pp. 323–339. ISSN 1110–6131. [Google Scholar]
- Mortensen, N.G.; Said, U.; Badger, J. Wind atlas for Egypt. In Proceedings of the 3rd Middle East-North Africa Renewable Energy Conference (on CD-ROM), Cairo, Egypt, 12 June 2006. [Google Scholar]
Station | International Station Number | Geographic Position | Number of Observation | Height above Sea Level (m) | ||
---|---|---|---|---|---|---|
Names | IN | Latitude | Longitude | |||
Ras El Tin | 1 | 62,317 | 31°11′50″ | 29°51′49″ | 105,192 | 22 |
Abu Qir | 2 | 62,320 | 31°19′55″ | 30°5′6″ | 105,096 | 27 |
Port Said | 3 | 62,334 | 31°15′19″ | 32°18′17″ | 105,192 | 20 |
El Arish | 4 | 62,331 | 31°08′54″ | 33°49′27″ | 105,192 | 15 |
Cairo airport | 5 | 62,366 | 30°06′41″ | 31°24′50″ | 104,068 | 74 |
Stations | Ras El Tin {1} | Abu Qir {2} | Port Said {3} | El Arish {4} | Cairo airport {5} | |
---|---|---|---|---|---|---|
Obser. | Obser. | Obser. | Obser. | Obser. | ||
Surface air temperature | ERA5 | 0.97 (0.85) | 0.96 (0.78) | 0.97 (0.87) | 0.96 (0.88) | 0.57 (0.45) |
RegCM-SVN | 0.96 (0.84) | 0.92 (0.76) | 0.95 (0.85) | 0.95 (0.84) | 0.85 (0.65) |
Stations | Ras El Tin {1} | Abu Qir {2} | Port Said {3} | El Arish {4} | Cairo airport {5} | |
---|---|---|---|---|---|---|
Obser. | Obser. | Obser. | Obser. | Obser. | ||
Normal condition | ERA5 | 1.32 | 1.34 | 1.37 | 1.88 | 5.87 |
RegCM-SVN | 1.38 | 1.32 | 1.42 | 1.79 | 2.02 | |
Extreme condition | ERA5 | 3.33 | 3.10 | 3.32 | 2.82 | 1.95 |
RegCM-SVN | 2.83 | 1.75 | 2.64 | 1.41 | 1.29 |
Statistics | Annual Mean | Skewness | St. dv | Min | Max | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model Station | Observed | ERA5 | RegCM-SVN | Observed | ERA5 | RegCM-SVN | Observed | ERA5 | RegCM-SVN | Observed | ERA5 | RegCM-SVN | Observed | ERA5 | RegCM-SVN |
Ras El Tin{1} | 21.9 | 21.1 | 20.8 | −0.09 | −0.07 | −0.08 | 4.81 | 4.45 | 4.29 | 5.20 | 8.19 | 8.09 | 41.00 | 33.67 | 36.29 |
Abu Qir {2} | 21.5 | 21.1 | 21.1 | −0.11 | −0.08 | −0.05 | 4.76 | 4.69 | 5.74 | 7.40 | 7.00 | 4.05 | 38.00 | 36.73 | 43.83 |
Port Said {3} | 22.1 | 21.6 | 20.5 | −0.16 | −0.14 | −0.19 | 5.35 | 4.81 | 4.71 | 1.00 | 7.56 | 6.37 | 40.70 | 37.62 | 42.79 |
El Arish {4} | 21.6 | 21.2 | 19.9 | −0.19 | −0.15 | −0.10 | 5.99 | 4.95 | 6.22 | 2.00 | 6.94 | −0.54 | 45.00 | 35.71 | 43.39 |
Cairo airport {5} | 23.1 | 22.1 | 23.7 | 0.06 | 0.04 | −0.04 | 6.85 | 7.36 | 7.79 | 5 | 2.99 | 2.55 | 45 | 45.08 | 45.96 |
Stations | Ras El Tin {1} | Abu Qir {2} | Port Said {3} | El Arish {4} | Cairo Airport {5} | |
---|---|---|---|---|---|---|
Obser. | Obser. | Obser. | Obser. | Obser. | ||
Surface wind speed | ERA5 | 0.74 (0.71) | 0.75 (0.74) | 0.70 (0.69) | 0.65 (0.65) | 0.06 (0.03) |
RegCM-SVN | 0.72 (0.70) | 0.75 (0.74) | 0.59 (0.58) | 0.49 (0.48) | 0.68 (0.67) |
Stations | Ras El Tin {1} | Abu Qir {2} | Port Said {3} | El Arish {4} | Cairo airport {5} | |
---|---|---|---|---|---|---|
Obser. | Obser. | Obser. | Obser. | Obser. | ||
Normal condition | ERA5 | 1.92 | 2.21 | 1.66 | 1.90 | 2.62 |
RegCM-SVN | 1.99 | 2.01 | 1.99 | 1.75 | 1.47 | |
Extreme condition | ERA5 | 2.23 | 2.72 | 2.08 | 1.88 | 1.10 |
RegCM-SVN | 1.48 | 2.70 | 2.05 | 1.55 | 0.61 |
Statistics | Annual mean | Skewness | St. Dev. | Min | Max | ||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Model Station | Observed | ERA5 | RegCM-SVN | Observed | ERA5 | RegCM-SVN | Observed | ERA5 | RegCM-SVN | Observed | ERA5 | RegCM-SVN | Observed | ERA5 | RegCM-SVN |
Ras El Tin{1} | 5.44 | 5.06 | 5.35 | 0.79 | 0.80 | 0.77 | 2.83 | 2.13 | 2.32 | 0.00 | 0.05 | 0.00 | 24.84 | 18.55 | 21.08 |
Abu Qir {2} | 5.88 | 4.52 | 4.88 | 0.74 | 0.82 | 0.82 | 2.66 | 1.88 | 2.03 | 0.00 | 0.01 | 0.01 | 24.30 | 16.70 | 18.04 |
Port Said {3} | 4.92 | 4.73 | 5.11 | 0.21 | 0.56 | 0.46 | 2.21 | 2.00 | 2.18 | 0.00 | 0.04 | 0.01 | 21.60 | 15.73 | 18.10 |
El Arish {4} | 4.28 | 4.20 | 3.82 | 0.59 | 0.96 | 0.96 | 2.41 | 2.14 | 2.15 | 0.00 | 0.04 | 0.53 | 27.00 | 17.57 | 18.09 |
Cairo airport {5} | 4.13 | 3.76 | 2.80 | 0.39 | 0.65 | 0.48 | 2.18 | 1.66 | 1.86 | 00 | 0.02 | 00 | 16.74 | 14.4 | 14.16 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
ElBessa, M.; Abdelrahman, S.M.; Tonbol, K.; Shaltout, M. Dynamical Downscaling of Surface Air Temperature and Wind Field Variabilities over the Southeastern Levantine Basin, Mediterranean Sea. Climate 2021, 9, 150. https://doi.org/10.3390/cli9100150
ElBessa M, Abdelrahman SM, Tonbol K, Shaltout M. Dynamical Downscaling of Surface Air Temperature and Wind Field Variabilities over the Southeastern Levantine Basin, Mediterranean Sea. Climate. 2021; 9(10):150. https://doi.org/10.3390/cli9100150
Chicago/Turabian StyleElBessa, Mohamed, Saad Mesbah Abdelrahman, Kareem Tonbol, and Mohamed Shaltout. 2021. "Dynamical Downscaling of Surface Air Temperature and Wind Field Variabilities over the Southeastern Levantine Basin, Mediterranean Sea" Climate 9, no. 10: 150. https://doi.org/10.3390/cli9100150
APA StyleElBessa, M., Abdelrahman, S. M., Tonbol, K., & Shaltout, M. (2021). Dynamical Downscaling of Surface Air Temperature and Wind Field Variabilities over the Southeastern Levantine Basin, Mediterranean Sea. Climate, 9(10), 150. https://doi.org/10.3390/cli9100150