Road Salt Damage to Historical Milestones Indicates Adaptation of Winter Roads to Future Climate Change May Damage Arctic Cultural Heritage
Abstract
:1. Introduction
2. Materials and Methods
3. Results
4. Discussion
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Burns, G. Deterioration of our cultural heritage. Nature 1991, 352, 658–660. [Google Scholar] [CrossRef]
- Bosher, L.; Kim, D.; Okubo, T.; Chmutina, K.; Jigyasu, R. Dealing with multiple hazards and threats on cultural heritage sites: An assessment of 80 case studies. Disaster Prev. Manag. 2019, 29, 109–128. [Google Scholar] [CrossRef] [Green Version]
- Fatorić, S.; Seekamp, E. Are cultural heritage and resources threatened by climate change? A systematic literature review. Clim. Change 2017, 142, 227–254. [Google Scholar] [CrossRef]
- Hollesen, J.; Callanan, M.; Dawson, T.; Fenger-Nielsen, R.; Friesen, T.M.; Jensen, A.M.; Markham, A.; Martens, V.V.; Pitulko, V.V.; Rockman, M. Climate Change and the Deteriorating Archaeological and Environmental Archives of the Arctic. Antiquity 2018, 92, 573–586. [Google Scholar] [CrossRef]
- Sesana, E.; Gagnon, A.; Bertolin, C.; Hughes, J. Adapting cultural heritage to climate change risks: Perspectives of cultural heritage experts in Europe. Geosciences 2018, 8, 305. [Google Scholar] [CrossRef] [Green Version]
- Fu, L.; Kwon, T.J. Mobility Effects of Winter Weather and Road Maintenance Operations. In Sustainable Winter Roads Operations, 1st ed.; Shi, X., Fu, L., Eds.; John Wiley and Sons: Hoboken, NJ, USA, 2018; pp. 131–155. [Google Scholar]
- Gouda, M.; El-Basyouny, K. Before-and-after empirical bayes evaluation of achieving bare pavement using anti-icing on urban roads. Transport. Res. Rec. 2020, 2674, 92–101. [Google Scholar] [CrossRef]
- Menzies, T.R. Overview of National Research Council study on the comparative costs of using rock salt and CMA for highway deicing. Resour. Conserv. Recy. 1992, 7, 43–50. [Google Scholar] [CrossRef]
- Hintz, W.D.; Relyea, R.A. A review of the species, community, and ecosystem impacts of road salt salinisation in fresh waters. Freshw. Biol. 2019, 64, 1081–1097. [Google Scholar] [CrossRef] [Green Version]
- Nord, A.G.; Mattsson, E.; Tronner, K. Factors influencing the long-term corrosion of bronze artefacts in soil. Prot. Met. 2005, 41, 309–316. [Google Scholar] [CrossRef]
- Gerwin, W.; Baumhauer, R. Effect of soil parameters on the corrosion of archaeological metal finds. Geoderma 2000, 96, 63–80. [Google Scholar] [CrossRef]
- Nord, A.; Tronner, K. Stone damage and chemical analysis. In Degradation of Materials and the Swedish Heritage 1992-1995: A Report from the Air Pollution and Heritage Programme; Österlund, E., Ed.; Institutionen för Konservering, Riksantikvarieämbetet och Statens Historiska Museer: Stockholm, Sweden, 1996; pp. 101–113. [Google Scholar]
- Ullén, I.; Nord, A.G.; Fjaestad, M.; Mattsson, E.; Ch Borg, G.; Tronner, K. The degradation of archaeological bronzes underground: Evidence from museum collections. Antiquity 2004, 78, 380–390. [Google Scholar] [CrossRef]
- Jackson, R.B.; Jobbagy, E.G. From icy roads to salty streams. Proc. Natl. Acad. Sci. 2005, 102, 14487–14488. [Google Scholar] [CrossRef] [Green Version]
- Blomqvist, G.; Gustafsson, M.; Eram, M.; Ünver, K. Prediction of salt on road surface—Tool to minimize use of salt. Transport. Res. Rec 2011, 2258, 131–138. [Google Scholar] [CrossRef]
- Blomqvist, G.; Johansson, E.-L. Air-borne spreading and deposition of deicing salt—a case study. Sci Total Environ. 1999, 235, 161–168. [Google Scholar] [CrossRef] [Green Version]
- Shi, X.; Veneziano, D.; Xie, N.; Gong, J. Use of chloride based ice control products for sustainable winter maintenance: A balanced perspective. Cold Reg. Sci. Technol. 2013, 86, 104–112. [Google Scholar] [CrossRef]
- Novotny, E.V.; Murphy, D.; Stefan, H.G. Increase of urban lake salinity by road deicing salt. Sci. Total Environ. 2008, 406, 131–144. [Google Scholar] [CrossRef] [PubMed]
- Nordin, S. Vägmätningar för milstolpar. Fornvännen 1991, 86, 11–14. [Google Scholar]
- Björklund, V.; Kruusi, J.; Antonson, H. Milstolpar i Sverige: En Kvalitativ Undersökning av Erfarenheter, Hantering och Principer; KMV Forum AB:s Rapport nr 2: Nacka, Sweden, 2020; ISBN 978-91-984261-1-3. [Google Scholar]
- Swedish National Heritage Board (RAÄ), Fornsök: Sites and Monuments Database. Available online: https://app.raa.se/open/fornsok/searchlamning (accessed on 24 May 2021).
- Pearson, M.P.; Pollard, J.; Richards, C.; Welham, K.; Kinnaird, T.; Shaw, D.; Simmons, E.; Stanford, A.; Bevins, R.; Ixer, R.; et al. The original Stonehenge? A dismantled stone circle in the Preseli Hills of west Wales. Antiquity 2021, 95, 85–103. [Google Scholar] [CrossRef]
- Ashton, N.; Lewis, S.G.; De Groote, I.; Duffy, S.M.; Bates, M.; Bates, R.; Hoare, P.; Lewis, M.; Parfitt, S.A.; Peglar, S.; et al. Hominin footprints from early Pleistocene deposits at Happisburgh, UK. PLoS ONE 2014, 9, e88329. [Google Scholar] [CrossRef] [Green Version]
- Kim, Y. The Pilot Study in Qualitative Inquiry Identifying Issues and Learning. Lessons for Culturally Competent Research. Qual. Soc. Work 2010, 10, 190–206. [Google Scholar] [CrossRef]
- Thabane, L.; Ma, J.; Chu, R.; Cheng, J.; Ismaila, A.; Rios, L.; Robson, R.; Thabane, M.; Giangregorio, L.; Goldsmith, C. A tutorial on Pilot Studies: The what, why and how. BMC Med. Res. Method. 2010, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Kendall, M.G. A new measure of rank correlation. Biometrika 1938, 30, 81–93. [Google Scholar] [CrossRef]
- Hammer, Ø.; Harper, D.A.; Ryan, P.D. PAST: Paleontological statistics software package for education and data analysis. Palaeontol. Electron. 2001, 4, 9. [Google Scholar]
- Camuffo, D. Acid rain and deterioration of monuments: How old is the phenomenon? Atmos. Environ. 1992, 26B, 241–247. [Google Scholar] [CrossRef]
- Pye, K.; Schiavon, N. Cause of sulphate attack on concrete, render and stone indicated by sulphur isotope ratios. Nature 1989, 342, 663–664. [Google Scholar] [CrossRef]
- Nord, A.G.; Kars, H.; Ullén, I.; Tronner, K.; Kars, E. Deterioration of archaeological bone—a statistical approach. J. Nordic A rchaeol. Sci. 2005, 15, 77–86. [Google Scholar]
- Boethius, A.; Kjällquist, M.; Magnell, O.; Apel, J. Human encroachment, climate change and the loss of our archaeological organic cultural heritage: Accelerated bone deterioration at Ageröd, a revisited Scandinavian Mesolithic key-site in despair. PLoS ONE 2020, 15, e0236105. [Google Scholar] [CrossRef]
- Bonazza, A.; Messinaa, P.; Sabbionia, C.; Grossi, C.M.; Brimblecombe, P. Mapping the impact of climate change on surface recession of carbonate buildings in Europe. Sci. Total Environ. 2009, 407, 2039–2050. [Google Scholar] [CrossRef]
- Spiker Jr, E.C.; Hosker, R.P.; Weintraub, V.C.; Sherwood, S.I. Laboratory study of SO2 dry deposition on limestone and marble: Effects of humidity and surface variables. Water Air Soil Pollut. 1995, 85, 2679–2685. [Google Scholar] [CrossRef]
- Tidblad, J. Atmospheric corrosion of metals in 2010–2039 and 2070–2099. Atmos. Environ. 2012, 55, 1–6. [Google Scholar] [CrossRef]
- Ono, K. Structural materials: Metallurgy of bridges. In Metallurgical Design and Industry; Kaufman, B., Briant, C., Eds.; Springer: Cham, Switzerland, 2018; pp. 193–269. [Google Scholar]
- Grennfelt, P.; Engleryd, A.; Forsius, M.; Hov, Ø.; Rodhe, H.; Cowling, E. Acid rain and air pollution: 50 years of progress in environmental science and policy. Ambio 2020, 49, 849–864. [Google Scholar] [CrossRef] [Green Version]
- Karlsson, P.E.; Karlsson, G.P.; Hellsten, S.; Akselsson, C.; Ferm, M.; Hultberg, H. Total deposition of inorganic nitrogen to Norway spruce forests – Applying a surrogate surface method across a deposition gradient in Sweden. Atmos. Environ. 2019, 217, 116964. [Google Scholar] [CrossRef]
- Engardt, M.; Simpson, D.; Schwikowski, M.; Granat, L. Deposition of sulphur and nitrogen in Europe 1900-2050. Model calculations and comparison to historical observations. Tellus B 2017, 69, 1328945. [Google Scholar] [CrossRef] [Green Version]
- Bala’awi, F.; Alshawabkeh, Y.; Mustafa, M.H. Salt damage and environmental conditions: A thermodynamic approach from the northern roman theater in Jerash, Jordan. Mediterranean Archaeology & Archaeometry 2018, 18, 49–66. [Google Scholar]
- Scrivano, S.; Gaggero, L. An experimental investigation into the salt-weathering susceptibility of building limestones. Rock Mech. Rock Eng. 2020, 53, 5329–5343. [Google Scholar] [CrossRef]
- Nord, A.G.; Tronner, K.; Mattsson, E.; Borg, G.C.; Ullén, I. Environmental threats to buried archaeological remains. Ambio 2005, 34, 256–262. [Google Scholar] [CrossRef] [PubMed]
- Nord, A.G.; Tronner, K. On the deterioration of archaeological iron artefacts in soil. Fornvännen 2002, 97, 298–300. [Google Scholar]
- Arvidsson, A.K.; Blomqvist, G.; Öberg, G. The impact of climate change on the use of anti- and de-icing salt in Sweden. In Proceedings of the 10. International Conference on Winter Maintenance and Surface Transportation Weather, Iowa City, IA, USA, 30 April–3 May 2012; pp. 3–10. [Google Scholar]
- Thunqvist, E.-L. Regional increase of mean chloride concentration in water due to the application of deicing salt. Sci. Total Environ. 2004, 325, 29–37. [Google Scholar] [CrossRef]
- Arvidsson, A.K.; Jacobsen, Á.; Gauksson, B.M.; Nonstad, B.; Knudsen, F.; Natanaelsson, K.; Teilmann, M.W.; Korsaksel, O.; Kärkioch, O.; Rauno, K. Vinterväghållning i de Nordiska Länderna. Statusrapport 2020; Nordiskt Vägforum: Stockholm, Sweden, 2020; p. 56. [Google Scholar]
- Karlsson, N. Kulturmiljöer och Klimat i Västerbottens län: Analys av Konsekvenserna av ett Förändrat Klimat; Länsstyrelsen Västerbottens Län/Umeå University: Umeå, Sweden, 2017; p. 68. [Google Scholar]
- Kaiser, G.; Lindqvist, C.; Pinto-Guillaume, E.; Rieger, S. Klimatförändringarnas Påverkan på Norrbottens Kulturmiljöer; WSP Samhällsbyggnad: Stockholm, Sweden, 2021; p. 106. [Google Scholar]
- Antonson, H.; Buckland, P.; Nyqvist, R. A society ill-equipped to deal with the effects of climate change on cultural heritage and landscape: A qualitative assessment of planning practices in transport infrastructure. Clim Change 2021, 166, 1–22. [Google Scholar] [CrossRef]
- Antonson, H.; Blomqvist, G. Does the official strategy protect or destroy our cultural heritage? Corrosion of archaeological artefacts exposed to de-icing salt in Sweden. In Proceedings of the PIARC 2006 XII Winter Road Congress, Torino, Italy, 27–30 March 2006; pp. 43–51. [Google Scholar]
- Larsson, G. Ship and society: Maritime ideology in Late Iron Age Sweden. Ph.D. Thesis, Uppsala University, Uppsala, Sweden, 2007. Available online: http://urn.kb.se/resolve?urn=urn:nbn:se:uu:diva-7469. (accessed on 3 September 2021).
- Antonson, H. Landscapes with history: Addressing shortcomings in Swedish EIAs. L. Use Policy 2009, 26, 704–714. [Google Scholar] [CrossRef]
- Matthes, E. Saving lives or saving stones? The ethics of cultural heritage protection in war. Public Aff. Q. 2018, 32, 67–84. [Google Scholar]
- Bulow, W. Risking Civilian Lives to Avoid Harm to Cultural Heritage? J. Ethics & Soc. Phil. 2020, 18, 266–288. [Google Scholar]
- Stanton-Geddes, Z.; Soz, S.A. Promoting Disaster Resilient Cultural Heritage. Available online: http://documents.worldbank.org/curated/en/696061511882383371/Promoting-disaster-resilient-cultural-heritage (accessed on 9 September 2020).
- Meetiyagoda, L. Pedestrian safety in Kandy Heritage City, Sri Lanka: Lessons from World Heritage Cities. Sustain. Cities Soc. 2018, 38, 301–308. [Google Scholar] [CrossRef]
- Leygraf, C.; Wallinder, I.O.; Tidblad, J.; Graedel, T. Atmospheric Corrosion; John Wiley & Sons: Hoboken, NJ, USA, 2016. [Google Scholar]
- Legret, M.; Pagotto, C. Evaluation of pollutant loadings in the runoff waters from a major rural highway. Sci. Total Environ. 1999, 235, 143–150. [Google Scholar] [CrossRef]
- Dyrrdal, A.V.; Isaksen, K.; Jacobsen, J.K.S.; Nilsen, I.B. Present and future changes in winter climate indices relevant for access disruptions in Troms, northern Norway. Nat. Hazards Earth Syst. Sci. 2020, 20, 1847–1865. [Google Scholar] [CrossRef]
- Berrang-Ford, L.; Ford, J.D.; Paterson, J. Are we adapting to climate change? Glob. Environ. Change 2011, 21, 25–33. [Google Scholar] [CrossRef]
- Berrang-Ford, L.; Biesbroek, R.; Ford, J.D.; Lesnikowski, A.; Tanabe, A.; Wang, F.M.; Chen, C.; Hsu, A.; Hellmann, J.J.; Pringle, P.; et al. Tracking global climate change adaptation among governments. Nat. Clim. Change 2019, 9, 440–449. [Google Scholar] [CrossRef]
- Dilling, L.; Prakash, A.; Zommers, Z.; Ahmad, F.; Singh, N.; de Wit, S.; Nalau, J.; Daly, M.; Bowman, K. Is adaptation success a flawed concept? Nat. Clim. Change 2019, 9, 572–574. [Google Scholar] [CrossRef]
- Stirpe, C.R.; Cunningham, M.A.; Menking, K.M. How Will Climate Change Affect Road Salt Export from Watersheds? Water Air Soil Pollut. 2017, 228, 362. [Google Scholar] [CrossRef]
- Morecroft, M.D.; Duffield, S.; Harley, M.; Pearce-Higgins, J.W.; Stevens, N.; Watts, O.; Whitaker, J. Measuring the success of climate change adaptation and mitigation in terrestrial ecosystems. Science 2020, 366, eaaw9256. [Google Scholar] [CrossRef] [Green Version]
- Chen, J.; Ma, X.; Wang, H.; Xie, P.; Huang, W. Experimental study on anti-icing and deicing performance of polyurethane concrete as road surface layer. Constr. Build. Mater. 2018, 161, 598–605. [Google Scholar] [CrossRef]
- Folgerø, I.K.; Harding, T.; Westby, B.S. Going fast or going green? Evidence from environmental speed limits in Norway. Transp. Res. D Trans. Environ. 2020, 82, 102261. [Google Scholar] [CrossRef]
- Lundhede, T.; Bille, T.; Hasler, B. Exploring preferences and non-use values for hidden archaeological artefacts: A case from Denmark. Int. J. Cult. Policy 2013, 19, 501–530. [Google Scholar] [CrossRef]
- MacLeod, K.W. The Market Value of National Cultural Heritage. J. Art Hist. 2015, 3, 139–152. [Google Scholar] [CrossRef]
- Dastgerdi, A.S.; Sargolini, M.; Broussard Allred, S.; Chatrchyan, A.; De Luca, G. Climate Change and Sustaining Heritage Resources: A Framework for Boosting Cultural and Natural Heritage Conservation in Central Italy. Climate 2020, 8, 26. [Google Scholar] [CrossRef] [Green Version]
- Fuso Nerini, F.; Sovacool, B.; Hughes, N.; Sovacool, B.; Hughes, N.; Cozzi, L.; Cosgrave, E.; Howells, M.; Tavoni, M.; Tomei, J.; et al. Connecting climate action with other Sustainable Development Goals. Nat. Sustain. 2019, 2, 674–680. [Google Scholar] [CrossRef]
- Aktürk, G.; Dastgerdi, A.S. Cultural Landscapes under the Threat of Climate Change: A Systematic Study of Barriers to Resilience. Sust. 2021, 13, 9974. [Google Scholar] [CrossRef]
- The Swedish Parliament. Kulturmiljölag (Historic Environment Act) 1988:950. Available online: http://www.riksdagen.se/sv/dokument-lagar/dokument/svenskforfattningssamling/kulturmiljolag-1988950_sfs-1988-950 (accessed on 3 September 2021).
- During, R. (Ed.) Cultural Heritage and Identity Politics; Silk Road Research Foundation: Hong Kong, China, 2011. [Google Scholar]
- Hambrecht, G.; Anderung, C.; Brewington, S.; Dugmore, A.; Edvardsson, R.; Feeley, F.; Gibbons, K.; Harrison, R.; Hicks, M.; Jackson, R.; et al. Archaeological sites as distributed long-term observing networks of the past (DONOP). Quat. Int. 2020, 549, 218–226. [Google Scholar] [CrossRef] [Green Version]
- Kohler, T.A.; Rockman, M. The IPCC: A primer for archaeologists. Am. Antiq. 2020, 85, 627–651. [Google Scholar] [CrossRef]
- Fordham, D.A.; Jackson, S.T.; Brown, S.C.; Huntley, B.; Brook, B.W.; Dahl-Jensen, D.; Gilbert, M.T.P.; Otto-Bliesner, B.L.; Svensson, A.; Theodoridis, S.; et al. Using paleo-archives to safeguard biodiversity under climate change. Science 2020, 369, eabc5654. [Google Scholar] [CrossRef]
- Markiewicz, J.; Tobiasz, A.; Kot, P.; Muradov, M.; Shaw, A.; Al-Shamma’a, A. Review of surveying devices for structural health monitoring of cultural heritage buildings. In Proceedings of the 12th International Conference on Developments in eSystems Engineering (DeSE), Kazan, Russia, 7–10 October 2019; pp. 597–601. [Google Scholar]
- Hatzopoulos, J.N.; Stefanakis, D.; Georgopoulos, A.; Tapinaki, S.; Pantelis, V.; Liritzis, I. Use of various surveying technologies to 3D digital mapping and modelling of cultural heritage structures for maintenance and restoration purposes: The Tholos in Delphi, Greece. Mediterr. Archaeolog. Archaeom. 2017, 17, 311–336. [Google Scholar]
- Ekengren, F.; Callieri, M.; Dininno, D.; Berggren, Å.; Macheridis, S.; Dell’Unto, N. Dynamic Collections: A 3D Web Infrastructure for Artifact Engagement. Open Archaeolog. 2021, 7, 337–352. [Google Scholar] [CrossRef]
Kendall’s tau | Prob. Uncorrelated | |
---|---|---|
Salted roads | ||
Front: back | 0.49 | 0.00 |
Front: distance | 0.04 | 0.76 |
Back: distance | −0.06 | 0.65 |
Unsalted roads | ||
Front: back | 0.94 | 0.00 |
Front: distance | 0.38 | 0.23 |
Back: distance | 0.23 | 0.47 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Antonson, H.; Buckland, P.; Blomqvist, G. Road Salt Damage to Historical Milestones Indicates Adaptation of Winter Roads to Future Climate Change May Damage Arctic Cultural Heritage. Climate 2021, 9, 149. https://doi.org/10.3390/cli9100149
Antonson H, Buckland P, Blomqvist G. Road Salt Damage to Historical Milestones Indicates Adaptation of Winter Roads to Future Climate Change May Damage Arctic Cultural Heritage. Climate. 2021; 9(10):149. https://doi.org/10.3390/cli9100149
Chicago/Turabian StyleAntonson, Hans, Philip Buckland, and Göran Blomqvist. 2021. "Road Salt Damage to Historical Milestones Indicates Adaptation of Winter Roads to Future Climate Change May Damage Arctic Cultural Heritage" Climate 9, no. 10: 149. https://doi.org/10.3390/cli9100149
APA StyleAntonson, H., Buckland, P., & Blomqvist, G. (2021). Road Salt Damage to Historical Milestones Indicates Adaptation of Winter Roads to Future Climate Change May Damage Arctic Cultural Heritage. Climate, 9(10), 149. https://doi.org/10.3390/cli9100149