Determination of a New Coastal ENSO Oceanic Index for Northern Peru
Abstract
:1. Introduction
1.1. The Effects of the El Niño Southern Oscillation (ENSO) in Peru
1.2. Development of the Coastal ENSO-2017 in Peru
2. Materials and Methods
2.1. Study Area
2.2. Methodology
2.2.1. ENSO Data and Index Analysis
- -
- , and are real coefficients (numbers).
- -
- is different than zero.
- -
- The exponent n is a positive integer that represents the degree of the equation.
- -
- x is the unknown variable to be found.
Modoki ENSO Index (MEI)
Trans Niño Index (TNI)
Oceanic Niño Index (ONI)
Coastal Index (CI)
Southern Oscillation Index (SOI)
- = (Tahiti average sea level pressure for a month) − (Darwin average sea level pressure for one month)
- = Long-term average of Pdiff for the month in question
- = Long-term standard deviation for the month in question
- SOI ranges from −35 to +35, and it is calculated based on months and periods of one year. Negative SOI values indicate episodes of the El Niño phenomenon, while positive SOI values indicate episodes of La Niña.
Pacific Decadal Oscillation (PDO) Index
Pacific Regional Equatorial Index (PREI)
2.2.2. Data and Analysis of the Inter-Tropical Convergence Zone (ITCZ)
3. Results
3.1. Polynomial Equations and Correlation Coefficients of Each Index
3.1.1. Modoki ENSO Index (MEI)
3.1.2. Trans ENSO Index (TNI)
3.1.3. Oceanic ENSO Index (ONI)
3.1.4. Coastal Index (CI) (Region 1+2)
3.1.5. Southern Oscillation Index (SOI)
3.1.6. Pacific Decadal Oscillation (PDO) Index
3.1.7. Pacific Regional Equatorial Index (PREI)
3.1.8. La Niña Modoki (LNSO) and Coastal ENSO Analysis
3.1.9. Demonstration of the Use of the PREI Index
- Y = SST value
- X = Variable considered as a period that represents the oceanic regions (4, 3.4, 3 and 1 + 2)
3.1.10. Projection for the Month of February
3.1.11. Projection for the Month of March
3.2. Spatial-Temporal Distribution of the ITCZ
4. Discussion
4.1. Types of ENSO
4.2. Definition of Coastal ENSO
4.3. 2015–2016 ENSO
4.4. Oceanic Indexes
4.5. Analysis of the Different Ocean Indices and Creation of the PREI Index
4.6. Causes of Coastal ENSO Generation
4.7. Causes of the Generation of Modoki ENSO/Modoki LNSO
4.8. Decadal Cause
4.9. Analysis in the Generation of an Anticyclone
4.10. Climate Variability-ENSO
4.11. Limitations of Data and Methods
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
Appendix A
Year | Month | Ocean Indices | |||
---|---|---|---|---|---|
TNI °C | ONI °C | CI | SOI | ||
2016 | Jan | −1.63 | 2.5 | 1.82 | −19.7 |
Feb | −1.80 | 2.2 | 1.09 | −19.7 | |
Mar | −1.95 | 1.7 | 1.10 | −04.7 | |
Apr | −1.98 | 1.0 | 0.29 | −22.0 | |
May | −1.76 | 0.5 | 0.45 | 02.8 | |
Jun | −1.44 | 0.0 | 0.52 | 05.8 | |
Jul | −0.97 | −0.3 | −0.06 | 04.2 | |
Aug | −0.51 | −0.6 | 0.19 | 05.3 | |
Sep | −0.10 | −0.7 | 0.25 | 13.5 | |
Oct | 0.32 | −0.7 | −0.03 | −04.3 | |
Nov | 0.69 | −0.7 | −0.08 | −00.7 | |
Dec | 1.10 | −0.6 | 0.02 | 02.6 | |
2017 | Jan | 1.45 | −0.3 | 0.33 | 01.3 |
Feb | 1.47 | −0.1 | 0.92 | −02.2 | |
Mar | 1.23 | 0.1 | 1.56 | 05.1 | |
Apr | 0.59 | 0.3 | 0.49 | −06.3 | |
May | −0.27 | 0.4 | 0.25 | 00.5 | |
Jun | −1.15 | 0.4 | 0.20 | −10.4 | |
Jul | −1.58 | 0.2 | −0.46 | 08.1 | |
Aug | −1.93 | −0.1 | −0.76 | 03.3 | |
Sep | −1.85 | −0.4 | −1.28 | 06.9 | |
Oct | −1.74 | −0.7 | −1.32 | 09.1 | |
Nov | −1.55 | −0.9 | −1.44 | 11.8 | |
Dec | −1.26 | −1.0 | −1.54 | −01.4 |
AÑO | MES | BOX_A | BOX_B | BOX_C | MEI |
---|---|---|---|---|---|
2016 | 1 | 1.35 | 1.94 | 0.35 | 0.20 |
2 | 1.21 | 1.29 | 0.34 | 0.40 | |
3 | 1.11 | 1.33 | 0.53 | 0.18 | |
4 | 0.94 | 0.77 | 0.55 | 0.28 | |
5 | 0.74 | 0.71 | 0.70 | 0.03 | |
6 | 0.65 | 0.74 | 0.87 | −0.16 | |
7 | 0.50 | 0.41 | 0.90 | −0.16 | |
8 | 0.31 | 0.27 | 0.90 | −0.27 | |
9 | 0.22 | 0.56 | 0.96 | −0.54 | |
10 | 0.02 | 0.30 | 0.93 | −0.60 | |
11 | 0.05 | 0.37 | 0.81 | −0.54 | |
12 | 0.14 | 0.29 | 0.71 | −0.36 | |
2017 | 1 | 0.18 | 0.64 | 0.76 | −0.51 |
2 | 0.23 | 1.08 | 0.53 | −0.58 | |
3 | 0.18 | 1.12 | 0.60 | −0.68 | |
4 | 0.36 | 0.81 | 0.53 | −0.32 | |
5 | 0.43 | 0.58 | 0.63 | −0.17 | |
6 | 0.51 | 0.26 | 0.64 | 0.06 | |
7 | 0.52 | 0.09 | 0.72 | 0.11 | |
8 | 0.43 | −0.12 | 0.90 | 0.04 | |
9 | 0.23 | −0.69 | 0.73 | 0.21 | |
10 | 0.20 | −0.63 | 0.71 | 0.16 | |
11 | 0.08 | −0.81 | 0.63 | 0.17 | |
12 | −0.08 | −0.86 | 0.76 | −0.03 |
AÑO | ENE | FEB | MAR | ABR | MAY | JUN | JUL | AGO | SET | OCT | NOV | DIC | PROM |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2000 | −2.0 | −0.8 | 0.29 | 0.35 | −0.1 | −0.4 | −0.7 | −1.2 | −1.24 | −1.3 | −0.53 | 0.52 | −0.59 |
2001 | 0.6 | 0.29 | 0.45 | −0.3 | −0.3 | −0.5 | −1.3 | −0.8 | −1.37 | −1.4 | −1.26 | −0.9 | −0.56 |
2002 | 0.27 | −0.6 | −0.4 | −0.3 | −0.6 | −0.4 | −0.3 | 0.6 | 0.43 | 0.42 | 1.51 | 2.1 | 0.22 |
2003 | 2.09 | 1.75 | 1.51 | 1.18 | 0.89 | 0.68 | 0.96 | 0.88 | 0.01 | 0.83 | 0.52 | 0.33 | 0.97 |
2004 | 0.43 | 0.48 | 0.61 | 0.57 | 0.88 | 0.04 | 0.44 | 0.85 | 0.75 | −0.1 | −0.63 | −0.2 | 0.35 |
2005 | 0.44 | 0.81 | 1.36 | 1.03 | 1.86 | 1.17 | 0.66 | 0.25 | −0.46 | −1.3 | −1.5 | 0.2 | 0.38 |
2006 | 1.03 | 0.66 | 0.05 | 0.4 | 0.48 | 1.04 | 0.35 | -0.7 | −0.94 | −0.1 | −0.22 | 0.14 | 0.19 |
2007 | 0.01 | 0.04 | −0.4 | 0.16 | −0.1 | 0.09 | 0.78 | 0.5 | −0.36 | −1.5 | −1.08 | −0.6 | −0.20 |
2008 | −1 | −0.8 | −0.7 | −1.5 | −1.4 | −1.3 | −1.7 | −1.7 | −1.55 | −1.8 | −1.25 | −0.9 | −1.29 |
2009 | −1.4 | −1.6 | −1.6 | −1.7 | −0.9 | −0.3 | −0.5 | 0.09 | 0.52 | 0.27 | −0.4 | 0.08 | −0.61 |
2010 | 0.83 | 0.82 | 0.44 | 0.78 | 0.62 | −0.2 | −1.1 | −1.3 | −1.61 | −1.1 | −0.82 | −1.2 | −0.31 |
2011 | −0.9 | −0.8 | −0.7 | −0.4 | −0.4 | −0.7 | −1.9 | −1.7 | −1.79 | −1.3 | −2.33 | −1.8 | −1.23 |
2012 | −1.4 | −0.9 | −1.1 | −0.3 | −1.3 | −0.9 | −1.5 | −1.9 | −2.21 | −0.8 | −0.59 | −0.5 | −1.10 |
2013 | −0.1 | −0.4 | −0.6 | −0.2 | 0.08 | −0.8 | −1.3 | −1 | −0.48 | −0.9 | −0.11 | −0.4 | −0.52 |
2014 | 0.3 | 0.38 | 0.97 | 1.13 | 1.8 | 0.82 | 0.7 | 0.67 | 1.08 | 1.49 | 1.72 | 2.51 | 1.13 |
2015 | 2.45 | 2.3 | 2 | 1.44 | 1.2 | 1.54 | 1.84 | 1.56 | 1.94 | 1.47 | 0.86 | 1.01 | 1.63 |
2016 | 1.53 | 1.75 | 2.4 | 2.62 | 2.35 | 2.03 | 1.25 | 0.52 | 0.45 | 0.56 | 1.88 | 1.17 | 1.54 |
2017 | 0.77 | 0.7 | 0.74 | 1.12 | 0.88 | 0.79 | 0.1 | 0.09 | 0.32 | 0.05 | 0.15 | 0.5 | 0.52 |
References
- Ashok, K.; Behera, S.K.; Rao, S.A.; Weng, H.; Yamagata, T. El Niño Modoki and its possible teleconnection. J. Geophys. Res. Ocean. 2007, 112. [Google Scholar] [CrossRef]
- Reyes, S. Introducción a la Meteorología, El Niño-Oscilación del Su, 1st ed.; Universidad Autonoma de Baja California: Baja California, Mexico, 2001. [Google Scholar]
- Lau, N.C.; Nath, M.J. Impact of ENSO on SST variability in the North Pacific and North Atlantic: Seasonal dependence and role of extratropical sea-air coupling. J. Clim. 2001, 14, 2846–2866. [Google Scholar] [CrossRef]
- Wang, B.; Wu, R.; Li, T. Atmosphere-warm ocean interaction and its impacts on Asian-Australian monsoon variation. J. Clim. 2003, 16, 1195–1211. [Google Scholar] [CrossRef]
- Thomson, M.C.; Abayomi, K.; Barnston, A.G.; Levy, M.; Dilley, M. Hazards of widespread use of erythromycin for preterm prelabour rupture of membranes El Niño and drought in southern Africa Cause of death among passengers on the Titanic Bridges to Iran For personal use. Only reproduce with permission from The Lancet Pu. Lancet 2003, 361, 1994–1995. [Google Scholar]
- Contreras, A.; Martinez, F.; Regalado, F.; Vásquez, K. Impacto del Fenómeno del Niño a la Economía Peruana. 2017, p. 16. Available online: http://perueconomics.org/wp-content/uploads/2014/01/WP-97.pdf (accessed on 13 September 2020).
- Ropelewski, C.F.; Halpert, M.S. Global and Regional Scale Precipitation Patterns Associated with the El Niño/Southern Oscillation. Mon. Weather Rev. 1987, 115, 1606–1626. [Google Scholar] [CrossRef] [Green Version]
- Philander, S.G.H. El Niño Southern Oscillation phenomena. Nature 1983, 302, 295–301. [Google Scholar] [CrossRef]
- Cane, M.A.S.E. Zebiak, A Model El Niño-Southern Oscillation. Mon. Weather Rev. 1987, 115, 15. [Google Scholar]
- Paul, S.; Schopf, M.J.S. Vacillations in a Coupled Ocean-Atmosphere Model. J. Amospheric Sci. 1987, 45, 15. [Google Scholar]
- ENFEN. Estudio Nacional del Fenómeno “El Niño”. 2017. Available online: http://enfen.gob.pe/ (accessed on 27 August 2020).
- SENAMHI. Informe Meteorológico. 2015. Available online: https://www.senamhi.gob.pe/?p=aviso-meteorologico-detalle&a=2015&b=005&c=022&d=SENA (accessed on 27 August 2020).
- CAF. Banco de Desarrollo de América Latina. 2000. Available online: https://www.caf.com/es/sobre-caf/ (accessed on 27 August 2020).
- SENAMHI. Boletin Informativo Monitoreo del Fenómeno “El Niño/La Niña”. 2017. Available online: https://www.senamhi.gob.pe/load/file/02216SENA-51.pdf (accessed on 27 August 2020).
- Sulca, J.; Takahashi, K.; Espinoza, J.C.; Vuille, M.; Lavado-Casimiro, W. Impacts of different ENSO flavors and tropical Pacific convection variability (ITCZ, SPCZ) on austral summer rainfall in South America, with a focus on Peru. Int. J. Climatol. 2018, 38, 420–435. [Google Scholar] [CrossRef]
- Taylor, M.H.; Wolff, M.; Mendo, J.; Yamashiro, C. Changes in trophic flow structure of Independence Bay (Peru) over an ENSO cycle. Prog. Oceanogr. 2008, 79, 336–351. [Google Scholar] [CrossRef] [Green Version]
- NOAA National Oceanic and Atmospheric Administration. 2017. Available online: https://www.noaa.gov/ (accessed on 27 August 2020).
- Garreaud, R.D. A plausible atmospheric trigger for the 2017 coastal El Niño. Int. J. Climatol. 2018, 38, e1296–e1302. [Google Scholar] [CrossRef]
- Rodríguez-Morata, C.; Díaz, H.F.; Ballesteros-Canovas, J.A.; Rohrer, M.; Stoffel, M. The anomalous 2017 coastal El Niño event in Peru. Clim. Dyn. 2019, 52, 5605–5622. [Google Scholar] [CrossRef]
- Takahashi, K.; Martínez, A.G. The very strong coastal El Niño in 1925 in the far-eastern Pacific. Clim. Dyn. 2019, 52, 7389–7415. [Google Scholar] [CrossRef] [Green Version]
- Meehl, G.A.; Teng, H. Multi-model changes in El Niño teleconnections over North America in a future warmer climate. Clim. Dyn. 2007, 29, 779–790. [Google Scholar] [CrossRef]
- Kug, J.S.; Jin, F.F.; An, S.I. Two types of El Niño events: Cold tongue El Niño and warm pool El Niño. J. Clim. 2009, 22, 1499–1515. [Google Scholar] [CrossRef]
- Blunden, J.; Arndt, D.S. State of the Climate in 2015. Bull. Am. Meteorol. Soc. 2016, 93, 282. [Google Scholar] [CrossRef] [Green Version]
- Bamston, A.G.; Chelliah, M.; Goldenberg, S.B. Documentation of a highly enso-related sst region in the equatorial pacific: Research note. Atmos. Ocean 1997, 35, 367–383. [Google Scholar] [CrossRef]
- Colas, F.; Capet, X.; McWilliams, J.C.; Shchepetkin, A. 1997–1998 El Niño off Peru: A numerical study. Prog. Oceanogr. 2008, 79, 138–155. [Google Scholar] [CrossRef]
- Huang, B.; Thorne, P.W.; Banzon, V.F.; Boyer, T.; Chepurin, G.; Lawrimore, J.H.; Menne, M.J.; Smith, T.M.; Vose, R.S.; Zhang, H.M. Extended reconstructed Sea surface temperature, Version 5 (ERSSTv5): Upgrades, validations, and intercomparisons. J. Clim. 2017, 30, 8179–8205. [Google Scholar] [CrossRef]
- Power, S.; Casey, T.; Folland, C.; Colman, A.; Mehta, V. Inter-decadal modulation of the impact of ENSO on Australia. Clim. Dyn. 1999, 15, 319–324. [Google Scholar] [CrossRef]
- Gershunov, A.; Barnett, T.P. Interdecadal Modulation of ENSO Teleconnections. Bull. Am. Meteorol. Soc. 1998, 79, 2715–2725. [Google Scholar] [CrossRef] [Green Version]
- Dong, B.; Dai, A.; Vuille, M.; Timm, O.E. Asymmetric modulation of ENSO teleconnections by the interdecadal Pacific oscillation. J. Clim. 2018, 31, 7337–7361. [Google Scholar] [CrossRef]
- Waliser, D.E.; Gautier, C. A satellite-derived climatology of the ITCZ. J. Clim. 1993, 6, 2162–2174. [Google Scholar] [CrossRef]
- Nobre, P.; Shukla, J. Variations of sea surface temperature, wind stress, and rainfall over the tropical Atlantic and South America. J. Clim. 1996, 9, 2464–2479. [Google Scholar] [CrossRef]
- Pacheco, H.; Montilla, A.; Méndez, W.; Delgado, M.H.; Zambrano, D. Causes and consequences of the extraordinary rainfall of 2017 on the Ecuadorian coast: The case of the province of Manabí. Bol. Investig. Mar. Costeras 2019, 48, 45–70. [Google Scholar] [CrossRef]
- Chowdhury, M.R.; Ndiaye, O. Climate change and variability impacts on the forests of Bangladesh–a diagnostic discussion based on CMIP5 GCMs and ENSO. Int. J. Climatol. 2017, 37, 4768–4782. [Google Scholar] [CrossRef]
- Channel, T.W. The Weather Channel. 2017. Available online: https://weather.com/es-PE/tiempo/mapas/interactive/l/56ae2f14da2603f93bf9a43126ca1dba616814154b6f2d2f87c2ef6bfcb080b4 (accessed on 23 March 2017).
- Ramírez, I.J.; Briones, F. Understanding the El Niño Costero of 2017: The Definition Problem and Challenges of Climate Forecasting and Disaster Responses. Int. J. Disaster Risk Sci. 2017, 8, 489–492. [Google Scholar] [CrossRef] [Green Version]
- Takahashi Guevara, K. Fisica del Fenomeno El Niño “Costero”. Bol. Tec. IPG 2017, 4, 4–8. [Google Scholar]
- L’Heureux, M.L.; Takahashi, K.; Watkins, A.B.; Barnston, A.G.; Becker, E.J.; Di Liberto, T.E.; Gamble, F.; Gottschalck, J.; Halpert, M.S.; Huang, B.; et al. Observing and predicting the 2015/16 El Niño. Bull. Am. Meteorol. Soc. 2017, 98, 7. [Google Scholar] [CrossRef]
- Peng, Q.; Xie, S.P.; Wang, D.; Zheng, X.T.; Zhang, H. Coupled ocean-atmosphere dynamics of the 2017 extreme coastal El Niño. Nat. Commun. 2019, 10, 1–10. [Google Scholar] [CrossRef] [Green Version]
- Behera, S.; Yamagata, T. Climate Dynamics of ENSO Modoki Phenomenon. Clim. Sci. 2018. [Google Scholar] [CrossRef]
- Lestari, D.O.; Sutriyono, E.; Kadir, S.; Iskandar, I. Impact of 2016 weak La Niña Modoki event over the Indonesian region. Int. J. Geomate 2019, 17, 156–162. [Google Scholar] [CrossRef]
- Weng, H.; Ashok, K.; Behera, S.K.; Rao, S.A.; Yamagata, T. Impacts of recent El Niño Modoki on dry/wet conditions in the Pacific rim during boreal summer. Clim. Dyn. 2007, 29, 113–129. [Google Scholar] [CrossRef]
- Li, X.; Hu, Z.Z.; Huang, B. Contributions of atmosphere-ocean interaction and low-frequency variation to intensity of strong El Niño events since 1979. J. Clim. 2019, 32, 1381–1394. [Google Scholar] [CrossRef]
- Diaz, H.F.; Hoerling, M.P.; Eischeid, J.K. Enso variability, teleconnections and climate change. Int. J. Climatol. 2001, 21, 1845–1862. [Google Scholar] [CrossRef]
- Magee, A.D.; Verdon-Kidd, D.C.; Diamond, H.J.; Kiem, A.S. Influence of ENSO, ENSO Modoki, and the IPO on tropical cyclogenesis: A spatial analysis of the southwest Pacific region. Int. J. Climatol. 2017, 37, 1118–1137. [Google Scholar] [CrossRef]
- Francisco, A.S.; Netto, S.A. El Niño–Southern Oscillations and Pacific Decadal Oscillation as Drivers of the Decadal Dynamics of Benthic Macrofauna in Two Subtropical Estuaries (Southern Brazil). Ecosystems 2020, 23, 1380–1394. [Google Scholar] [CrossRef]
- Gamelin, B.L.; Carvalho, L.M.V.; Kayano, M. The combined influence of ENSO and PDO on the spring UTLS ozone variability in South America. Clim. Dyn. 2020, 55, 1539–1562. [Google Scholar] [CrossRef]
- Dogar, M.M.; Kucharski, F.; Sato, T.; Mehmood, S.; Ali, S.; Gong, Z.; Das, D.; Arraut, J. Towards understanding the global and regional climatic impacts of Modoki magnitude. Glob. Planet. Chang. 2019, 172, 223–241. [Google Scholar] [CrossRef]
- Tsonis, A.A.; Hunt, A.G.; Elsner, J.B. On the relation between ENSO and global climate change. Meteorol. Atmos. Phys. 2003, 84, 229–242. [Google Scholar] [CrossRef]
Index | Polynomial Equation | R2 |
---|---|---|
MEI | Y = 7 × 10−7x5 − 0.0001x4 + 0.0053x3 − 0.0684x2 + 0.2232x + 0.0856 | 0.90 |
Y: SST value X: It is the period corresponding to the months | ||
TNI | Y = 1 × 10−5x5 − 0.0004x4 − 0.0045x3 + 0.173x2 − 0.933x − 0.7016 | 0.95 |
ONI | Y = 2 × 10−5x5 − 0.0015x4 + 0.0316x3 − 0.2472x2 + 0.2189x + 2.4981 | 0.99 |
CI | Y = 2 × 10−5x5 − 0.0013x4 + 0.0234x3 − 0.1496x2 + 0.0336x + 1.722 | 0.89 |
SOI | Y = −0.0003x5 + 0.0187x4 − 0.3732x3 + 2.7439x2 − 3.1877x − 19.397 | 0.64 |
PREI | Y = 0.5175x2 − 3.3805x + 31.018 | 0.99 |
X: It is a sequential period representing regions 4, 3.4, 3 and 1 + 2 |
Index | Pros | Cons |
---|---|---|
MEI | It is used to determine El Niño Modoki, that is, it only determines SST anomalies in the equatorial Central Pacific. | It does not specifically designed to determine Coastal ENSO |
TNI | It is used to characterize both the evolution of the El Niño or La Niña event | It does not specifically designed to determine the Coastal ENSO |
ONI | Is NOAA’s primary indicator for monitoring Canonical El Niño and La Niña | Not specifically designed to determine Coastal ENSO |
CI | It is useful, when a Canonical ENSO is presented | It does not specifically designed to determine the Coastal ENSO |
SOI | It is useful for determining El Niño and La Niña episodes | It is the least suitable for determining the presence of Coastal ENSO |
PREI | It allows to define or interpret the Coastal ENSO in an optimal way | It is required to differentiate between the presence of a Canonical ENSO from the presence of a La Niña Modoki “LNSO” |
Region | Period “X” | “Y” °C Observed (January) | “Y” °C Calculated (January) | Residues °C |
---|---|---|---|---|
4 | 1 | 28.18 | 28.16 | −0.02 |
3.4 | 2 | 26.25 | 26.33 | 0.08 |
3 | 3 | 25.61 | 25.53 | −0.08 |
1+2 | 4 | 25.75 | 25.78 | 0.03 |
Observed (February) | Projected (February) | |||
1+2 | 5 | 27.76 | 27.05 | −0.71 |
Observed (March) | Projected (March) | |||
1+2 | 6 | 28.52 | 29.37 | 0.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gonzales, E.; Ingol, E. Determination of a New Coastal ENSO Oceanic Index for Northern Peru. Climate 2021, 9, 71. https://doi.org/10.3390/cli9050071
Gonzales E, Ingol E. Determination of a New Coastal ENSO Oceanic Index for Northern Peru. Climate. 2021; 9(5):71. https://doi.org/10.3390/cli9050071
Chicago/Turabian StyleGonzales, Edgard, and Eusebio Ingol. 2021. "Determination of a New Coastal ENSO Oceanic Index for Northern Peru" Climate 9, no. 5: 71. https://doi.org/10.3390/cli9050071
APA StyleGonzales, E., & Ingol, E. (2021). Determination of a New Coastal ENSO Oceanic Index for Northern Peru. Climate, 9(5), 71. https://doi.org/10.3390/cli9050071