Evolution of the Arabian Sea Upwelling from the Last Millennium to the Future as Simulated by Earth System Models
Abstract
:1. Introduction
2. Model and Data
3. Results
3.1. Arabian Sea Upwelling in the Last Millennium
3.2. EOF Analysis of Upwelling
3.3. Upwelling Trends
3.4. Future Scenarios
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Pauly, D.; Christensen, V. Primary production required to sustain global fisheries. Nature 1995, 374, 255–257. [Google Scholar] [CrossRef]
- Izumo, T.; Montégut, C.B.; Luo, J.-J.; Behera, S.K.; Masson, S.; Yamagata, T. The Role of the Western Arabian Sea Upwelling in Indian Monsoon Rainfall Variability. J. Clim. 2008, 21, 5603–5623. [Google Scholar] [CrossRef] [Green Version]
- Bakun, A. Global Climate Change and Intensification of Coastal Ocean Upwelling. Science 1990, 247, 198–201. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Schwing, F.B.; Mendelssohn, R. Increased coastal upwelling in the California Current System. J. Geophys. Res. Oceans 1997, 102, 3421–3438. [Google Scholar] [CrossRef]
- McGregor, H.V.; Dima, M.; Fischer, H.W.; Mulitza, S. Rapid 20th-Century Increase in Coastal Upwelling off Northwest Africa. Science 2007, 315, 637–639. [Google Scholar] [CrossRef] [PubMed]
- Gutiérrez, D.; Bouloubassi, I.; Sifeddine, A.; Purca, S.; Goubanova, K.; Graco, M.; Field, D.; Méjanelle, L.; Velazco, F.; Lorre, A.; et al. Coastal cooling and increased productivity in the main upwelling zone off Peru since the mid-twentieth century. Geophys. Res. Lett. 2011, 38, L07603. [Google Scholar] [CrossRef] [Green Version]
- Santos, F.; Gomez-Gesteira, M.; deCastro, M.; Alvarez, I. Differences in coastal and oceanic SST trends due to the strengthening of coastal upwelling along the Benguela current system. Cont. Shelf Res. 2012, 34, 79–86. [Google Scholar] [CrossRef]
- Narayan, N.; Paul, A.; Mulitza, S.; Schulz, M. Trends in coastal upwelling intensity during the late 20th century. Ocean Sci. 2010, 6, 815–823. [Google Scholar] [CrossRef] [Green Version]
- Sydeman, W.J.; García-Reyes, M.; Schoeman, D.S.; Rykaczewski, R.R.; Thompson, S.A.; Black, B.A.; Bograd, S.J. Climate change and wind intensification in coastal upwelling ecosystems. Science 2014, 345, 77–80. [Google Scholar] [CrossRef]
- Bauer, S.; Hitchcock, G.L.; Olson, D.B. Influence of monsoonally-forced Ekman dynamics upon surface layer depth and plankton biomass distribution in the Arabian Sea. Deep Sea Res. Part A Oceanogr. Res. Pap. 1991, 38, 531–553. [Google Scholar] [CrossRef]
- Anderson, D.M.; Prell, W.L. A 300 KYR Record of Upwelling Off Oman during the Late Quaternary: Evidence of the Asian Southwest Monsoon. Paleoceanography 1993, 8, 193–208. [Google Scholar] [CrossRef]
- Sirocko, F.; Sarnthein, M.; Lange, H.; Erlenkeuser, H. Atmospheric summer circulation and coastal upwelling in the Arabian Sea during the Holocene and the last glaciation. Quat. Res. 1991, 36, 72–93. [Google Scholar] [CrossRef]
- Leuschner, D.C.; Sirocko, F. Orbital insolation forcing of the Indian Monsoon—A motor for global climate changes? Palaeogeogr. Palaeoclimatol. Palaeoecol. 2003, 197, 83–95. [Google Scholar] [CrossRef]
- Anderson, D.M.; Baulcomb, C.K.; Duvivier, A.K.; Gupta, A.K. Indian summer monsoon during the last two millennia. J. Quat. Sci. 2010, 25, 911–917. [Google Scholar] [CrossRef]
- Anderson, D.M.; Overpeck, J.T.; Gupta, A.K. Increase in the Asian Southwest Monsoon During the Past Four Centuries. Science 2002, 297, 596–599. [Google Scholar] [CrossRef] [PubMed]
- Feng, S.; Hu, Q. Regulation of Tibetan Plateau heating on variation of Indian summer monsoon in the last two millennia. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Sinha, A.; Berkelhammer, M.; Stott, L.; Mudelsee, M.; Cheng, H.; Biswas, J. The leading mode of Indian Summer Monsoon precipitation variability during the last millennium. Geophys. Res. Lett. 2011, 38, L15703. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Gouhier, T.C.; Menge, B.A.; Ganguly, A.R. Intensification and spatial homogenization of coastal upwelling under climate change. Nature 2015, 518, 390–394. [Google Scholar] [CrossRef]
- Taylor, K.E.; Stouffer, R.J.; Meehl, G.A. An Overview of CMIP5 and the Experiment Design. Bull. Am. Meteorol. Soc. 2012, 93, 485–498. [Google Scholar] [CrossRef] [Green Version]
- Moss, R.H.; Edmonds, J.A.; Hibbard, K.A.; Manning, M.R.; Rose, S.K.; van Vuuren, D.P.; Carter, T.R.; Emori, S.; Kainuma, M.; Kram, T.; et al. The next generation of scenarios for climate change research and assessment. Nature 2010, 463, 747–756. [Google Scholar] [CrossRef]
- Tim, N.; Zorita, E.; Hünicke, B.; Yi, X.; Emeis, K.C. The importance of external climate forcing for the variability and trends of coastal upwelling in past and future climate. Ocean Sci. 2016, 12, 807–823. [Google Scholar] [CrossRef] [Green Version]
- Edwards, P.N. A Vast Machine: Computer Models, Climate Data, and the Politics of Global Warming; MIT Press: Cambridge, MA, USA, 2010. [Google Scholar]
- Giorgetta, M.A.; Jungclaus, J.; Reick, C.H.; Legutke, S.; Bader, J.; Böttinger, M.; Brovkin, V.; Crueger, T.; Esch, M.; Fieg, K.; et al. Climate and carbon cycle changes from 1850 to 2100 in MPI-ESM simulations for the Coupled Model Intercomparison Project phase 5. J. Adv. Model. Earth Syst. 2013, 5, 572–597. [Google Scholar] [CrossRef]
- Otto-Bliesner, B.L.; Brady, E.C.; Fasullo, J.; Jahn, A.; Landrum, L.; Stevenson, S.; Rosenbloom, N.; Mai, A.; Strand, G. Climate Variability and Change since 850 CE: An Ensemble Approach with the Community Earth System Model. Bull. Am. Meteorol. Soc. 2016, 97, 735–754. [Google Scholar] [CrossRef]
- Hurrell, J.W.; Holland, M.M.; Gent, P.R.; Ghan, S.; Kay, J.E.; Kushner, P.J.; Lamarque, J.-F.; Large, W.G.; Lawrence, D.; Lindsay, K.; et al. The Community Earth System Model: A Framework for Collaborative Research. Bull. Am. Meteorol. Soc. 2013, 94, 1339–1360. [Google Scholar] [CrossRef]
- Masson-Delmotte, V.; Schulz, M.; Abe-Ouchi, A.; Beer, J.; Ganopolski, A.; González Rouco, J.F.; Jansen, E.; Lambeck, K.; Luterbacher, J.; Naish, T.; et al. Information from paleoclimate archives. In Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Stocker, T.F., Qin, D., Plattner, G.-K., Tignor, M., Allen, S.K., Boschung, J., Nauels, A., Xia, Y., Bex, V., Midgley, P.M., Eds.; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2013; pp. 383–464. [Google Scholar]
- Vieira, L.E.A.; Solanki, S.K. Evolution of the solar magnetic flux on time scales of years to millenia. Astron. Astrophys. 2010, 509, A100. [Google Scholar] [CrossRef]
- Berger, A. Long-Term Variations of Daily Insolation and Quaternary Climatic Changes. J. Atmos. Sci. 1978, 35, 2362–2367. [Google Scholar] [CrossRef]
- Gao, C.; Robock, A.; Ammann, C. Volcanic forcing of climate over the past 1500 years: An improved ice core-based index for climate models. J. Geophys. Res. Atmos. 2008, 113, D23111. [Google Scholar] [CrossRef] [Green Version]
- Crowley, T.J.; Unterman, M.B. Technical details concerning development of a 1200 yr proxy index for global volcanism. Earth Syst. Sci. Data 2013, 5, 187–197. [Google Scholar] [CrossRef] [Green Version]
- Pongratz, J.; Raddatz, T.; Reick, C.H.; Esch, M.; Claussen, M. Radiative forcing from anthropogenic land cover change since A.D. 800. Geophys. Res. Lett. 2009, 36, L02709. [Google Scholar] [CrossRef] [Green Version]
- Flückiger, J.; Monnin, E.; Stauffer, B.; Schwander, J.; Stocker, T.F.; Chappellaz, J.; Raynaud, D.; Barnola, J.-M. High-resolution Holocene N2O ice core record and its relationship with CH4 and CO2. Glob. Biogeochem. Cycles 2002, 16. [Google Scholar] [CrossRef]
- Hansen, J.; Sato, M. Greenhouse gas growth rates. Proc. Natl. Acad. Sci. USA 2004, 101, 16109–16114. [Google Scholar] [CrossRef] [Green Version]
- MacFarling Meure, C.; Etheridge, D.; Trudinger, C.; Steele, P.; Langenfelds, R.; van Ommen, T.; Smith, A.; Elkins, J. Law Dome CO2, CH4 and N2O ice core records extended to 2000 years BP. Geophys. Res. Lett. 2006, 33, L14810. [Google Scholar] [CrossRef]
- Brock, J.C.; McClain, C.R. Interannual variability in phytoplankton blooms observed in the northwestern Arabian Sea during the southwest monsoon. J. Geophys. Res. Oceans 1992, 97, 733–750. [Google Scholar] [CrossRef]
- Brock, J.C.; McClain, C.R.; Luther, M.E.; Hay, W.W. The phytoplankton bloom in the northwestern Arabian Sea during the southwest monsoon of 1979. J. Geophys. Res. Oceans 1991, 96, 20623–20642. [Google Scholar] [CrossRef]
- Rixen, T.; Haake, B.; Ittekkot, V. Sedimentation in the western Arabian Sea the role of coastal and open-ocean upwelling. Deep Sea Res. Part II Top. Stud. Oceanogr. 2000, 47, 2155–2178. [Google Scholar] [CrossRef]
- Shi, W.; Morrison, J.M.; Böhm, E.; Manghnani, V. The Oman upwelling zone during 1993, 1994 and 1995. Deep Sea Res. Part II Top. Stud. Oceanogr. 2000, 47, 1227–1247. [Google Scholar] [CrossRef]
- Yi, X.; Hünicke, B.; Tim, N.; Zorita, E. The relationship between Arabian Sea upwelling and Indian Monsoon revisited in a high resolution ocean simulation. Clim. Dyn. 2018, 50, 201–213. [Google Scholar] [CrossRef] [Green Version]
- Thadathil, P.; Thoppil, P.; Rao, R.R.; Muraleedharan, P.M.; Somayajulu, Y.K.; Gopalakrishna, V.V.; Murtugudde, R.; Reddy, G.V.; Revichandran, C. Seasonal Variability of the Observed Barrier Layer in the Arabian Sea. J. Phys. Oceanogr. 2008, 38, 624–638. [Google Scholar] [CrossRef] [Green Version]
- Lee, C.M.; Jones, B.H.; Brink, K.H.; Fischer, A.S. The upper-ocean response to monsoonal forcing in the Arabian Sea: Seasonal and spatial variability. Deep Sea Res. Part II Top. Stud. Oceanogr. 2000, 47, 1177–1226. [Google Scholar] [CrossRef]
- Turner, A.G.; Joshi, M.; Robertson, E.S.; Woolnough, S.J. The effect of Arabian Sea optical properties on SST biases and the South Asian summer monsoon in a coupled GCM. Clim. Dyn. 2012, 39, 811–826. [Google Scholar] [CrossRef]
- Lévy, M.; Shankar, D.; André, J.M.; Shenoi, S.S.C.; Durand, F.; de Boyer Montégut, C. Basin-wide seasonal evolution of the Indian Ocean’s phytoplankton blooms. J. Geophys. Res. Oceans 2007, 112, C12014. [Google Scholar] [CrossRef] [Green Version]
- Peeters, F.J.C.; Brummer, G.-J.A.; Ganssen, G. The effect of upwelling on the distribution and stable isotope composition of Globigerina bulloides and Globigerinoides ruber (planktic foraminifera) in modern surface waters of the NW Arabian Sea. Glob. Planet. Chang. 2002, 34, 269–291. [Google Scholar] [CrossRef]
- Ebisuzaki, W. A Method to Estimate the Statistical Significance of a Correlation When the Data Are Serially Correlated. J. Clim. 1997, 10, 2147–2153. [Google Scholar] [CrossRef]
- von Storch, H.; Zwiers, F.W. Statistical Analysis in Climate Research; Cambridge University Press: Cambridge, UK, 2001. [Google Scholar]
- Wang, B.; Fan, Z. Choice of South Asian Summer Monsoon Indices. Bull. Am. Meteorol. Soc. 1999, 80, 629–638. [Google Scholar] [CrossRef] [Green Version]
- Tebaldi, C.; Arblaster, J.M.; Knutti, R. Mapping model agreement on future climate projections. Geophys. Res. Lett. 2011, 38, L23701. [Google Scholar] [CrossRef]
- Lorenz, S.J.; Kim, J.-H.; Rimbu, N.; Schneider, R.R.; Lohmann, G. Orbitally driven insolation forcing on Holocene climate trends: Evidence from alkenone data and climate modeling. Paleoceanography 2006, 21, PA1002. [Google Scholar] [CrossRef]
- Jiang, D.; Lang, X.; Tian, Z.; Ju, L. Mid-Holocene East Asian summer monsoon strengthening: Insights from Paleoclimate Modeling Intercomparison Project (PMIP) simulations. Palaeogeogr. Palaeoclimatol. Palaeoecol. 2013, 369, 422–429. [Google Scholar] [CrossRef]
- Gill, E.C.; Rajagopalan, B.; Molnar, P.H.; Kushnir, Y.; Marchitto, T.M. Reconstruction of Indian summer monsoon winds and precipitation over the past 10,000 years using equatorial pacific SST proxy records. Paleoceanography 2017, 32, 195–216. [Google Scholar] [CrossRef]
- Braconnot, P.; Loutre, M.; Dong, B.; Joussaume, S.; Valdes, P. How the simulated change in monsoon at 6 ka BP is related to the simulation of the modern climate: Results from the Paleoclimate Modeling Intercomparison Project. Clim. Dyn. 2002, 19, 107–121. [Google Scholar] [CrossRef]
- Lücke, L.J.; Schurer, A.P.; Wilson, R.; Hegerl, G.C. Orbital Forcing Strongly Influences Seasonal Temperature Trends During the Last Millennium. Geophys. Res. Lett. 2021, 48, e2020GL088776. [Google Scholar] [CrossRef]
- Menon, A.; Levermann, A.; Schewe, J.; Lehmann, J.; Frieler, K. Consistent increase in Indian monsoon rainfall and its variability across CMIP-5 models. Earth Syst. Dynam. 2013, 4, 287–300. [Google Scholar] [CrossRef] [Green Version]
- Small, R.J.; Curchitser, E.; Hedstrom, K.; Kauffman, B.; Large, W.G. The Benguela Upwelling System: Quantifying the Sensitivity to Resolution and Coastal Wind Representation in a Global Climate Model. J. Clim. 2015, 28, 9409–9432. [Google Scholar] [CrossRef]
- Ranjha, R.; Tjernström, M.; Svensson, G.; Semedo, A. Modelling coastal low-level wind-jets: Does horizontal resolution matter? Meteorol. Atmos. Phys. 2016, 128, 263–278. [Google Scholar] [CrossRef]
- Roxy, M.K.; Modi, A.; Murtugudde, R.; Valsala, V.; Panickal, S.; Prasanna Kumar, S.; Ravichandran, M.; Vichi, M.; Lévy, M. A reduction in marine primary productivity driven by rapid warming over the tropical Indian Ocean. Geophys. Res. Lett. 2016, 43, 826–833. [Google Scholar] [CrossRef] [Green Version]
MPI-ESM-P Upwelling TS | CESM-CAM5 Upwelling TS | |||||
---|---|---|---|---|---|---|
r1 | r2 | r3 | r1 | r2 | r3 | |
IMI | 0.64 | 0.61 | 0.60 | 0.64 | 0.66 | 0.65 |
Upwelling PCs * | 0.79 | 0.85 | 0.83 | 0.92 | 0.93 | 0.93 |
SLP PC2 | 0.61 | 0.50 | 0.55 | 0.84 | 0.87 | 0.83 |
G. bulloides | 0.14 | 0.66 | −0.06 | −0.27 | 0.07 | 0.21 |
MPI-ESM-LR | CCSM4 | |||||
---|---|---|---|---|---|---|
r1 | r2 | r3 | r1 | r2 | r3 | |
RCP8.5 | 0.5457 | 0.4787 | 0.5420 | 0.4844 | 0.5500 | 0.5321 |
RCP2.6 | 0.4270 | 0.4259 | 0.4752 | 0.7569 | 0.6391 | 0.6879 |
MPI-ESM-P Upwelling Trend | CESM-CAM5 Upwelling Trend | |||||
---|---|---|---|---|---|---|
r1 | r2 | r3 | r1 | r2 | r3 | |
850–1849 | −0.0187 * | −0.0062 | −0.0164 * | −0.0013 | −0.0129 | −0.0138 |
850–1549 | −0.0120 | −0.0052 | −0.0105 | −0.0005 | −0.0028 | −0.0343 * |
1550–1849 | 0.0567 | 0.0862 * | 0.0062 | −0.0100 | 0.1484 * | 0.0905 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yi, X.; Hünicke, B.; Zorita, E. Evolution of the Arabian Sea Upwelling from the Last Millennium to the Future as Simulated by Earth System Models. Climate 2021, 9, 72. https://doi.org/10.3390/cli9050072
Yi X, Hünicke B, Zorita E. Evolution of the Arabian Sea Upwelling from the Last Millennium to the Future as Simulated by Earth System Models. Climate. 2021; 9(5):72. https://doi.org/10.3390/cli9050072
Chicago/Turabian StyleYi, Xing, Birgit Hünicke, and Eduardo Zorita. 2021. "Evolution of the Arabian Sea Upwelling from the Last Millennium to the Future as Simulated by Earth System Models" Climate 9, no. 5: 72. https://doi.org/10.3390/cli9050072
APA StyleYi, X., Hünicke, B., & Zorita, E. (2021). Evolution of the Arabian Sea Upwelling from the Last Millennium to the Future as Simulated by Earth System Models. Climate, 9(5), 72. https://doi.org/10.3390/cli9050072