PIC-DSMC Simulation of a Hall Thruster Plume with Charge Exchange Effects Using pdFOAM
Abstract
:1. Introduction
2. Numerical Method
3. Results and Discussion
3.1. Description of a Sample Problem
3.2. Comparison and Validation
3.3. Effects of Charge Exchange
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
Nomenclature
Elab | laboratory ion energy |
n | number density |
q | charge |
Zi | ion charge number |
vacuum permittivity | |
Boltzmann constant | |
σ | collision cross section |
plasma potential |
Subscripts
e | electron |
i | ion |
ꝏ | free stream property |
References
- Lev, D.; Myers, R.M.; Lemmer, K.M.; Kolbeck, J.; Koizumi, H. The Technological and Commercial Expansion of Electric Propulsion. Acta Astronaut. 2019, 159, 213–227. [Google Scholar] [CrossRef]
- Cai, C. Numerical Studies on Plasma Plume Flows from a Cluster of Electric Propulsion Devices. Aerosp. Sci. Technol. 2015, 41, 134–143. [Google Scholar] [CrossRef]
- Choi, Y. Particle Simulation of Plume Flows from an Anode-Layer Hall Thruster. Ph.D. Dissertation, The University of Michigan, Ann Arbor, MI, USA, 2008. [Google Scholar]
- Wang, J.; Chen, L.; Jiang, Y.; Lee, C. Particle Simulation of an Anode-layer Hall Thruster Plume using an Anisotropic Scattering Model. Acta Astronaut. 2020, 175, 19–31. [Google Scholar] [CrossRef]
- Araki, S.J.; Wirz, R.E. Ion-Neutral Collision Modeling using Classical Scattering with Spin-Orbit Free Interaction Potential. IEEE Trans. Plasma Sci. 2013, 3, 470–480. [Google Scholar] [CrossRef]
- Hofer, R.R.; Jankovsky, R.S.; Gallimore, A.D. High-Specific Impulse Hall Thrusters, Part 1: Influence of Current Density and Magnetic Field. J. Propuls. Power 2006, 22, 721–731. [Google Scholar] [CrossRef] [Green Version]
- Boyd, I.D. Review of Hall Thruster Plume Modeling. J. Spacecr. Rocket. 2001, 38, 381–387. [Google Scholar] [CrossRef] [Green Version]
- Guiliano, P.N.; Boyd, I.D. Particle Simulation of Collision Dynamics for Ion Beam Injection into a Rarefied Gas. Phys. Plasmas 2013, 20, 033505. [Google Scholar] [CrossRef]
- Roy, R.I.; Hastings, D.E.; Gatsonis, N.A. Modelling of Ion Thruster Plume Contamination. In Proceedings of the AIAA, SAE, ASME, and ASEE, 29th Joint Propulsion Conference and Exhibit, Monterey, CA, USA, 28–30 June 1993; International Electric Propulsion Conference Paper. pp. 93–142. [Google Scholar]
- Birdsall, C.K.; Langdon, A.B. Plasma Physics via Computer Simulation; Adam Hilger: New York, NY, USA, 1991. [Google Scholar]
- Birdsall, C.K. Particle-in-Cell Charged-Particle Simulations, Plus Monte Carlo Collisions with Neutral Atoms, PIC-MCC. IEEE Transations Plasma Sci. 1991, 19, 65–85. [Google Scholar] [CrossRef]
- Oh, D.Y.; Hastings, D.E. Experimental Verification of a PIC-DSMC Model for Hall Thruster Plumes. In Proceedings of the 32nd Joint Propulsion Conference and Exhibit, Lake Buena Vista, FL, USA, 1–3 July 1996. AIAA Paper 1996–3196. [Google Scholar]
- Brieda, L. Multiscale Modeling of Hall Thrusters. Ph.D. Dissertation, The George Washington University, Washington, DC, USA, 2012. [Google Scholar]
- Capon, C.J.; Brown, M.; White, C.; Scanlon, T.; Boyce, R.R. pdFOAM: A PIC-DSMC Code for Near-Earth Plasma-body Interactions. Comput. Fluids 2017, 149, 160–171. [Google Scholar] [CrossRef] [Green Version]
- Miller, J.S.; Pullins, S.H.; Levandier, D.J.; Chiu, Y.; Dressler, R.A. Xenon Charge Exchange Cross Sections for Electrostatic Thruster Models. J. Appl. Phys. 2002, 91, 984. [Google Scholar] [CrossRef]
- Boyd, I.D.; Dressler, R.A. Far Field Modeling of the Plasma Plume of a Hall Thruster. J. Appl. Phys. 2002, 92, 1764–1774. [Google Scholar] [CrossRef] [Green Version]
- Bird, G.A. Molecular Gas Dynamics and the Direct Simulation of Gas Flows; Oxford Press: New York, NY, USA, 1994. [Google Scholar]
- Boyd, I.D. Conservative Species Weighting Scheme for the Direct Simulation Monte Carlo Method. J. Thermophys. Heat Transf. 1996, 10, 579–585. [Google Scholar] [CrossRef]
- White, C.; Borg, M.K.; Scanlon, T.J.; Longshaw, S.M.; John, B.; Emerson, D.R. dsmcFoam+: An OpenFOAM based direct simulation Monte Carlo solver. Comput. Phys. Commun. 2018, 224, 22–43. [Google Scholar] [CrossRef]
- Boeul, J. Tutorial: Physics and Modeling of Hall Thrusters. J. Appl. Phys. 2017, 121, 011101. [Google Scholar]
- Boyd, I.D. Computation of the Plume of an Anode-Layer Hall Thruster. J. Propuls. Power 2000, 16, 902–909. [Google Scholar] [CrossRef]
- Domonkos, M.T.; Marrese, C.M.; Haas, J.M.; Gallimore, A.D. Very Near-Field Plume Investigation of the D55. In Proceedings of the 33rd Joint Propulsion Conference and Exhibit, Seattle, WA, USA, 6–9 July 1997. AIAA Paper 1997–3067. [Google Scholar]
- Zakharenkov, L.; Semenkin, A.V.; Lebedev, Y.V. Measurement Features and Results of TAL D-55 Plume. Int. Electr. Propuls. Conf. Pap. 2005, 184, 2005. [Google Scholar]
- Choi, Y.; Keidar, M.; Boyd, I.D. Particle Simulation of Plume Flows from an Anode-Layer Hall Thruster. J. Propuls. Power 2008, 24, 554–561. [Google Scholar] [CrossRef]
- Korsun, A.; Tverdokhlebova, E.; Gabdullin, F.; Semenkin, A.; Zakharenkov, L. Verification of SSM Hall Thruster Plume Model Considering the Electric Plasma Processes. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004. AIAA Paper 2004–2155. [Google Scholar]
- Wang, J.; Hu, Y. On the Limitations of Hybrid Particle-in-cell for Ion Thruster Plume simulations. Phys. Plasmas 2019, 26, 103502. [Google Scholar] [CrossRef]
- Cichocki, F.; Dominguez-Vazquez, A.; Merino, M.; Fajardo, P.; Ahedo, E. Three-dimensional Neutralizer Effects on a Hall-effect Thruster near Plume. Acta Astronaut. 2021, 187, 498–510. [Google Scholar] [CrossRef]
Type | Models |
---|---|
Collision partner selection method | Transient Conglomerated Cell (TCC) |
Collision model | Hard Sphere (HS), Variable Hard Sphere (VHS), Variable Soft Sphere (VSS) |
Reaction model | Larsen–Borgnakke, Quantum-Kinetic (Q-K) |
Charge transform method | Nearest Volume (NV), Composite Linear Volume (CLV) |
Case # | Species | Number Density (m−3) | Temperature (K) | Velocity (m/s) |
---|---|---|---|---|
1 | Xe | 3.8 × 1018 | 750 | 281 |
Xe+ | 3.6 × 1017 | 46,400 | 15,000 | |
Xe2+ | 9.0 × 1016 | 46,400 | 21,300 | |
2 | Xe | 4.6 × 1018 | 750 | 281 |
Xe+ | 2.4 × 1017 | 46,400 | 15,000 | |
Xe2+ | 6.0 × 1016 | 46,400 | 21,300 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Kang, S.H. PIC-DSMC Simulation of a Hall Thruster Plume with Charge Exchange Effects Using pdFOAM. Aerospace 2023, 10, 44. https://doi.org/10.3390/aerospace10010044
Kang SH. PIC-DSMC Simulation of a Hall Thruster Plume with Charge Exchange Effects Using pdFOAM. Aerospace. 2023; 10(1):44. https://doi.org/10.3390/aerospace10010044
Chicago/Turabian StyleKang, Sang Hun. 2023. "PIC-DSMC Simulation of a Hall Thruster Plume with Charge Exchange Effects Using pdFOAM" Aerospace 10, no. 1: 44. https://doi.org/10.3390/aerospace10010044
APA StyleKang, S. H. (2023). PIC-DSMC Simulation of a Hall Thruster Plume with Charge Exchange Effects Using pdFOAM. Aerospace, 10(1), 44. https://doi.org/10.3390/aerospace10010044