Detached Eddy Simulations of Cavity-Store Interactions at Subsonic Turbulent Flow
Abstract
:1. Introduction
2. Numerical Approach
2.1. Flow Solver
2.2. Turbulence Model
2.3. Computational Domains
2.3.1. Empty Cavity Configuration
2.3.2. Cavity-with-Store Configurations
2.4. Boundary and Flow Conditions
2.5. Numerical Procedure
3. Results and Discussion
3.1. Characteristics of the Incoming Boundary Layer
3.2. Time-Averaged Static Pressure Coefficient Distribution
3.3. Flow Characteristics
3.4. Forces and Moments
4. Conclusions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
CFD | Computational Fluid Dynamics |
DES | Detached Eddy Simulation |
DNS | Direct Numerical Simulation |
IDDES | Improved Delayed Detach-Eddy Simulation |
LES | Large Eddy Simulatios |
JDAM | Joint Direct Attack Munition |
PIV | Particle Image Velocimetry |
PSP | Pressure-Sensitive Paint |
RANS | Reynolds-Averaged Navier–Stokes |
S–A | Spalart–Allmaras |
SGS | Sub-Grid-Scale |
TNT | Turbulent/Non-Turbulent |
URANS | Unsteady Reynolds Averaged Navier–Stokes |
X-LES | Extra-Large-Eddy Simulation |
References
- Johnson, R.A.; Stanek, M.J.; Grove, J.E. Store separation trajectory deviations due to unsteady weapons bay aerodynamics. In Proceedings of the 46th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 7–10 January 2008. [Google Scholar]
- Westmoreland, W.S. Trajectory variation due to an unsteady flow-field. In Proceedings of the 47th AIAA Aerospace Sciences Meeting, Oralndo, FL, USA, 5–8 January 2009. [Google Scholar]
- Stallings, R.L.; Forest, D.K. Separation Characteristics of Internally Carried Stores at Supersonic Speeds; NASA TP–2993; NASA: Washington, DC, USA, 1990.
- Stallings, R.L.; Plentovich, E.B.; Tracy, M.B.; Hemsch, M.J. Measurements of Store Forces and Moments and Cavity Pressures for a Generic Store in and near a Box Cavity at Subsonic and Transonic Speeds; NASA TM–4611; NASA: Washington, DC, USA, 1995.
- Ben-Gida, H. Experimental study of the transonic flow within a jet-fighter weapons bay with internal stores. In Proceedings of the AIAA Aviation Forum, Chicago, IL, USA & Virtual, 27 June–1 July 2022. [Google Scholar]
- Ben-Gida, H. Experimental study of an air-to-ground store release from a jet-fighter weapons bay in Transonic flow conditions. In Proceedings of the AIAA AVIATION Forum, San Diego, CA, USA and Online, 12–16 June 2023. [Google Scholar]
- Lawson, S.J.; Barakos, G.N. Review of numerical simulations for high-speed, turbulent cavity flows. Prog. Aerosp. Sci. 2011, 47, 186–216. [Google Scholar] [CrossRef]
- Charwat, A.F.; Roos, J.N.; Dewey, C.F.; Hiltz, J.A. An investigation of separated flows, part II, Flow in the cavity and heat transfer. J. Aerosp. Sci. 1961, 28, 457–470. [Google Scholar] [CrossRef]
- Rossiter, J. The Effects of Cavities on the Buffetting of Aircraft; Technical Memorandum AERO.754; Royal Aircraft Establishment: Farnborough, UK, 1962. [Google Scholar]
- Tracy, M.B.; Plentovich, E.B. Characterization of Cavity Flow Fields Using Pressure Data Obtained in the Langley 0.3-Meter Transonic Cryogenic Tunnel; NASA TM–4436; NASA: Washington, DC, USA, 1993.
- Plentovich, E.B.; Stallings, R.L.; Tracy, M.B. Experimental Cavity Pressure Measurements at Subsonic and Transonic Speeds; NASA TP–3358; NASA: Washington, DC, USA, 1993.
- Tracy, M.B.; Plentovich, E.B. Cavity Unsteady-Pressure Measurements at Subsonic and Transonic Speeds; NASA TP–3669; NASA: Washington, DC, USA, 1997.
- Hamed, A.; Basu, D.; Das, K. Effect of Reynolds number on the unsteady flow and acoustic fields of supersonic cavity. In Proceedings of the Fourth ASME/JSME Joint Fluids Engineering Conference, Honolulu, HI, USA, 6–10 July 2003. [Google Scholar]
- Rizzetta, D. Numerical simulation of supersonic flow over a three-dimensional cavity. AIAA J. 1988, 26, 799–807. [Google Scholar] [CrossRef]
- Spalart, P. Strategies for turbulence modeling and simulations. Int. J. Heat Fluid Flow 2000, 21, 252–263. [Google Scholar] [CrossRef]
- Mendonça, F.; Allen, R.; de Charentenay, J.; Kirkham, D. CFD prediction of narrow band and broadband cavity acoustics at M = 0.85. In Proceedings of the 9th AIAA/CEAS Aeroacoustic Conference Exhibition, Hilton Head, SC, USA, 12–14 May 2003. [Google Scholar]
- Rizzetta, D.P.; Visbal, M.R. Large-eddy simulation of supersonic cavity flow-fields including flow control. AIAA J. 2003, 41, 1452–1462. [Google Scholar] [CrossRef]
- Viswanathan, A.K.; Squires, K.D.; Forsythe, J.R. Detached eddy simulation of the flow over an axisymmetric cavity. In Proceedings of the 41th AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Nayyar, P.; Barakos, G.N.; Badcock, K.J. Prediction of flow dynamics over cavities by detached eddy simulation. Aeronaut. J. 2007, 111, 153–164. [Google Scholar] [CrossRef]
- Rokita, T. Experimental and Numerical Investigation of the Subsonic Flow Field inside and near a Weapons Bay. Ph.D. Thesis, Technion—Institute of Technology, Haifa, Israel, 2014. [Google Scholar]
- Kim, D.H.; Choi, J.H.; Kwon, O.J. Detached eddy simulation of weapons bay flows and store separation. Comput. Fluids 2015, 121, 1–10. [Google Scholar] [CrossRef]
- Bacci, D.; Saddington, A.J.; Bray, D. Wavelet analysis of complex-geometry transonic cavity flows. In Proceedings of the AIAA Aviation Forum, Washington, DC, USA, 13–17 June 2016. [Google Scholar]
- Babu, S.; Loupy, G.; Dehaeze, F.; Barakos, G.; Taylor, N. Aeroelastic simulations of stores in weapon bays using detached-eddy simulation. J. Fluids Struct. 2016, 66, 207–228. [Google Scholar] [CrossRef]
- Sheta, E.F.; Harris, R.E.; George, B.; Ukeiley, L.; Luke, E. Loads and acoustics prediction on deployed weapons bay doors. J. Vib. Acoust. 2017, 139, 031007. [Google Scholar] [CrossRef]
- Yalcin, O.; Ozyoruk, Y. Delayed detached-eddy simulations of transonic cavity noise. In Proceedings of the AIAA Aviation Forum, Virtual Event, 2–6 August 2021. [Google Scholar]
- Spalart, P.R.; Jou, W.H.; Strelets, M.; Allmaras, S. Comments on the feasibility of LES for wings, and on a hybrid RANS/LES approach. In Proceedings of the 1st AFOSR International Conference on DNS/LES, Columbus, OH, USA, 4–8 August 1997. [Google Scholar]
- Spalart, P.R.; Allmaras, S.R. A one-equation turbulence model for aerodynamic flows. In Proceedings of the 30th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 1992; Volume 94. [Google Scholar]
- Kok, J.; Dol, H.; Oskam, B.; van der Ven, H. Extra-large eddy simulation of massively separated flows. In Proceedings of the 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 5–8 January 2004. [Google Scholar]
- Kok, J. Resolving the dependence on free-stream values for the k-ω turbulence model. AIAA J. 2000, 38, 1292–1295. [Google Scholar] [CrossRef]
- Rossiter, J.; Kurn, A. Wind Tunnel Measurements of the Unsteady Pressures in and behind a Bomb Bay (T.S.R.2); TR AERO.2677; Royal Aircraft Establishment: Farnborough, UK, 1963. [Google Scholar]
- Shaw, L.; Clark, R.; Talmadge, D. F-111 generic weapons bay acoustic environment. J. Aircr. 1988, 25, 147–153. [Google Scholar] [CrossRef]
- Rokita, T.; Elimelech, Y.; Arieli, R.; Levy, Y.; Greenberg, J.B. Experimental characterization of turbulent subsonic transitional-open cavity flow. Exp. Fluids 2016, 57, 60. [Google Scholar] [CrossRef]
- Crook, S.D.; Lau, T.C.W.; Kelso, R.M. Three-dimensional flow within shallow narrow cavities. J. Fluid Mech. 2013, 735, 587–612. [Google Scholar] [CrossRef]
- Crafton, J.; Stanfield, S.; Rogoshchenkov, N.; Palluconi, S.; Schmit, R. Measurement of unsteady forces on a store in a cavity using dynamic pressure-sensitive paint. In Proceedings of the AIAA Aviation Forum, Atlanta, GA, USA, 25–29 June 2018. [Google Scholar]
- DeMauro, E.P.; Beresh, S.J.; Casper, K.M.; Wagner, J.L.; Henfling, J.F.; Spillers, R.W. Volumetric velocimetry of complex geometry effects on transonic flow over cavities. AIAA J. 2019, 57, 1941–1954. [Google Scholar] [CrossRef]
- Roughen, K.; Wang, X.; Bendiksen, O.; Baker, M. A system for simulation of store separation including unsteady effects. In Proceedings of the 47th AIAA Aerospace Sciences Meeting, Orlando, FL, USA, 5–8 January 2009. [Google Scholar]
- Barone, M.; Arunajatesan, S. Pressure loadings in a rectangular cavity with and without a captive store. J. Aircr. 2016, 53, 982–991. [Google Scholar] [CrossRef]
- Yan, P.P.; Zhang, Q.F.; Li, J. Numerical study of strong interplay between cavity and store during launching. J. Mech. 2018, 34, 103–112. [Google Scholar] [CrossRef]
- Levy, Y.; Raveh, D. The EZNSS CFD Code—Theoretical and User’s Manual; ISCFDC Report 2015-06, Rev 330; Israeli CFD Center Ltd.: Caesarea, Israel, 2015. [Google Scholar]
- Benek, J.; Steger, J.; Dougherty, F.; Buning, P. Chimera: A Grid-Embedding Technique; AEDC–TR–85–64; United States Air Force: Washington, DC, USA, 1986. [Google Scholar]
- Levy, Y.; Adar, M. A multi-level parallelism approach for a chimera based implicit flow solver. In Proceedings of the 46th Israel Annual Conference of Aerospace Sciences, Tel-Aviv and Haifa, Israel, 1–2 March 2006. [Google Scholar]
- Abe, K. A hybrid LES/RANS approach using an anisotropy-resolving algebraic turbulence model. Int. J. Heat Fluid Flow 2005, 26, 204–222. [Google Scholar] [CrossRef]
- Batten, P.; Leschziner, M.; Goldberg, U. Average-state jacobians and implicit methods for compressible viscous and turbulent flows. J. Comput. Phys. 1997, 137, 38–78. [Google Scholar] [CrossRef]
- Ahuja, K.K.; Mendoza, J. Effects of Cavity Dimensions, Boundary-Layer and Temperature on Cavity Noise with Emphasis on Benchmark Data to Validate Computational Aeroacoustic Codes; NASA CR–4653; NASA: Washington, DC, USA, 1995.
- Schlichting, H.; Gersten, K. Boundary Layer Theory, 9th ed.; Springer: Berlin/Heidelberg, Germany, 2017. [Google Scholar]
- Knowles, K.; Ritchie, S.; Lawson, N. An Experimental and Computational Investigation of a 3D, l/h = 5 Transonic Cavity Flow; Technical Report; U.S. Air Force Academy: Colorado Springs, CO, USA, 2007. [Google Scholar]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ben-Gida, H. Detached Eddy Simulations of Cavity-Store Interactions at Subsonic Turbulent Flow. Aerospace 2023, 10, 935. https://doi.org/10.3390/aerospace10110935
Ben-Gida H. Detached Eddy Simulations of Cavity-Store Interactions at Subsonic Turbulent Flow. Aerospace. 2023; 10(11):935. https://doi.org/10.3390/aerospace10110935
Chicago/Turabian StyleBen-Gida, Hadar. 2023. "Detached Eddy Simulations of Cavity-Store Interactions at Subsonic Turbulent Flow" Aerospace 10, no. 11: 935. https://doi.org/10.3390/aerospace10110935
APA StyleBen-Gida, H. (2023). Detached Eddy Simulations of Cavity-Store Interactions at Subsonic Turbulent Flow. Aerospace, 10(11), 935. https://doi.org/10.3390/aerospace10110935