A Literature Review on Crack Arrest Features for Composite Materials and Composite Joints with a Focus on Aerospace Applications
Abstract
:1. Introduction
- The maximum disbond of each bonded joint consistent with the capability to withstand the required loads must be determined by analysis, tests, or both. Disbonds of each bonded joint greater than this must be prevented by design features; or
- Proof testing must be conducted on each production article that will apply the critical limit design load to each critical bonded joint; or
- Repeatable and reliable non-destructive inspection techniques must be established that ensure the strength of each joint.”
2. Research Methodology
2.1. Inclusion Criterion
2.2. Literature Identification
2.3. Quality and Eligibility Assessment
2.4. Screening for Inclusion
3. Crack Arrest Features for Composite Joints
3.1. Production-Based Crack Arrest Features
3.2. Postproduction-Based Crack Arrest Features
4. Crack Arrest Features for Composite Materials
Authors | Experimental | Simulation | Type of CAF | Substrates’/Parent Material |
---|---|---|---|---|
T. Löbel et al. [13] | ● | Hybrid bondline | IM7/8552 | |
Z. Rao et al. [10] | ● | ● | Pins with spreading legs | CF/PA6 |
Chi Ho E. Cheung et al. [65] | ● | Metal fasteners | AS4/3501-6 | |
N. Jeevan Kumar et al. [83] | ● | z-fiber pins | Carbon/epoxy and Glass/epoxy | |
L. Richard et al. [66,67] | ● | ● | Bolts | T800/3900-2 |
T. Kruse et al. [61,62] | ● | Lockbolts and z-reinforcement | Thermoset matrix composite | |
M. Kadlec et al. [60] | ● | z-pins | IM7/8552 | |
R. Malkin et al. [15] | ● | Interface modification | IM7/8552 | |
C. S. Chu [16] | ● | Softening strips | AS/3501-6 graphite-epoxy | |
J. E. Action et al. [68] | ● | ● | Bolts | - |
K. Tserpes et al. [24] | ● | ● | Corrugation | R-367-2/T2TE2 |
S. Hisada et al. [21] | ● | ● | Interlocking fibers | T700SC/2592 |
A. Yudhanto et al. [17] | ● | Hybrid bondline | T700/M21 | |
R. Sachse et al. [70] | ● | ● | Bolts | I M7/8552 |
O. Kolednik et al. [19] | ● | Soft interlayers | Al/Al-multilayers | |
P. L. Cruz [71] | ● | Fasteners | 5320 T650 33/145 | |
M. Yasaee [18] | ● | Fasteners | E-glass fiber/913 epoxy | |
I. Floros, K. Tserpes [63] | ● | ● | Fasteners | 8552/IM7 |
K. Tserpes [25] | ● | Bolts | 8552/IM7 | |
R. Tao [20] | ● | ● | Corrugation and Bolts | T700/M21 |
P. Chang et al. [27] | ● | z-pins | carbon/epoxy | |
D. Holzhüter et al. [14] | ● | Hybrid bondline | 8552/IM7 | |
L. W. Byrd et al. [29] | ● | ● | Cocured z-pins | Carbon/epoxy and Glass/epoxy |
K. Maloney, N. Fleck [26] | ● | Stop holes, woven copper wire mesh | Al. 6082-T651 | |
T. Löbel et al. [64] | ● | Staple-like pins | IMS 5131 24k | |
T. M. Koh et al. [28] | ● | z-pins | 700 carbon fiber/ Epoxy | |
E. D. Brunn et al. [69] | ● | Bolted fastener | Thermoset composite | |
G. Kelly [72] | ● | ● | Bolted fastener | T700/LV 828 |
S. Minakuchi, N. Takeda [22] | ● | ● | Fiber reinforcement | T700S/2592 |
S. Minakuchi [23] | ● | Fiber reinforcement | T700S/2592 | |
I. Sioutis et al. [73] | ● | ● | RFSSW | LM-PAEK/T700 |
N. M. Andrè et al. [74] | ● | - | 2024-T3 and CF-PPS | |
N. Z. Borba et al. [76] | ● | ● | Rivet | Ti-6Al-4V and GFR-polyester |
S. M. Goushegir et al. [75] | ● | - | AA2024-T3 and CF-PPS | |
S. M. Goushegir [77] | ● | - | AA2024-T3 and CF-PPS | |
B. C. de Proença et al. [74] | ● | Rivet | AA 6056 T6 and PA6 | |
Y. Hirose et al. [78] | ● | Splice-type arrester | UT500/#135 | |
L. Richard et al. [84] | ● | ● | Bolts | T800/3900-2 |
J. M. McKinley [80] | ● | Interleaved crack stopper straps | Boron/epoxy | |
N. Jeevan Kumar et al. [83] | ● | z-fiber pins | Carbon/epoxy and Glass/epoxy | |
Y. Hirose et al. [79] | ● | Semicylindrical insert | UT500/#135 | |
C. S. Chu [16] | ● | Softening strips | AS/3501-6 graphite-epoxy | |
T. L. Norman [81] | ● | Adhesive strips | AS4/3501-6 | |
H. O. Psihoyos et al. [85] | ● | Butt-joined transverse elements | AS4D/PEKK | |
F. Smith [31] | ● | Comeld™ surface treatment | Stainless steel/E-glass woven composite | |
S. Ucsnik et al. [32,33] | ● | Metallic surface treatment (CMT) | Stainless steel/CFRP | |
M. C. Corbett et al. [41] | ● | Interlocking surfaces | Alum. alloy AA5754 | |
A. Fawcett et al. [37] | ● | Protrusive “hooks” | GFRP/aluminum | |
D. P. Graham et al. [44] | ● | Interlocking pins | Stainless steel/E-glass epoxy | |
M. O’Brien et al. [40] | ● | Interlocking surfaces | Alum. alloy AA5754 | |
P. N. Parkes et al. [43] | ● | Laser sintered HYPER pins | Titanium/CFRP | |
K. Ramaswamy et al. [35,38,39,42] | ● | Interlocking features | AA5754-H111/PA12 woven composite | |
H. Tang & L. Liu [34] | ● | ● | Metallic pins | LY12 aluminum/CFRP |
M. R. Gude et al. [58] | ● | CNT- and CNF-toughened adhesive | Hexply 8552/33%/268/IM7-12K | |
A. Wagih et al. [59] | ● | Bio-inspired adhesive voiding | Hexply T700/M21 |
5. Conclusions and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Awais, H.; Nawab, Y.; Amjad, A.; Anjang, A.; Md Akil, H.; Zainol Abidin, M.S. Environmental Benign Natural Fibre Reinforced Thermoplastic Composites: A Review. Compos. Part C Open Access 2021, 4, 100082. [Google Scholar] [CrossRef]
- Guo, Q.; Yao, W.; Li, W.; Gupta, N. Constitutive Models for the Structural Analysis of Composite Materials for the Finite Element Analysis: A Review of Recent Practices. Compos. Struct. 2020, 260, 113267. [Google Scholar] [CrossRef]
- Pantelakis, S.; Tserpes, K. (Eds.) Revolutionizing Aircraft Materials and Processes; Springer International Publishing: Cham, Switzerland, 2020; ISBN 978-3-030-35345-2. [Google Scholar]
- Pantelakis, S.; Tserpes, K. (Eds.) Adhesive Bonding of Aircraft Structures. In Revolutionizing Aircraft Materials and Processes; Springer International Publishing: Cham, Switzerland, 2020; pp. 337–357. ISBN 978-3-030-35345-2. [Google Scholar]
- Jia, S.; Wang, F.; Zhou, J.; Jiang, Z.; Xu, B. Study on the Mechanical Performances of Carbon Fiber/Epoxy Composite Material Subjected to Dynamical Compression and High Temperature Loads. Compos. Struct. 2021, 258, 113421. [Google Scholar] [CrossRef]
- Lin, T.A.; Lin, J.H.; Bao, L. A Study of Reusability Assessment and Thermal Behaviors for Thermoplastic Composite Materials after Melting Process: Polypropylene/ Thermoplastic Polyurethane Blends. J. Clean. Prod. 2021, 279, 123473. [Google Scholar] [CrossRef]
- Banea, M.D.; Da Silva, L.F.M. Adhesively Bonded Joints in Composite Materials: An Overview. Proc. Inst. Mech. Eng. Part L J. Mater. Des. Appl. 2009, 223, 1–18. [Google Scholar] [CrossRef]
- European Aviation Safety Agency. EASA Europa. Available online: https://www.easa.europa.eu/en/certification-specifications/amc-20-general-acceptable-means-compliance-airworthiness-products-parts (accessed on 5 November 2022).
- US Department of Aviation. Composite Aircraft Structure. Advis. Circ. 2010, 1, 20-107B. [Google Scholar]
- Rao, Z.; Ou, L.; Wang, Y.; Wang, P.C. A Self-Piercing-through Riveting Method for Joining of Discontinuous Carbon Fiber Reinforced Nylon 6 Composite. Compos. Struct. 2020, 237, 111841. [Google Scholar] [CrossRef]
- Xiao, Y.; Watson, M. Guidance on Conducting a Systematic Literature Review. J. Plan. Educ. Res. 2017, 39, 20. [Google Scholar] [CrossRef]
- Nightingale, A. A Guide to Systematic Literature Reviews. Surgery (Oxford) 2009, 27, 4. [Google Scholar] [CrossRef]
- Löbel, T.; Holzhüter, D.; Sinapius, M.; Hühne, C. A Hybrid Bondline Concept for Bonded Composite Joints. Int. J. Adhes. Adhes. 2016, 68, 229–238. [Google Scholar] [CrossRef]
- Holzhüter, D.; Löbel, T.; Hühne, C.; Schollerer, M. The Adhesive Zone Mix Disbond Arrest Feature–Results (EU-FP7 Project BOPACS). In Proceedings of the Meeting on Use of Bonded Joints in Military Applications, Turin, Italy, 15–16 April 2018. [Google Scholar]
- Malkin, R.; Trask, R.S.; Bond, I.P. Control of Unstable Crack Propagation through Bio-Inspired Interface Modification. Compos. Part A Appl. Sci. Manuf. 2013, 46, 122–130. [Google Scholar] [CrossRef] [Green Version]
- Chu, B.C.S. Crack Arrest and Residual Strength of Composite Panels with Softening Strips. J. Aerosp. Eng. 1991, 4, 78–90. [Google Scholar] [CrossRef]
- Yudhanto, A.; Almulhim, M.; Kamal, F.; Tao, R.; Fatta, L.; Alfano, M.; Lubineau, G. Enhancement of Fracture Toughness in Secondary Bonded CFRP Using Hybrid Thermoplastic/Thermoset Bondline Architecture. Compos. Sci. Technol. 2020, 199, 108346. [Google Scholar] [CrossRef]
- Yasaee, M.; Bond, I.P.; Trask, R.S.; Greenhalgh, E.S. Mode I Interfacial Toughening through Discontinuous Interleaves for Damage Suppression and Control. Compos. Part A Appl. Sci. Manuf. 2012, 43, 198–207. [Google Scholar] [CrossRef]
- Kolednik, O.; Zechner, J.; Predan, J. Improvement of Fatigue Life by Compliant and Soft Interlayers. Scr. Mater. 2016, 113, 1–5. [Google Scholar] [CrossRef]
- Tao, R.; Li, X.; Yudhanto, A.; Alfano, M.; Lubineau, G. On Controlling Interfacial Heterogeneity to Trigger Bridging in Secondary Bonded Composite Joints: An Efficient Strategy to Introduce Crack-Arrest Features. Compos. Sci. Technol. 2020, 188, 107964. [Google Scholar] [CrossRef]
- Hisada, S.; Minakuchi, S.; Takeda, N. Damage Tolerance Improvement of Composite T-Joint under Pull-up Conditions Using an Interlocking-Fiber-Based Crack Arrester. Compos. Struct. 2020, 253, 112792. [Google Scholar] [CrossRef]
- Minakuchi, S.; Takeda, N. Arresting Crack in Composite Bonded Joint under Fatigue Using Fiber-Reinforcement-Based Feature. In Proceedings of the International SAMPE Technical Conference, Tokyo, Japan, 7–9 June 2017; pp. 199–206. [Google Scholar]
- Minakuchi, S. Fiber-Reinforcement-Based Crack Arrester for Composite Bonded Joints. In Proceedings of the ICCM International Conferences on Composite Materials, Copenhagen, Denmark, 19–24 July 2015. [Google Scholar]
- Tserpes, K.I.; Peikert, G.; Floros, I.S. Crack Stopping in Composite Adhesively Bonded Joints through Corrugation. Theor. Appl. Fract. Mech. 2016, 83, 152–157. [Google Scholar] [CrossRef]
- Tserpes, K. Numerical Evaluation of Crack Stopping Mechanisms in Composite Bonded Joints Due to Corrugation and Bolts. MATEC Web Conf. 2019, 304, 01003. [Google Scholar] [CrossRef]
- Maloney, K.; Fleck, N. Toughening Strategies in Adhesive Joints. Int. J. Solids Struct. 2019, 158, 66–75. [Google Scholar] [CrossRef]
- Chang, P.; Mouritz, A.P.; Cox, B.N. Properties and Failure Mechanisms of Pinned Composite Lap Joints in Monotonic and Cyclic Tension. Compos. Sci. Technol. 2006, 66, 2163–2176. [Google Scholar] [CrossRef]
- Koh, T.M.; Isa, M.D.; Chang, P.; Mouritz, A.P. Improving the Structural Properties and Damage Tolerance of Bonded Composite Joints Using Z-Pins. J. Compos. Mater. 2012, 46, 3255–3265. [Google Scholar] [CrossRef]
- Byrd, L.W.; Birman, V. The Estimate of the Effect of Z-Pins on the Strain Release Rate, Fracture and Fatigue in a Composite Co-Cured z-Pinned Double Cantilever Beam. Compos. Struct. 2005, 68, 53–63. [Google Scholar] [CrossRef]
- Selvi, S.; Vishvaksenan, A.; Rajasekar, E. Cold Metal Transfer (CMT) Technology-An Overview. Def. Technol. 2018, 14, 28–44. [Google Scholar] [CrossRef]
- Smith, F. ComeldTM: An Innovation in Composite to Metal Joining. Mater. Technol. 2005, 20, 91–96. [Google Scholar] [CrossRef]
- Ucsnik, S.; Scheerer, M.; Zaremba, S.; Pahr, D.H. Experimental Investigation of a Novel Hybrid Metal–Composite Joining Technology. Compos. Part A Appl. Sci. Manuf. 2010, 41, 369–374. [Google Scholar] [CrossRef]
- Ucsnik, S.; Stelzer, S.; Sehrschön, H.; Sieglhuber, G. Composite to Composite Joint with Lightweight Metal Reinforcement for Enhanced Damage Tolerance. In Proceedings of the 16th European Conference on Composite Materials-Barcelo Renacimiento, Sevilla, Spain, 22–26 June 2014. [Google Scholar]
- Tang, H.; Liu, L. A Novel Metal-Composite Joint and Its Structural Performance. Compos. Struct. 2018, 206, 33–41. [Google Scholar] [CrossRef]
- Ramaswamy, K.; O’Higgins, R.M.; Lyons, J.; McCarthy, M.A.; McCarthy, C.T. An Evaluation of the Influence of Manufacturing Methods on Interlocked Aluminium-Thermoplastic Composite Joint Performance. Compos. Part A Appl. Sci. Manuf. 2021, 143, 106281. [Google Scholar] [CrossRef]
- Feistauer, E.E.; dos Santos, J.F.; Amancio-Filho, S.T. An Investigation of the Ultrasonic Joining Process Parameters Effect on the Mechanical Properties of Metal-Composite Hybrid Joints. Weld World 2020, 64, 1481–1495. [Google Scholar] [CrossRef]
- Fawcett, A.; Chen, X.; Huang, X.; Li, C. Failure Analysis of Adhesively Bonded GFRP/ Aluminum Matrix Single Composite Lap Joint with Cold Worked Penetrative Reinforcements. Compos. Part B Eng. 2019, 161, 96–106. [Google Scholar] [CrossRef]
- Ramaswamy, K.; O’Higgins, R.M.; McCarthy, C.T. Impact Damage Tolerance and Residual Performance of Novel Interlocked-Hybrid Structural Joints. Compos. Part B Eng. 2022, 241, 109996. [Google Scholar] [CrossRef]
- Ramaswamy, K.; O’Higgins, R.M.; McCarthy, M.A.; McCarthy, C.T. Influence of Adhesive Spew Geometry and Load Eccentricity Angle on Metal-Composite Bonded Joints Tested at Quasi-Static and Dynamic Loading Rates. Compos. Struct. 2022, 279, 114812. [Google Scholar] [CrossRef]
- O’Brien, M.; Mortell, D.J.; Corbett, M.C.; O’Higgins, R.M.; McCarthy, C.T. Mechanical Performance and Failure Behaviour of Miniature Aluminium Joints with Novel Interlocking Reinforcement. Int. J. Adhes. Adhes. 2019, 95, 102431. [Google Scholar] [CrossRef]
- Corbett, M.C.; Sharos, P.A.; Hardiman, M.; McCarthy, C.T. Numerical Design and Multi-Objective Optimisation of Novel Adhesively Bonded Joints Employing Interlocking Surface Morphology. Int. J. Adhes. Adhes. 2017, 78, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Ramaswamy, K.; O’Higgins, R.M.; Corbett, M.C.; McCarthy, M.A.; McCarthy, C.T. Quasi-Static and Dynamic Performance of Novel Interlocked Hybrid Metal-Composite Joints. Compos. Struct. 2020, 253, 112769. [Google Scholar] [CrossRef]
- Parkes, P.N.; Butler, R.; Meyer, J.; de Oliveira, A. Static Strength of Metal-Composite Joints with Penetrative Reinforcement. Compos. Struct. 2014, 118, 250–256. [Google Scholar] [CrossRef] [Green Version]
- Graham, D.P.; Rezai, A.; Baker, D.; Smith, P.A.; Watts, J.F. The Development and Scalability of a High Strength, Damage Tolerant, Hybrid Joining Scheme for Composite–Metal Structures. Compos. Part A Appl. Sci. Manuf. 2014, 64, 11–24. [Google Scholar] [CrossRef] [Green Version]
- Feistauer, E.E.; Santos, J.F.; Amancio-Filho, S.T. A Review on Direct Assembly of Through-the-thickness Reinforced Metal–Polymer Composite Hybrid Structures. Polym. Eng. Sci. 2019, 59, 661–674. [Google Scholar] [CrossRef] [Green Version]
- Sarantinos, N.; Tsantzalis, S.; Ucsnik, S.; Kostopoulos, V. Review of Through-the-Thickness Reinforced Composites in Joints. Compos. Struct. 2019, 229, 111404. [Google Scholar] [CrossRef]
- Shang, X.; Marques, E.A.S.; Machado, J.J.M.; Carbas, R.J.C.; Jiang, D.; da Silva, L.F.M. Review on Techniques to Improve the Strength of Adhesive Joints with Composite Adherends. Compos. Part B Eng. 2019, 177, 107363. [Google Scholar] [CrossRef]
- Han, G.; Tan, B.; Cheng, F.; Wang, B.; Leong, Y.-K.; Hu, X. CNT Toughened Aluminium and CFRP Interface for Strong Adhesive Bonding. Nano Mater. Sci. 2022, 4, 266–275. [Google Scholar] [CrossRef]
- Trabal, G.G.; Bak, B.L.V.; Chen, B.; Jensen, S.M.; Lindgaard, E. Delamination Toughening of Composite Laminates Using Weakening or Toughening Interlaminar Patches to Initiate Multiple Delaminations: A Numerical Study. Eng. Fract. Mech. 2022, 273, 108730. [Google Scholar] [CrossRef]
- Abbasi, Z.; Jazani, O.M.; Sohrabian, M. Designing of High-Performance Epoxy Adhesive with Recycled Polymers and Silica Nano Particles (SNPs) in Epoxy/Carbon Fiber Composite-Steel Bonded Joints: Mechanical Properties, Thermal Stability and Toughening Mechanisms. J. Taiwan Inst. Chem. Eng. 2021, 123, 310–327. [Google Scholar] [CrossRef]
- Wang, M.; Zeng, C.; Guo, Y.; Wei, T.; Feng, Z.; Zhang, J.; Liu, J.; Zhang, H. In Situ Growth of SiC Nanowires Toughened Preceramic Resin-Based Adhesive for Connecting Cf/C Composites in Extreme Environments. Ceram. Int. 2020, 46, 24860–24872. [Google Scholar] [CrossRef]
- Meng, Q.; Wang, C.H.; Saber, N.; Kuan, H.-C.; Dai, J.; Friedrich, K.; Ma, J. Nanosilica-Toughened Polymer Adhesives. Mater. Des. 2014, 61, 75–86. [Google Scholar] [CrossRef]
- Karthikeyan, L.; Robert, T.M.; Mathew, D.; Desakumaran Suma, D.; Thomas, D. Novel Epoxy Resin Adhesives Toughened by Functionalized Poly (Ether Ether Ketone) s. Int. J. Adhes. Adhes. 2021, 106, 102816. [Google Scholar] [CrossRef]
- Sun, Z.; Shi, S.; Hu, X.; Guo, X.; Chen, J.; Chen, H. Short-Aramid-Fiber Toughening of Epoxy Adhesive Joint between Carbon Fiber Composites and Metal Substrates with Different Surface Morphology. Compos. Part B Eng. 2015, 77, 38–45. [Google Scholar] [CrossRef]
- Back, J.-H.; Hwang, C.; Baek, D.; Kim, D.; Yu, Y.; Lee, W.; Kim, H.-J. Synthesis of Urethane-Modified Aliphatic Epoxy Using a Greenhouse Gas for Epoxy Composites with Tunable Properties: Toughened Polymer, Elastomer, and Pressure-Sensitive Adhesive. Compos. Part B Eng. 2021, 222, 109058. [Google Scholar] [CrossRef]
- Sheinbaum, M.; Sheinbaum, L.; Weizman, O.; Dodiuk, H.; Kenig, S. Toughening and Enhancing Mechanical and Thermal Properties of Adhesives and Glass-Fiber Reinforced Epoxy Composites by Brominated Epoxy. Compos. Part B Eng. 2019, 165, 604–612. [Google Scholar] [CrossRef]
- Morano, C.; Tao, R.; Wagih, A.; Alfano, M.; Lubineau, G. Toughening Effect in Adhesive Joints Comprising a CFRP Laminate and a Corrugated Lightweight Aluminum Alloy. Mater. Today Commun. 2022, 32, 104103. [Google Scholar] [CrossRef]
- Gude, M.R.; Prolongo, S.G.; Ureña, A. Toughening Effect of Carbon Nanotubes and Carbon Nanofibres in Epoxy Adhesives for Joining Carbon Fibre Laminates. Int. J. Adhes. Adhes. 2015, 62, 139–145. [Google Scholar] [CrossRef]
- Wagih, A.; Hashem, M.; Lubineau, G. Simultaneous Strengthening and Toughening of Composite T-Joints by Microstructuring the Adhesive Bondline. Compos. Part A Appl. Sci. Manuf. 2022, 162, 107134. [Google Scholar] [CrossRef]
- Kadlec, M.; Růžek, R.; Bělský, P. Concurrent Use of Z-Pins for Crack Arrest and Structural Health Monitoring in Adhesive-Bonded Composite Lap Joints. Compos. Sci. Technol. 2020, 188, 107967. [Google Scholar] [CrossRef]
- Kruse, T.; Körwien, T.; Heckner, S.; Geistbeck, M. Bonding of CFRP Primary Aerospace Structures-Crackstopping in Composite Bonded Joints under Fatigue. In Proceedings of the ICCM International Conferences on Composite Materials, Copenhagen, Denmark, 19–24 July 2015. [Google Scholar]
- Kruse, T.; Koerwien, T.; Geistbeck, T.M.M. Certification by Means of Disbond Arrest Features and Results. Available online: https://www.sto.nato.int/publications/STO%20Meeting%20Proceedings/STO-MP-AVT-266/MP-AVT-266-20B.pdf (accessed on 17 December 2022).
- Floros, I.; Tserpes, K. Numerical Simulation of Quasi-Static and Fatigue Debonding Growth in Adhesively Bonded Composite Joints Containing Bolts as Crack Stoppers. J. Adhes. 2019, 1–23. [Google Scholar] [CrossRef]
- Löbel, T.; Kolesnikov, B.; Scheffler, S.; Stahl, A.; Hühne, C. Enhanced Tensile Strength of Composite Joints by Using Staple-like Pins: Working Principles and Experimental Validation. Compos. Struct. 2013, 106, 453–460. [Google Scholar] [CrossRef]
- Cheung, C.H.E.; Lin, K.Y. Numerical Analysis of Fastener Delamination/Disbond Arrest Mechanism in Aircraft Composite Structures. J. Aircr. 2012, 49, 630–635. [Google Scholar] [CrossRef]
- Richard, L.I.; Lin, K.Y. Delamination Arrest Features in Aircraft Composite Structures under Static and Fatigue Loading. In Proceedings of the ICCM International Conferences on Composite Materials, Xi’an, China, 20–25 August 2017. [Google Scholar]
- Richard, L.; Lin, K.Y. Analytical and Experimental Studies on Delamination Arrest in Bolted-Bonded Composite Structures. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, USA, 9–13 January 2017; pp. 1–12. [Google Scholar] [CrossRef]
- Action, J.E.; Engelstad, S.P. Crack Arrestment of Bonded Composite Joints. In Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Boston, MA, USA, 8–11 April 2013; pp. 1–15. [Google Scholar]
- Bruun, E.D.; Cheung, C.H.E.; Gray, P.M.; Lin, K.Y. Design and Experimental Validation of a Mixed-Mode Crack Arrest Specimen. In Proceedings of the AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics and Materials Conference, Honolulu, HI, USA, 23–26 April 2012; pp. 1–8. [Google Scholar] [CrossRef]
- Sachse, R.; Pickett, A.K.; Essig, W.; Middendorf, P. Experimental and Numerical Investigation of the Influence of Rivetless Nut Plate Joints on Fatigue Crack Growth in Adhesively Bonded Composite Joints. Int. J. Fatigue 2017, 105, 262–275. [Google Scholar] [CrossRef]
- Lopez-Cruz, P.; Laliberté, J.; Lessard, L. Investigation of Bolted/Bonded Composite Joint Behaviour Using Design of Experiments. Compos. Struct. 2017, 170, 192–201. [Google Scholar] [CrossRef]
- Kelly, G. Quasi-Static Strength and Fatigue Life of Hybrid (Bonded/Bolted) Composite Single-Lap Joints. Compos. Struct. 2006, 72, 119–129. [Google Scholar] [CrossRef]
- Sioutis, I.; Tsiangou, E.; Allègre, F.; Boutin, H.; Plassot, H.; Tserpes, K.; Labordus, M.; Bruijkers, M.; Schutte, R. Characterization and Simulation of the Mechanical Response of Co-Consolidated Thermoplastic Cracked Lap Shear Joints Containing Two Novel Disbond Arrest Features. In Proceedings of the 20th European Conference on Composite Materials, Lausanne, Switzerland, 26–30 June 2022; Volume 4, pp. 982–989. [Google Scholar]
- André, N.M.; Goushegir, S.M.; Dos Santos, J.F.; Canto, L.B.; Amancio-Filho, S.T. Friction Spot Joining of Aluminum Alloy 2024-T3 and Carbon-Fiber-Reinforced Poly (Phenylene Sulfide) Laminate with Additional PPS Film Interlayer: Microstructure, Mechanical Strength and Failure Mechanisms. Compos. Part B Eng. 2016, 94, 197–208. [Google Scholar] [CrossRef]
- Goushegir, S.M.; Scharnagl, N.; dos Santos, J.F.; Amancio-Filho, S.T. XPS Analysis of the Interface between AA2024-T3/CF-PPS Friction Spot Joints. Surf. Interface Anal. 2016, 48, 706–711. [Google Scholar] [CrossRef]
- Borba, N.Z.; Afonso, C.R.M.; Blaga, L.; dos Santos, J.F.; Canto, L.B.; Amancio-Filho, S.T. Article on the Process-Related Rivet Microstructural Evolution, Material Flow and Mechanical Properties of Ti-6Al-4V/GFRP Friction-Riveted Joints. Materials 2017, 10, 184. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Goushegir, S.M. Friction Spot Joining (FSpJ) of Aluminum-CFRP Hybrid Structures. Weld. World 2016, 60, 1073–1093. [Google Scholar] [CrossRef] [Green Version]
- Hirose, Y.; Matsuda, H.; Matsubara, G.; Hojo, M.; Yoshida, K.; Inamura, F. Experimental Evaluation of Splice-Type Crack Arrester with a Filler under Mode-I Type Loading. Compos. Struct. 2013, 100, 300–306. [Google Scholar] [CrossRef]
- Hirose, Y.; Hojo, M.; Fujiyoshi, A.; Matsubara, G. Suppression of Interfacial Crack for Foam Core Sandwich Panel with Crack Arrester. Adv. Compos. Mater. 2007, 16, 11–30. [Google Scholar] [CrossRef]
- Mckinney, J.M. A Crack Stopper Concept for Filamentary Composite Laminates. J. Compos. Mater. 1972, 6, 420–424. [Google Scholar] [CrossRef]
- Norman, T.L.; Sun, C.T. Delamination Growth in Composite Laminates with Adhesive Strips Subjected to Static and Impact Loading. Compos. Sci. Technol. 1993, 46, 203–211. [Google Scholar] [CrossRef]
- Jeevan Kumar, N.; Ramesh Babu, P. Analysis of Mode I and Mode II Crack Growth Arrest Mechanism with Z-Fibre Pins in Composite Laminated Joint. Appl. Compos. Mater. 2018, 25, 365–379. [Google Scholar] [CrossRef]
- Jeevan Kumar, N.; Ramesh Babu, P. Investigation Analysis of Crack Growth Arresting with Fasteners in Hybrid Laminated Skin-Stiffener Joint. Appl. Compos. Mater. 2018, 25, 131–144. [Google Scholar] [CrossRef]
- Richard, L.I.; Lin, K.Y. Delamination Arrest Features in Aircraft Composite Structures under Static and Fatigue Loading. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, USA, 9–13 January 2017; Volume 14. [Google Scholar]
- Psihoyos, H.O.; Fotopoulos, K.T.; Lampeas, G.N. Development and Validation of a Simulation Methodology for Composite Joints with Delamination Arresting Features. Eng. Fail. Anal. 2022, 137, 106418. [Google Scholar] [CrossRef]
- Yasaee, M.; Bond, I.P.; Trask, R.S.; Greenhalgh, E.S. Mode II Interfacial Toughening through Discontinuous Interleaves for Damage Suppression and Control. Compos. Part A Appl. Sci. Manuf. 2012, 43, 121–128. [Google Scholar] [CrossRef]
- Borba, N.Z.; Kötter, B.; Fiedler, B.; dos Santos, J.F.; Amancio-Filho, S.T. Mechanical Integrity of Friction-Riveted Joints for Aircraft Applications. Compos. Struct. 2020, 232, 111542. [Google Scholar] [CrossRef]
- Murray, R.E.; Roadman, J.; Beach, R. Fusion Joining of Thermoplastic Composite Wind Turbine Blades: Lap-Shear Bond Characterization. Renew. Energy 2019, 140, 501–512. [Google Scholar] [CrossRef]
- Oliveira, P.H.F.; Amancio-Filho, S.T.; Dos Santos, J.F.; Hage, E. Preliminary Study on the Feasibility of Friction Spot Welding in PMMA. Mater. Lett. 2010, 64, 2098–2101. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Meng, X.; Xie, Y.; Lv, Z.; Wan, L.; Cao, J.; Feng, J. Friction Spot Welding of Carbon Fiber-Reinforced Polyetherimide Laminate. Compos. Struct. 2018, 189, 627–634. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sioutis, I.; Tserpes, K. A Literature Review on Crack Arrest Features for Composite Materials and Composite Joints with a Focus on Aerospace Applications. Aerospace 2023, 10, 137. https://doi.org/10.3390/aerospace10020137
Sioutis I, Tserpes K. A Literature Review on Crack Arrest Features for Composite Materials and Composite Joints with a Focus on Aerospace Applications. Aerospace. 2023; 10(2):137. https://doi.org/10.3390/aerospace10020137
Chicago/Turabian StyleSioutis, Ioannis, and Konstantinos Tserpes. 2023. "A Literature Review on Crack Arrest Features for Composite Materials and Composite Joints with a Focus on Aerospace Applications" Aerospace 10, no. 2: 137. https://doi.org/10.3390/aerospace10020137
APA StyleSioutis, I., & Tserpes, K. (2023). A Literature Review on Crack Arrest Features for Composite Materials and Composite Joints with a Focus on Aerospace Applications. Aerospace, 10(2), 137. https://doi.org/10.3390/aerospace10020137