Determining Spatial Relationships between Airports and Local Economy from Competitiveness Perspective: A Case Study of Airports in China
Abstract
:1. Introduction
2. Literature Review
3. Methodology
3.1. Model Specification
3.2. Spatial Weighting Matrix
3.3. Data Description
4. Empirical Analysis
4.1. Moran’s I Index
4.2. Identification of Spatial Econometric Estimation Methods
4.3. Spatial Regression Analysis
4.4. Spillover Effect Analysis
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Cheung, T.K.; Wong, W.; Zhang, A.; Wu, Y. Spatial panel model for examining airport relationships within multi-airport regions. Transp. Res. Part A Policy Pract. 2020, 133, 148–163. [Google Scholar] [CrossRef]
- Ishii, J.; Jun, S.; Van Dender, K. Air travel choices in multi-airport markets. J. Urban Econ. 2009, 65, 216–227. [Google Scholar] [CrossRef]
- Hsiao, C.Y.; Hansen, M. A passenger demand model for air transportation in a hub-and-spoke network. Transp. Res. Part E Logist. Transp. Rev. 2011, 47, 1112–1125. [Google Scholar] [CrossRef]
- Suryani, E.; Chou, S.Y.; Chen, C.H. Air passenger demand forecasting and passenger terminal capacity expansion: A system dynamics framework. Expert Syst. Appl. 2010, 37, 2324–2339. [Google Scholar] [CrossRef]
- Pagliari, R.; Graham, A. Airport competition within the Scottish Lowlands region. Res. Transp. Econ. 2020, 79, 100760. [Google Scholar] [CrossRef]
- O’Connor, K.; Fuellhart, K. Airports and regional air transport markets: A new perspective. J. Transp. Geogr. 2016, 53, 78–82. [Google Scholar] [CrossRef]
- Mantin, B. Airport complementarity: Private vs. government ownership and welfare gravitation. Transp. Res. Part B Methodol. 2012, 46, 381–388. [Google Scholar] [CrossRef]
- Sugiyanto, G.; Santosa, P.B.; Jajang; Fadli, A.; Santi, M.Y. Evaluation of hub-spoke airport networks in sumatra island, Indonesia to increase efficiency of air transportation. In Proceedings of the 4th International Conference on Rehabilitation and Maintenance in Civil Engineering, Solo Baru, Indonesia, 11–12 July 2018. [Google Scholar]
- Bergantino, A.S.; Intini, M.; Volta, N. Competition among airports at worldwide level: A spatial analysis. Transp. Res. Procedia 2020, 45, 621–626. [Google Scholar] [CrossRef]
- Gudmundsson, S.; Paleari, S.; Redondi, R. Spillover effects of the development constraints in London Heathrow Airport. J. Transp. Geogr. 2014, 35, 64–74. [Google Scholar] [CrossRef]
- Wei, M.; Zhang, S.; Sun, B. Airport passenger flow, urban development, and nearby airport capacity dynamic correlation: 2006–2019 time-series data analysis for Tianjin city, China. Electron. Res. Arch. 2022, 30, 4447–4468. [Google Scholar] [CrossRef]
- World Bank Open Data. Available online: https://data.worldbank.org/ (accessed on 15 July 2021).
- Lakew, P.A.; Tok, A. Determinants of air cargo traffic in California. Transp. Res. Part A Policy Pract. 2015, 80, 134–150. [Google Scholar] [CrossRef]
- Valdes, V. Determinants of air travel demand in Middle income countries. J. Air Transp. Manag. 2015, 42, 75–84. [Google Scholar] [CrossRef]
- Alexander, D.W.; Merkert, R. Challenges to domestic air freight in Australia: Evaluating air traffic markets with gravity modelling. J. Air Transp. Manag. 2017, 61, 41–52. [Google Scholar] [CrossRef]
- Gong, Q.; Wang, K.; Fan, X.; Fu, X.; Xiao, Y. International trade drivers and freight network analysis-The case of the Chinese air cargo sector. J. Transp. Geogr. 2018, 71, 253–262. [Google Scholar] [CrossRef]
- Zijlstra, T. A border effect in airport choice: Evidence from Western Europe. J. Air Transp. Manag. 2020, 88, 101874. [Google Scholar] [CrossRef]
- Pavlyuk, D. Multitier spatial stochastic frontier model for competition and cooperation of European airports. Transp. Telecommun. 2010, 11, 57–66. [Google Scholar]
- Álvarez-Sanjaime, Ó.; Cantos-Sánchez, P.; Moner-Colonques, R.; Sempere-Monerris, J.J. Sempere. Monerris. A three-stage competition game in an air transport network under asymmetric valuation of flight frequencies. Econ. Transp. 2020, 21, 100141. [Google Scholar] [CrossRef]
- Thelle, M.H.; la Cour Sonne, M. Airport competition in Europe. J. Air Transp. Manag. 2018, 67, 232–240. [Google Scholar] [CrossRef]
- Cohen, J.P.; Paul, C.J.M. Airport infrastructure spillovers in a network system. J. Urban Econ. 2003, 54, 459–473. [Google Scholar] [CrossRef]
- Anselin, L. Spatial econometrics. In A Companion to Theoretical Econometrics; Baltagi, B.H., Ed.; Wiely-Blackwell: Oxford, UK, 2001; pp. 310–330. [Google Scholar]
- Fusco, E.; Vidoli, F. Spatial Stochastic frontier models: Controlling spatial global and local heterogeneity. Int. Rev. Appl. Econ. 2013, 27, 679–694. [Google Scholar] [CrossRef]
- Pavlyuk, D. Implication of spatial heterogeneity for airports’ efficiency estimation. Res. Transp. Econ. 2016, 56, 15–24. [Google Scholar] [CrossRef]
- Zhang, J.X.; Chang, Y.; Zhang, L.X.; Li, D. Do technological innovations promote urban green development? A spatial econometric analysis of 105 cities in China. J. Clean. Prod. 2018, 182, 395–403. [Google Scholar] [CrossRef]
- Yuan, H.; Zhang, T.; Feng, Y.; Liu, Y.; Ye, X. Does financial agglomeration promote the green development in China? A spatial spillover perspective. J. Clean. Prod. 2019, 237, 117808. [Google Scholar] [CrossRef]
- LeSage, J.P.; Pace, R.K. Introduction to Spatial Econometrics; Chapman &Hall/ CRC: Boca Raton, FL, USA, 2009. [Google Scholar]
- Elhorst, J. Spatial Econometrics. from Cross-Sectional Data to Spatial Panels; Springer: New York, NY, USA, 2014. [Google Scholar]
- Chen, X.; Xuan, C.; Qiu, R. Understanding spatial spillover effects of airports on economic development: New evidence from China’s hub airports. Transp. Res. Part A Policy Pract. 2021, 143, 48–60. [Google Scholar] [CrossRef]
- Merkel, A. Spatial competition and complementarity in European port regions. J. Transp. Geogr. 2017, 61, 40–47. [Google Scholar] [CrossRef]
- Granados, N.; Gupta, A.; Kauffman, R.J. Online and offline demand and price elasticities: Evidence from the air travel industry. Inf. Syst. Res. 2012, 23, 164–181. [Google Scholar] [CrossRef]
- Albayrak, M.B.K.; Özcan, İ.Ç.; Can, R.; Dobruszkes, F. The determinants of air passenger traffic at Turkish airports. J. Air Transp. Manag. 2020, 86, 101818. [Google Scholar] [CrossRef]
- Zhang, X.; Prybutok, V.R.; Strutton, D. Modeling influences on impulse purchasing behaviors during online marketing transactions. J. Mark. Theory Pract. 2007, 15, 79–89. [Google Scholar] [CrossRef]
- Lee, L.F. Asymptotic Distributions of Quasi-Maximum Likelihood Estimators for Spatial Autoregressive Models. Econometrica 2004, 72, 1899–1925. [Google Scholar] [CrossRef]
- Gao, L. Research on Economic Spillover Effect of Airport Based on Spatial Econometric Model. Master’s Thesis, Civil Aviation Flight University of China, Guanghan, China, 2020. [Google Scholar]
- Leenders, R. Modeling social influence through network autocorrelation: Constructing the weight matrix. Soc. Netw. 2002, 24, 21–47. [Google Scholar] [CrossRef]
- Greene, W. Econometric Analysis, 6th ed.; Pearson: New York, NY, USA, 2008. [Google Scholar]
- Lee, L.; Yu, J. Spatial panels: Random components versus fixed effects. Int. Econ. Rev. 2012, 53, 1369–1388. [Google Scholar] [CrossRef]
- Anselin, L.; Le Gallo, J.; Jayet, H. Spatial panel econometrics. Adv. Stud. Theor. Appl. Econom. 2008, 46, 625–660. [Google Scholar]
- Stakhovych, S.; Bijmolt, T. Specification of spatial models: A simulation study on weight matrices. Pap. Reg. Sci. 2009, 88, 389–408. [Google Scholar] [CrossRef]
- Yeung, H.W.; Coe, N.M. Toward a dynamic theory of global production networks. Econ. Geogr. 2015, 91, 30–58. [Google Scholar] [CrossRef] [Green Version]
Variable | Mean | Std. Dev. | Min | Max |
---|---|---|---|---|
PA (passenger throughput, people) | 1.93 × 107 | 1.81 × 107 | 802,167 | 1.00 × 108 |
CA (cargo and mail throughput, ton) | 352,219 | 624,724 | 5219 | 3,824,280 |
GDP (GDP per capita, 104 yuan/person) | 9.86 | 8.25 | 1.45 | 62.13 |
AE (aviation employment, people) | 18,148 | 25,971.3 | 142 | 134,402 |
FTI (international tourism receipts, 106 dollar) | 2666.37 | 3814.14 | 3.00 | 20,521.31 |
CON (total retail sales of consumer goods, 108 yuan) | 3016.21 | 2778.34 | 128.10 | 15,847.60 |
OIL (price of crude petroleum, $/barrel) | 79.10 | 23.06 | 44.04 | 111.96 |
2007–2019 | Passenger | Cargo | ||||
---|---|---|---|---|---|---|
W1 | W2 | W3 | W1 | W2 | W4 | |
Moran’s I values | 0.652 (<0.001) | 0.651 (<0.001) | 0.664 (<0.001) | 0.805 (<0.001) | 0.825 (<0.001) | 0.843 (<0.001) |
Observations | 442 | 442 | 442 | 442 | 442 | 442 |
Contents | Methods | Passenger | Cargo | ||||
---|---|---|---|---|---|---|---|
W1 | W2 | W3 | W1 | W2 | W4 | ||
SAR and SEM test | LM-lag test | 90.0643 (<0.001) | 79.8795 (<0.001) | 79.0945 (<0.001) | 0.0965 (0.756) | 1.8820 (0.170) | 3.8684 (0.049) |
R-LM-lag test | 82.5354 (<0.001) | 115.5380 (<0.001) | 115.0205 (<0.001) | 12.6650 (<0.001) | 6.3369 (0.012) | 6.6095 (0.010) | |
LM-err test | 11.5006 (0.001) | 0.0068 (0.934) | 0.0551 (0.814) | 39.8250 (<0.001) | 51.8969 (<0.001) | 46.3007 (<0.001) | |
R-LM-err test | 3.9717 (0.046) | 35.6654 (<0.001) | 35.9811 (<0.001) | 52.3935 (<0.001) | 56.3518 (<0.001) | 49.0418 (<0.001) | |
Hausman test | 200.99 (<0.001) | 280.11 (<0.001) | 2747.80 (<0.001) | 1473.15 (<0.001) | 45.09 (<0.001) | 174.96 (<0.001) | |
Simplified test of SDM | LR-lag test | 26.74 (<0.001) | 45.00 (<0.001) | 43.92 (<0.001) | 13.64 (0.003) | 26.04 (<0.001) | 29.25 (0.004) |
Wald-lag test | 25.84 (<0.001) | 39.80 (<0.001) | 37.53 (<0.001) | 13.78 (0.003) | 26.84 (<0.001) | 30.36 (0.003) | |
LR-err test | 58.29 (<0.001) | 230.27 (<0.001) | 232.95 (<0.001) | 15.19 (0.002) | 23.70 (<0.001) | 24.12 (0.002) | |
Wald-err test | 37.80 (<0.001) | 64.37 (<0.001) | 55.66 (<0.001) | 14.58 (0.002) | 23.96 (<0.001) | 24.58 (0.002) |
Variables | Passenger | Cargo | ||||
---|---|---|---|---|---|---|
W1 | W2 | W3 | W1 | W2 | W4 | |
lnGDP | 0.089 * | 0.131 ** | 0.110 ** | 0.221 *** | 0.234 *** | 0.224 *** |
(1.67) | (2.45) | (2.08) | (3.42) | (3.66) | (3.58) | |
lnAE | 0.050 *** | 0.047 *** | 0.045 ** | 0.123 *** | 0.125 *** | 0.125 *** |
(2.77) | (2.60) | (2.54) | (6.29) | (6.47) | (6.54) | |
lnOIL | −0.056 ** | −0.057 ** | −0.061 ** | −0.022 | −0.004 | 0.001 |
(−2.14) | (−2.16) | (−2.29) | (−0.67) | (−0.17) | (−0.06) | |
lnFTI | 0.095 *** | 0.093 *** | 0.092 *** | - | - | - |
(4.36) | (4.25) | (4.24) | ||||
lnCON | - | - | - | 0.261 *** (3.64) | 0.292 *** (4.03) | 0.260 *** (3.67) |
W × lnGDP | 0.620 *** | 0.900 *** | 0.893 *** | 0.544 | 0.529 | 0.632 ** |
(5.05) | (6.27) | (6.03) | (1.36) | (1.53) | (2.44) | |
W × lnAE | −0.078 | −0.085 | −0.092 * | −0.143 ** | −0.233 *** | −0.223 *** |
(−1.50) | (−1.41) | (−1.71) | (−2.51) | (−3.52) | (−3.41) | |
W × lnFTI | −0.268 *** | −0.380 *** | −0.336 *** | - | - | - |
(−2.80) | (−3.64) | (−3.29) | ||||
W × lnCON | - | - | - | −0.116 (−0.33) | 0.025 (0.08) | −0.002 (−0.01) |
δ | 0.538 *** | 0.414 *** | 0.426 *** | −0.125 | −0.292 ** | −0.298 ** |
(6.40) | (3.97) | (3.48) | (−0.91) | (−2.15) | (−2.29) | |
R2 | 0.899 | 0.906 | 0.907 | 0.807 | 0.810 | 0.811 |
log-lik | 226.119 | 226.711 | 227.921 | 196.481 | 202.0717 | 203.525 |
Variables | Passenger | Cargo | ||||
---|---|---|---|---|---|---|
W1 | W2 | W3 | W1 | W2 | W4 | |
Direct effect (lnGDP) | 0.122 ** (2.28) | 0.162 *** (3.07) | 0.141 *** (2.67) | 0.220 *** (3.37) | 0.230 *** (3.57) | 0.218 *** (3.43) |
Indirect effect (lnGDP) | 1.429 *** (6.02) | 1.618 *** (6.79) | 1.646 *** (5.62) | 0.452 (1.29) | 0.359 (1.38) | 0.446 ** (2.31) |
Total effect (lnGDP) | 1.552 *** (6.42) | 1.780 *** (7.46) | 1.788 *** (6.04) | 0.673 * (1.81) | 0.589 ** (2.11) | 0.665 *** (3.23) |
Direct effect (lnAE) | 0.047 *** (2.69) | 0.045 ** (3.34) | 0.043 ** (2.46) | 0.123 *** (6.29) | 0.128 *** (6.78) | 0.128 *** (6.81) |
Indirect effect (lnAE) | −0.106 (−0.95) | −0.107 (−1.05) | −0.123 (−1.29) | −0.138 *** (−2.69) | −0.210 *** (−3.96) | −0.202 *** (−3.81) |
Total effect (lnAE) | −0.058 (−0.51) | 0.061 (−0.60) | −0.080 (−0.82) | −0.015 (−0.30) | −0.082 (−1.62) | −0.073 (−1.47) |
Direct effect (lnOIL) | −0.058 ** (−2.21) | −0.058 ** (−2.24) | −0.063 ** (−2.38) | −0.019 (−0.60) | −0.002 (−0.08) | 0.0008 (0.03) |
Indirect effect (lnOIL) | −0.064 ** (−1.98) | −0.039 * (−1.83) | −0.045 * (−1.81) | 0.001 (0.29) | 0.0005 (0.08) | −0.0001 (−0.00) |
Total effect (lnOIL) | −0.122 ** (−2.23) | −0.097 ** (−2.29) | −0.108 ** (−2.44) | −0.018 (−0.60) | −0.002 (−0.08) | 0.0007 (0.04) |
Direct effect (lnFTI) | 0.086 *** (4.00) | 0.084 *** (3.93) | 0.084 *** (3.92) | - | - | - |
Indirect effect (lnFTI) | −0.483 ** (−2.00) | −0.592 *** (−2.78) | −0.540 ** (−2.23) | - | - | - |
Total effect (lnFTI) | −0.396 (−1.60) | −0.508 ** (−2.33) | −0.456 ** (−1.83) | - | - | - |
Direct effect (lnCON) | - | - | - | 0.259 *** (3.61) | 0.291 *** (3.95) | 0.260 *** (3.60) |
Indirect effect (lnCON) | - | - | - | −0.128 (−0.42) | −0.044 (−0.18) | −0.066 (−0.39) |
Total effect (lnCON) | - | - | - | −0.131 (0.43) | 0.246 (1.07) | 0.194 (1.20) |
Spillover Effects of per Capita GDP on Airport Passenger Traffic | ||||
---|---|---|---|---|
Beijing | Shanghai | Guangzhou | Chengdu | |
Beijing | 0.232 | 0.190 | 0.105 | 0.083 |
Shanghai | 0.292 | 0.191 | 0.149 | 0.077 |
Guangzhou | 0.181 | 0.167 | 0.182 | 0.112 |
Chengdu | 0.211 | 0.128 | 0.165 | 0.157 |
Spillover Effects of per Capita GDP on Airport Cargo Traffic | ||||
Beijing | Shanghai | Guangzhou | Chengdu | |
Beijing | 0.182 | 0.269 | 0.013 | 0.017 |
Shanghai | 0.170 | 0.151 | 0.098 | 0.014 |
Guangzhou | 0.020 | 0.231 | 0.197 | 0.032 |
Chengdu | 0.066 | 0.091 | 0.087 | 0.217 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wu, Z.; Lai, P.-L.; Ma, F.; Park, K.-S.; Nimsai, S. Determining Spatial Relationships between Airports and Local Economy from Competitiveness Perspective: A Case Study of Airports in China. Aerospace 2023, 10, 138. https://doi.org/10.3390/aerospace10020138
Wu Z, Lai P-L, Ma F, Park K-S, Nimsai S. Determining Spatial Relationships between Airports and Local Economy from Competitiveness Perspective: A Case Study of Airports in China. Aerospace. 2023; 10(2):138. https://doi.org/10.3390/aerospace10020138
Chicago/Turabian StyleWu, Zhen, Po-Lin Lai, Fei Ma, Keun-Sik Park, and Suthep Nimsai. 2023. "Determining Spatial Relationships between Airports and Local Economy from Competitiveness Perspective: A Case Study of Airports in China" Aerospace 10, no. 2: 138. https://doi.org/10.3390/aerospace10020138
APA StyleWu, Z., Lai, P. -L., Ma, F., Park, K. -S., & Nimsai, S. (2023). Determining Spatial Relationships between Airports and Local Economy from Competitiveness Perspective: A Case Study of Airports in China. Aerospace, 10(2), 138. https://doi.org/10.3390/aerospace10020138