The Submerged Nozzle Damping Characteristics in Solid Rocket Motor
Abstract
:1. Introduction
2. Analytical Model and Computational Methods
2.1. Theoretical Foundation
2.2. Finite Element Formulation of the Acoustic Wave Equation
- The fluid is compressible (density changes due to pressure variations);
- There is no body force;
- The fluid is irrotational;
- The pressure distribution in the combustion chamber is small;
- There is no mean flow;
- The gas is ideal, adiabatic, and reversible.
2.3. Governing Equations for the Flow-Field
2.4. Computational Domain and Boundary Conditions
3. Verification of the Numerical Method
3.1. Validation of FEA in the Acoustic-Field Simulation
3.2. Validation of the Flow Models
3.3. Mesh Sensitivity Analysis
3.4. Independence Verification of Monitoring Points
4. Results and Analysis
4.1. Acoustic Field in Chamber
4.2. The Effect of Cavity Size on Nozzle Damping
4.3. The Effect of Convergent Angle on Nozzle Damping
4.4. The Effect of Divergent Angle on Nozzle Damping
4.5. The Effect of Gas Temperature on Nozzle Damping
4.6. The Effect of Frequency on Nozzle Damping
5. Conclusions
- With the increase in cavity size, the acoustic frequency of the motor and the absolute value of nozzle decay coefficient decreases. On average, for every 12.5% increase in the cavity radius compared to case C0, the nozzle decay coefficient decreases by about 6%;
- As the nozzle convergent angle is decreased, the nozzle decay coefficient is increased; in addition, the nozzle divergent angle has a trivial effect on the submerged nozzle decay coefficient;
- There are great differences on nozzle damping between cold flow and hot fire tests, and the nozzle decay coefficient increases with the increase of gas temperature;
- Compared with the nozzle without a submerged cavity, the nozzle with a submerged cavity has fewer damping effects on the high-frequency acoustic wave.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Horchler, T. Selection Rules for Resonant Longitudinal Injector-Coupling in Experimental Rocket Combustors. Aerospace 2022, 9, 669. [Google Scholar] [CrossRef]
- Hyun, W.; Kim, J.; Chae, H.; Lee, C. Passive Control of Low-Frequency Instability in Hybrid Rocket Combustion. Aerospace 2021, 8, 204. [Google Scholar] [CrossRef]
- Poinsot, T. Prediction and control of combustion instabilities in real engines. Proc. Combust. Inst. 2017, 36, 1–28. [Google Scholar] [CrossRef] [Green Version]
- Hijlkema, J.; Prevost, M.; Casalis, G. On the importance of reduced scale Ariane 5 P230 solid rocket motor models in the comprehension and prevention of thrust oscillations. CEAS Space J. 2011, 1, 99–107. [Google Scholar] [CrossRef]
- Mariappan, S.; Sujith, R.I. Thermoacoustic instability in a solid rocket motor: Non-normality and nonlinear instabilities. J. Fluid. Mech. 2010, 653, 1–33. [Google Scholar] [CrossRef]
- Gonzalez-Juez, E. Numerical Simulations of Combustion Instabilities in a Combustor with an Augmentor-Like Geometry. Aerospace 2019, 6, 82. [Google Scholar] [CrossRef] [Green Version]
- Culick, F.E.C. Non-linear growth and limiting amplitude of acoustic oscillations in combustion chambers. Combust. Sci. Technol. 1971, 3, 1–16. [Google Scholar] [CrossRef]
- Liang, X.; Yang, L.; Wang, G.; Li, J. Hopf Bifurcation Analysis of the Combustion Instability in a Liquid Rocket Engine. Aerospace 2022, 9, 593. [Google Scholar] [CrossRef]
- Karthikeyan, G.; Shimada, T. Numerical parametric analysis of combustion instability in axial-injected hybrid rocket motors. J. Propul. Power 2018, 34, 1542–1552. [Google Scholar] [CrossRef]
- Gotoda, H.; Shinoda, Y.; Kobayashi, M.; Okuno, Y.; Tachibana, S. Detection and control of combustion instability based on the concept of dynamical system theory. Phys. Rev. E 2014, 89, 022910. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Wei, Z.J.; Su, W.X.; Li, J.W.; Wang, N.F. Theoretical modeling and numerical study for thrust-oscillation characteristics in solid rocket motors. J. Propul. Power 2012, 28, 312–322. [Google Scholar] [CrossRef]
- Su, W.X.; Wang, N.F.; Li, J.W.; Zhao, Y.D.; Yan, M. Improved method of measuring pressure coupled response for composite solid propellants. J. Sound Vib. 2014, 333, 2226–2240. [Google Scholar] [CrossRef]
- Sun, Y.; Zhao, D.; Zhu, X. Generation and Mitigation Mechanism Studies of Nonlinear Thermoacoustic Instability in a Modelled Swirling Combustor with a Heat Exchanger. Aerospace 2021, 8, 60. [Google Scholar] [CrossRef]
- Li, L.; Yang, L.; Sun, X. Effect of distributed heat source on low frequency thermoacoustic instabilities. J. Sound Vib. 2013, 332, 3098–3111. [Google Scholar] [CrossRef]
- Zinn, B.T. Nozzle damping in solid rocket instabilities. AIAA J. 1973, 11, 1492–1497. [Google Scholar] [CrossRef]
- Cai, W.; Ma, F.; Yang, V. Two-phase vorticoacoustic flow interactions in solid-propellant rocket motors. J. Propul. Power 2003, 19, 385–396. [Google Scholar] [CrossRef]
- Tsien, H.S. The Transfer Functions of Rocket Nozzles. J. Am. Rocket Soc. 1952, 22, 139–143. [Google Scholar] [CrossRef] [Green Version]
- Wang, M.X.; Liu, P.J.; Yang, W.J.; Wei, X.G. Nozzle admittance and damping analysis using the LEE method. Int. J. Turbo Jet-Engines 2017, 34, 33–41. [Google Scholar]
- French, J.C. Nozzle acoustic dynamics and stability modeling. J. Propul. Power 2011, 27, 1266–1275. [Google Scholar] [CrossRef]
- Crocco, L.; Sirignano, W.A. Effect of the transverse velocity component on the nonlinear behavior of short nozzles. AIAA J. 1966, 4, 1428–1430. [Google Scholar] [CrossRef]
- Zinn, B.T. Longitudinal mode acoustic losses in short nozzles. J. Sound Vib. 1972, 22, 93–105. [Google Scholar] [CrossRef]
- Smith, R.; Ellis, M.; Xia, G.; Sankaran, V.; Anderson, W.; Merkle, C.L. Computational investigation of acoustics and instabilities in a longitudinal-mode rocket combustor. AIAA J. 2008, 46, 2659–2673. [Google Scholar] [CrossRef]
- Liu, P.J.; Wang, M.X.; Yang, W.J.; Gupta, V.; Guan, Y.; Li, L.K. Modified computation of the nozzle damping coefficient in solid rocket motors. Acta Astronaut. 2018, 143, 391–397. [Google Scholar] [CrossRef]
- Fabignon, Y.; Dupays, J.; Avalon, G.; Vuillot, F.; Lupoglazoff, N.; Casalis, G.; Prévost, M. Instabilities and pressure oscillations in solid rocket motors. Aerosp. Sci. Technol. 2003, 7, 191–200. [Google Scholar] [CrossRef]
- Janardan, B.A.; Zinn, B.T. Rocket nozzle damping characteristics measured using different experimental techniques. AIAA J. 1977, 15, 442–444. [Google Scholar] [CrossRef]
- Buffum, F.G., Jr.; Dehority, G.L.; Slates, R.O.; Price, E.W. Acoustic attenuation experiments on subscale, cold-flow rocket motors. AIAA J. 1967, 5, 272–280. [Google Scholar] [CrossRef]
- Slates, R.; Buffum, F.; Dehorityt, G. Acoustic attenuation in resonant model-rocket motors. In Proceedings of the 2nd Solid Propulsion Conference, Anaheim, CA, USA, 6–8 June 1967; p. 1518. [Google Scholar]
- Anthoine, J.; Buchlin, J.M.; Hirschberg, A. Effect of nozzle cavity on resonance in large SRM: Theoretical modeling. J. Propul. Power 2002, 18, 304–311. [Google Scholar] [CrossRef]
- Anthoine, J.; Buchlin, J.M.; Guery, J.F. Effect of nozzle cavity on resonance in large SRM: Numerical simulations. J. Propul. Power 2003, 19, 374–384. [Google Scholar] [CrossRef]
- Javed, A.; Chakraborty, D. Damping coefficient prediction of solid rocket motor nozzle using computational fluid dynamics. J. Propul. Power 2014, 30, 19–23. [Google Scholar] [CrossRef]
- Su, W.X.; Wang, N.F.; Li, J.W.; Zhao, Y.D.; Yan, M. Numerical research on the nozzle damping effect by a wave attenuation method. Def. Technol. 2013, 9, 162–166. [Google Scholar] [CrossRef] [Green Version]
- Su, W.X.; Li, J.W.; Yan, M.; Sun, B.B.; Wang, N.F. Evaluation of Nozzle Damping Characteristics by a Pulsed Method. Energy Procedia 2014, 61, 2339–2342. [Google Scholar] [CrossRef] [Green Version]
- Sun, B.B.; Li, S.P.; Su, W.X.; Li, J.W.; Wang, N.F. Effects of gas temperature on nozzle damping experiments on cold-flow rocket motors. Acta Astronaut. 2016, 126, 18–26. [Google Scholar] [CrossRef]
- Chen, L.; Gao, Y.; Wang, D.; Zou, Q.; Zhang, S. Numerical simulation on acoustic mode and pressure-oscillation decay in finocyl- and axil-grain combustion chambers. Aerosp. Sci. Technol. 2020, 107, 106351. [Google Scholar] [CrossRef]
- Ansys Help. Available online: https://ansyshelp.ansys.com (accessed on 18 June 2022).
- Gao, Y.; Zhang, B.; Cheng, J.; Li, J.; Fu, Q. Influence of Flow Rate Distribution on Combustion Instability of Hypergolic Propellant. Aerospace 2022, 9, 543. [Google Scholar] [CrossRef]
- Apte, S.; Yang, V. Unsteady flow evolution and combustion dynamics of homogeneous solid propellant in a rocket motor. Combust. Flame 2002, 131, 110–131. [Google Scholar] [CrossRef]
- Blomshield, F.S.; Crump, J.E.; Mathes, H.B.; Stalnaker, R.A.; Beckstead, M.W. Stability testing of full-scale tactical motors. J. Propul. Power 1997, 13, 349–355. [Google Scholar] [CrossRef]
- Wang, D.; Yang, Y.; Fan, W.; Li, X.; Gao, Y. Simulation of pressure oscillations in a combustion chamber under periodic inlet disturbances. Acta Astronaut. 2018, 152, 859–871. [Google Scholar] [CrossRef]
- Han, L.; Li, J.; Zhao, D.; Gu, X.; Ma, B.; Wang, N. Effects of baffle designs on damping acoustic oscillations in a solid rocket motor. Aerosp. Sci. Technol. 2021, 115, 106827. [Google Scholar] [CrossRef]
- Młynarczyk, P.; Cyklis, P. The estimation of the pressure pulsation damping coefficient of a nozzle. J. Sound Vib. 2020, 464, 115002. [Google Scholar] [CrossRef]
- Price, T.J.; Moeller, T.M.; Cranford, J.T.; Batterson, J.W.; Jacob, E.J. Experimental Investigation of Transverse Mode Nozzle Damping: Preliminary Results. In Proceedings of the AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 12–14 September 2017; p. 5131. [Google Scholar]
- Iyer, A.S.; Chakravarthy, V.K.; Saha, S.; Chakraborty, D. Damping of modal perturbations in solid rocket motors. Aeronaut. J. 2016, 120, 1425–1445. [Google Scholar] [CrossRef]
Physical Properties | Value |
---|---|
Sutherland law | |
1700 J/(kg · K) | |
26 g/mol | |
1.4 | |
0.0242 w/(m · K) |
Coordinate | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|
X/m | 0.001 | 0.240 | 0.480 | 0.720 | 0.960 | 0.960 |
Y/m | 0.001 | 0.001 | 0.001 | 0.001 | 0.001 | 0.120 |
Mode Order | FEA Results/Hz | Experimental Data/Hz | Errors |
---|---|---|---|
1st | 417 | 408 | 2.1% |
2nd | 835 | 874 | 4.6% |
3rd | 1284 | 1285 | 0.1% |
4th | 1736 | 1744 | 0.5% |
Point | P1 | P2 | P3 | P4 | P5 | P6 |
---|---|---|---|---|---|---|
−8.59 | −8.55 | -- | −8.63 | −8.65 | −8.65 |
Case | Cavity Radius/mm | Convergent Angle/deg | Divergent Angle/deg | Working Temperature/K |
---|---|---|---|---|
C0 | 40 | 50 | 30 | 300 |
C1 | 45 | 50 | 30 | 300 |
C2 | 50 | 50 | 30 | 300 |
C3 | 55 | 50 | 30 | 300 |
C4 | 40 | 30 | 30 | 300 |
C5 | 40 | 40 | 30 | 300 |
C6 | 40 | 60 | 30 | 300 |
C7 | 40 | 50 | 10 | 300 |
C8 | 40 | 50 | 20 | 300 |
C9 | 40 | 50 | 40 | 300 |
C10 | 40 | 50 | 30 | 900 |
C11 | 40 | 50 | 30 | 1500 |
C12 | 40 | 50 | 30 | 2100 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, X.; Pang, K.; Li, X. The Submerged Nozzle Damping Characteristics in Solid Rocket Motor. Aerospace 2023, 10, 191. https://doi.org/10.3390/aerospace10020191
Li X, Pang K, Li X. The Submerged Nozzle Damping Characteristics in Solid Rocket Motor. Aerospace. 2023; 10(2):191. https://doi.org/10.3390/aerospace10020191
Chicago/Turabian StyleLi, Xiaosi, Kai Pang, and Xinyan Li. 2023. "The Submerged Nozzle Damping Characteristics in Solid Rocket Motor" Aerospace 10, no. 2: 191. https://doi.org/10.3390/aerospace10020191
APA StyleLi, X., Pang, K., & Li, X. (2023). The Submerged Nozzle Damping Characteristics in Solid Rocket Motor. Aerospace, 10(2), 191. https://doi.org/10.3390/aerospace10020191