Review of Alternative Sustainable Fuels for Hybrid Rocket Propulsion
Abstract
:1. Introduction
2. Preliminary Assessment
3. Sustainable Hybrid Fuels
3.1. Plastic Recycling
3.2. Bio-Derived Fuels
3.3. Synthetic Fuels
- Electro-fuels (e-fuels) made using captured carbon dioxide in a reaction with hydrogen, which are generated by the electrolysis of water;
- Synthetic biofuels made through the chemical or thermal treatment of biomass or biofuels.
4. Conclusions
Funding
Data Availability Statement
Conflicts of Interest
References
- Euroconsult. Space Economy Report, 9th ed.; Euroconsult: Courbevoie, France.
- BryceTech. Start-Up Space Report 2022; BryceTech: Alexandria, VA, USA, 2022. [Google Scholar]
- BryceTech. Smallsats by the Numbers 2023; BryceTech: Alexandria, VA, USA, 2023. [Google Scholar]
- BryceTech. 2022 State of the Satellite Industry Report; BryceTech: Alexandria, VA, USA, 2022. [Google Scholar]
- BryceTech. 2022 Orbital Launches Year in Review; BryceTech: Alexandria, VA, USA, 2023. [Google Scholar]
- Commercial Hypersonic Transportation. Developed for NASA by BryceTech and SAIC. 14 September 2021. Available online: https://ntrs.nasa.gov/citations/20210015471 (accessed on 4 June 2023).
- SpaceX. SpaceX—Starship. Available online: https://www.spacex.com/vehicles/starship/ (accessed on 6 May 2023).
- SpaceX. SpaceX—Missions: Earth. Available online: https://www.spacex.com/human-spacefight/earth/index.html (accessed on 6 May 2023).
- SpaceX. Making Life Multiplanetary. Available online: https://www.spacex.com/media/making_life_multiplanetary_2016.pdf (accessed on 6 May 2023).
- Sippel, M.; Klevanski, J.; Steelant, J. Comparative Study on Options for High-Speed Intercontinental Passenger Transports. In Proceedings of the 56th International Astronautical Conference 2005, Fukuoka, Japan, 17–21 October 2005. [Google Scholar]
- Sippel, M.; Trivailo, O.; Bussler, L.; Lipp, S.; Valluchi, C. Evolution of the SpaceLiner Towards a Reusable TSTO-Launcher. In Proceedings of the International Astronautical Congress 2016, Guadalajara, Mexico, 26–30 September 2016. [Google Scholar]
- Sippel, M.; Schwanekamp, T.; Trivailo, O.; Kopp, A.; Bauer, C.; Garbers, N. SpaceLiner Technical Progress and Mission Definition. In Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, UK, 6–9 July 2015; AIAA 2015-3582. ISBN 978-1-62410-320-9. [Google Scholar] [CrossRef] [Green Version]
- Sippel, M. Promising Roadmap Alternatives for the SpaceLiner. Acta Astronaut. 2010, 66, 1652–1658. [Google Scholar] [CrossRef] [Green Version]
- Sippel, M. SpaceLiner—A Visionary Concept of an Ultra Fast Passenger Transport under Investigation in FAST20XX. In Proceedings of the 16th AIAA/DLR/DGLR International Space Planes and Hypersonic Systems and Technologies Conference, Bremen, Germany, 19–22 October 2009. [Google Scholar]
- Sippel, M.; Schwanekamp, T.; Trivailo, O.; Lentsch, A. Progress of SpaceLiner Rocket-Powered High-Speed Concept. In Proceedings of the International Astronautical Congress 2013, Beijing, China, 23–27 September 2013. [Google Scholar]
- Sippel, M.; Schwanekamp, T.; Bauer, C.; Garbers, N.; van Foreest, A.; Tengzelius, U.; Lentsch, A. Technical Maturation of the SpaceLiner Concept. In Proceedings of the 18th AIAA/3AF International Space Planes and Hypersonic Systems and Technologies Conference 2012, Tours, France, 24–28 September 2012; AIAA 2012-5850. ISBN 978-1-60086-931-0. [Google Scholar] [CrossRef]
- Schwanekamp, T.; Bauer, C.; Kopp, A. Development of the SpaceLiner Concept and its Latest Progress. In Proceedings of the 4th CSA-IAA Conference on Advanced Space Technology, Shanghai, China, 5–8 September 2011. [Google Scholar]
- Wilken, J.; Sippel, M.; Berger, M. 2022 Critical Analysis of SpaceX’s Next Generation Space Transportation. In Proceedings of the 2nd International Conference on High-Speed Vehicle Science Technology (HiSST) 2022, Bruges, Belgium, 15–20 May 2022. [Google Scholar]
- Sippel, M.; Stappert, S.; Koch, A.D. Assessment of Multiple Mission Reusable Launch Vehicles. In Proceedings of the 69th International Astronautical Congress 2018, Bremen, Germany, 1–5 October 2018. [Google Scholar]
- Wilken, J.; Callsen, S. Mission Design for Point-to-Point Passenger Transport with Reusable Launch Vehicles. CEAS Space J. 2023. [Google Scholar] [CrossRef]
- Callsen, S.; Wilken, J.; Sippel, M. Feasible Options for Point-to-Point Passenger Transport with Rocket Propelled Reusable Launch Vehicles. In Proceedings of the 73rd International Astronautical Congress (IAC) 2022, France, Paris, 18–22 September 2022. [Google Scholar]
- FAST20XX (Future High-Altitude High-Speed Transport 20XX). Available online: https://www.esa.int/Enabling_Support/Space_Engineering_Technology/FAST20XX_Future_High-Altitude_High-Speed_Transport_20XX (accessed on 6 May 2023).
- Savino, R.; Russo, G.; D’Oriano, V.; Visone, M.; Battipede, M.; Gili, P. Performances of a Small Hypersonic Airplane (Hyplane). In Proceedings of the 65th International Astronautical Congress 2014, Toronto, ON, Canada, 29 September–3 October 2014. [Google Scholar]
- Altman, D. Overview and History of Hybrid Rocket Propulsion. In Fundamentals of Hybrid Rocket Combustion and Propulsion; Chiaverini, M.J., Kuo, K.K., Eds.; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 1–36. [Google Scholar]
- Altman, D. Hybrid Rocket Propulsion Systems. In Space Propulsion Analysis and Design, 1st ed.; McGraw–Hill: New York, NY, USA, 1995; pp. 365–370. [Google Scholar]
- Ordahl, D.D.; Rains, W.A. Recent Developments and Current Status of Hybrid Rocket Propulsion. J. Spacecr. Rocket. 1965, 2, 923–926. [Google Scholar] [CrossRef]
- Martin, F.; Chapelle, A.; Orlandi, O.; Yvart, P. Hybrid Propulsion Systems for Future Space Applications. In Proceedings of the 46th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Nashville, TN, USA, 25–28 July 2010. AIAA Paper 2010-6633. [Google Scholar]
- Chaturvedi, P.; Choudhary, S.; Madhu, S.; Kedia, R.; Shetty, M.S. Green Propellants: Bio-Products and Water as Fuel for Cubesat Propulsion. In Proceedings of the 71st International Astronautical Congress (IAC)—The CyberSpace Edition, Virtual Format, 12–14 October 2020. IAC-20-C4.9.8 (59948). [Google Scholar]
- Huang, E. THIRD TIME LUCKY, A Private Chinese Space Firm Successfully Launched a Rocket into Orbit. Available online: https://qz.com/1674426/ispace-to-attempt-chinas-third-private-rocket-launch (accessed on 6 May 2023).
- Vikram-S India’s First Private Space Launch. Available online: https://skyroot.in/vks.html (accessed on 6 May 2023).
- Jue, F.H. Space Shuttle Main Engine: 30 Years of Innovation. Available online: https://ntrs.nasa.gov/citations/20020046693 (accessed on 6 May 2023).
- Hale, W. An SSME-Related Request. NASASpaceflight.com. 17 January 2012. Available online: https://forum.nasaspaceflight.com/index.php?topic=27783.0 (accessed on 6 May 2023).
- Rice, W.C. Economics of the Solid Rocket Booster for Space Shuttle. Acta Astronaut. 1979, 6, 1685–1694. [Google Scholar] [CrossRef]
- NASA. Materials and Manufacturing. Additive Manufacturing Pioneering Affordable Aerospace Manufacturing. Available online: https://www.nasa.gov/sites/default/files/atoms/files/additive_mfg.pdf (accessed on 6 May 2023).
- SpaceX. Capabilities & Services. Available online: https://www.spacex.com/media/Capabilities&Services.pdf (accessed on 6 May 2023).
- Dawn Aerospace Website. Available online: https://www.dawnaerospace.com/spacelaunch (accessed on 6 May 2023).
- Strickland, J.; Wattles, A. SpaceX’s Starship Rocket Lifts off for Inaugural Test Flight but Explodes Midair. CNN. 20 April 2023. Available online: https://edition.cnn.com/2023/04/20/world/spacex-starship-launch-thursday-scn/index.html (accessed on 6 May 2023).
- Sheetz, M. Relativity Space Unveils a Reusable, 3D-Printed Rocket to Compete with SpaceX’s Falcon 9. CNBC. 25 February 2021. Available online: https://www.cnbc.com/2021/02/25/relativitys-reusable-terran-rocket-competitor-to-spacexs-falcon-9.html (accessed on 6 May 2023).
- Berger, E. Relativity Has a Bold Plan to Take on SpaceX, and Investors Are Buying It. Ars Technica. 8 June 2021. Available online: https://arstechnica.com/science/2021/06/relativity-has-a-bold-plan-to-take-on-spacex-and-investors-are-buying-it/ (accessed on 6 May 2023).
- Berger, E. Blue Origin Has a Secret Project Named “Jarvis” to Compete with SpaceX. Ars Technica. 27 July 2021. Available online: https://arstechnica.com/science/2021/07/blue-origin-is-developing-reusable-second-stage-other-advanced-projects/ (accessed on 6 May 2023).
- STOKE Space Raises $65M Series A to Make Space Access Sustainable and Scalable. 15 December 2021. Available online: https://www.businesswire.com/news/home/20211215005168/en/STOKE-Space-Raises-65M-Series-A-to-Make-Space-Access-Sustainable-and-Scalable (accessed on 6 May 2023).
- Sesnic, T.; Volosín, J.I.M. Full Reusability by Stoke Space. Everyday Astronaut. 4 February 2023. Available online: https://everydayastronaut.com/stoke-space/ (accessed on 6 May 2023).
- Sippel, M.; Stappert, S.; Bussler, L.; Dumont, E. Systematic Assessment of Reusable First-Stage Return Options. In Proceedings of the 68th International Astronautical Congress, Adelaide, Australia, 25–29 September 2017. IAC-17-D2.4.4. [Google Scholar]
- Barato, F.; Paccagnella, E.; Franco, M.; Pavarin, D. Numerical Analyses of Thermal Protection Design in Hybrid Rocket Motors. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Virtual Event, 24–28 August 2020. AIAA 2020-3769. [Google Scholar]
- Barato, F.; Bellomo, N.; Pavarin, D. Integrated approach for hybrid rocket technology development. Acta Astronaut. 2016, 128, 257–261. [Google Scholar] [CrossRef]
- Kuo, K.K. Challenges of Hybrid Rocket Propulsion in the 21st Century. In Fundamentals of Hybrid Rocket Combustion and Propulsion; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 593–638. [Google Scholar]
- Okninski, A.; Kopacz, W.; Kaniewski, D.; Sobczak, K. Hybrid rocket propulsion technology for space transportation revisited-Propellant solutions and challenges. FirePhysChem 2021, 1, 260–271. [Google Scholar] [CrossRef]
- Barato, F. Challenges of Ablatively Cooled Hybrid Rockets for Satellites or Upper Stages. Aerospace 2021, 8, 190. [Google Scholar] [CrossRef]
- Barato, F.; Paccagnella, E.; Pavarin, D. Explicit Analytical Equations for Single Port Hybrid Rocket Combustion Chamber Sizing. J. Propuls. Power 2020, 36, 869–886. [Google Scholar] [CrossRef]
- Hyimpulse Website. Available online: https://www.hyimpulse.de/en/ (accessed on 6 May 2023).
- Gilmour Aerospace Website. Available online: https://www.gspace.com/ (accessed on 6 May 2023).
- Park, S. South Korea’s Innospace Succeeds in Test Launch. 21 March 2023. Available online: https://spacenews.com/south-koreas-innospace-succeeds-in-test-launch/ (accessed on 6 May 2023).
- Tispace Website. Available online: https://www.tispace.com/ (accessed on 6 May 2023).
- DeltaV Website. Available online: https://deltav.com.tr/ (accessed on 6 May 2023).
- Daily Sabah. Turkish Firm to Develop Hybrid Rocket Tech for 2023 Moon Mission. Available online: https://www.dailysabah.com/business/tech/turkish-firm-to-develop-hybrid-rocket-tech-for-2023-moon-mission (accessed on 6 May 2023).
- Turkish Company Set to Develop Hybrid Rocket Tech for Turkey’s Moon Mission. Available online: https://www.trtworld.com/magazine/turkish-company-set-to-develop-hybrid-rocket-tech-for-turkeys-moon-mission-12746837 (accessed on 6 May 2023).
- Faenza, M.G.; Boiron, A.J.; Haemmerli, B.; Verberne, O. The Nammo Nucleus Launch: Norwegian Hybrid Sounding Rocket over 100km. In Proceedings of the AIAA Propulsion and Energy Forum 2019, Indianapolis, IN, USA, 19–22 August 2019. AIAA 2019-4049. [Google Scholar]
- Equatorial Space Website. Available online: https://www.equatorialspace.com/ (accessed on 6 May 2023).
- Vaya Space Website. Available online: https://www.vayaspace.com/ (accessed on 6 May 2023).
- Hybrid Propulsion for Space Website. Available online: https://hypr-space.com/ (accessed on 6 May 2023).
- Rogelj, J.; Schaeffer, M.; Hare, B. Timetables for Zero Emissions and 2050 Emissions Reductions: State of the Science for the ADP Agreement; Climate Analytics: Berlin, Germany, 2015. [Google Scholar]
- Orbex Website. Available online: https://orbex.space/ (accessed on 6 May 2023).
- BluShift Aerospace Website. Available online: https://www.blushiftaerospace.com/ (accessed on 6 May 2023).
- Gordon, S.; McBride, B.J. Computer Program for Calculation of Complex Chemical Equilibrium Compositions and Applications, I. Analysis; National Aeronautics and Space Administration; Lewis Research Center: Cleveland, OH, USA, 1994; NASA-RP 1311.
- Aviation Report. International Energy Agency. 2020. Available online: https://www.iea.org/reports/aviation (accessed on 6 May 2023).
- Aircraft Engine Emissions. International Civil Aviation Organization (ICAO). Environmental Protection. Available online: https://www.icao.int/environmental-protection/pages/aircraft-engine-emissions.aspx (accessed on 6 May 2023).
- Lee, D.S.; Fahey, D.W.; Skowron, A.; Allen, M.R.; Burkhardt, U.; Chen, Q.; Doherty, S.J.; Freeman, S.; Forster, P.M.; Fuglestvedt, J.; et al. The Contribution of Global Aviation to Anthropogenic Climate Forcing for 2000 to 2018. Atmos. Environ. 2021, 244, 117834. [Google Scholar] [CrossRef]
- Graver, B.; Zhang, K.; Rutherford, D. CO2 Emissions from Commercial Aviation; International Council on Clean Transportation: Washington, DC, USA, 2018. [Google Scholar]
- Reducing Emissions from Aviation. Climate Action. European Commission. 23 November 2016. Available online: https://climate.ec.europa.eu/eu-action/transport-emissions/reducing-emissions-aviation_en (accessed on 6 May 2023).
- Brasseur, G.P.; Gupta, M.; Anderson, B.E.; Balasubramanian, S.; Barrett, S.; Duda, D.; Fleming, G.; Forster, P.M.; Fuglestvedt, J.; Gettelman, A.; et al. Impact of aviation on climate: FAA’s Aviation Climate Change Research Initiative (ACCRI) Phase II. Bull. Am. Meteorol. Soc. 2016, 97, 561–583. [Google Scholar] [CrossRef] [Green Version]
- IsaDsen, I.; Grewe, V.; Hauglustaine, D. Aviation radiative forcing in 2000: An update on IPCC. Meteorol. Z. 2005, 14, 555–561. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.S.; Fahey, D.W.; Forster, P.M.; Newton, P.J.; Wit, R.C.; Lim, L.L.; Owen, B.; Sausen, R. Aviation and Global Climate Change in the 21st Century. Atmos. Environ. 2009, 43, 3520–3537. [Google Scholar] [CrossRef] [Green Version]
- 2022 in Spaceflight. Orbital and Suborbital Launches. Available online: https://en.wikipedia.org/wiki/2022_in_spaceflight (accessed on 6 May 2023).
- Air Traffic by the Numbers. Federal Aviation Administration (FAA). Available online: https://www.faa.gov/air_traffic/by_the_numbers (accessed on 6 May 2023).
- Annual Report 2019/The World of Air Transport in 2019. International Civil Aviation Organization (ICAO). Available online: https://www.icao.int/annual-report-2019/Pages/the-world-of-air-transport-in-2019.aspx (accessed on 6 May 2023).
- Comparison of Orbital Launch Systems. Available online: https://en.wikipedia.org/wiki/Comparison_of_orbital_launch_systems (accessed on 6 May 2023).
- Simons, G. The Airbus A380: A History; Pen and Sword Aviation: Barnsley, UK, 2014; p. 31. ISBN 978-1-78303-041-5. [Google Scholar]
- 747 Classics Technical Specifications. The Boeing Company. Available online: http://www.boeing.com/commercial/747family/pf/pf_classics.html (accessed on 6 May 2023).
- Masefield, P.G. Can Concorde Make a Profit? Flight International, 10 August 1972; pp. 214–216. [Google Scholar]
- British Airways. The New York Times, 29 December 1983.
- Airliner Price Index. Flight International, 10 August 1972; p. 183.
- McCusker, J.J. How Much Is That in Real Money? A Historical Price Index for Use as a Deflator of Money Values in the Economy of the United States; American Antiquarian Society: Worcester, MA, USA, 1992. [Google Scholar]
- McCusker, J.J. How Much Is That in Real Money? A Historical Price Index for Use as a Deflator of Money Values in the Economy of the United States: Addenda et Corrigenda; American Antiquarian Society: Worcester, MA, USA, 1997. [Google Scholar]
- Orlebar, C. The Concorde Story: Seventh Edition; Osprey Publishing: Oxford, UK, 2011. [Google Scholar]
- Sobieczky, H. New Design Concepts for High Speed Air Transport; Sobieczky, H., Ed.; National Defence Industry Press: Arlington, VR, USA, 1997; p. 356. [Google Scholar]
- Arnold, J. Why Economists Don’t Fly Concorde. BBC News, 10 October 2003. [Google Scholar]
- Virgin Galactic Website. Available online: https://www.virgingalactic.com/ (accessed on 6 May 2023).
- Millions of Millionaires. The Economist, 22 October 2019; ISSN 0013-0613.
- Shorrocks, A.; Davies, J.; Lluberas, R. Global Wealth Databook 2022; Credit Suisse Research Institute: Zurich, Switzerland, 2022. [Google Scholar]
- The Global Wealth Report. Raw Data Material. Available online: https://www.credit-suisse.com/about-us/en/reports-research/global-wealth-report/tables.html (accessed on 6 May 2023).
- Wealth, X. Reach the World’s Wealthiest Individuals. Available online: https://altrata.com/products/wealth-x (accessed on 6 May 2023).
- Federal Aviation Administration. Final Environmental Assessment for the Launch and Reentry of SpaceShipTwo Reusable Suborbital Rockets at the Mojave Air and Space Port; Federal Aviation Administration: Washington, DC, USA, 2012.
- Ross, M.; Vedda, J.A. The Policy and Science of Rocket Emissions; The Aerospace Corporation, Center for Space Policy and Strategy: Arlington, VR, USA, 2018. [Google Scholar]
- Ross, M.N.; Sheaffer, P.M. Radiative forcing caused by rocket engine emissions. Earth’s Future 2014, 2, 177–196. [Google Scholar] [CrossRef]
- Larson, E.J.L.; Portmann, R.W.; Rosenlof, K.H.; Fahey, D.W.; Daniel, J.S.; Ross, M.N. Global atmospheric response to emissions from a proposed reusable space launch system. Earth’s Future 2017, 5, 37–48. [Google Scholar] [CrossRef]
- Ross, M.; Mills, M.; Toohey, D. Potential climate impact of black carbon emitted by rockets. Geophys. Res. Lett. 2010, 37, L24810. [Google Scholar] [CrossRef] [Green Version]
- Ross, M.; Toohey, D.; Peinemann, M.; Ross, P. Limits on the Space Launch Market Related to Stratospheric Ozone Depletion. Astropolitics 2009, 7, 50–82. [Google Scholar] [CrossRef] [Green Version]
- Maloney, C.M.; Portmann, R.W.; Ross, M.N.; Rosenlof, K.H. The climate and ozone impacts of black carbon emissions from global rocket launches. J. Geophys. Res. Atmos. 2022, 127, e2021JD036373. [Google Scholar] [CrossRef]
- Ryan, R.G.; Marais, E.A.; Balhatchet, C.J.; Eastham, S.D. Impact of rocket launch and space debris air pollutant emissions on stratospheric ozone and global climate. Earth’s Future 2022, 10, e2021EF002612. [Google Scholar] [CrossRef]
- Tait, K.N.; Khan, M.A.H.; Bullock, S.; Lowenberg, M.H.; Shallcross, D.E. Aircraft Emissions, Their Plume-Scale Effects, and the Spatio-Temporal Sensitivity of the Atmospheric Response: A Review. Aerospace 2022, 9, 355. [Google Scholar] [CrossRef]
- Piesing, M. The Pollution Caused by Rocket Launches. BBC Future, 15 July 2022. Available online: https://www.bbc.com/future/article/20220713-how-to-make-rocket-launches-less-polluting(accessed on 6 May 2023).
- Karcher, B. Formation and Radiative Forcing of Contrail Cirrus. Nat. Commun. 2018, 9, 1824. [Google Scholar] [CrossRef] [Green Version]
- Kokkinakisa, I.W.; Drikakis, D. Atmospheric pollution from rockets. Phys. Fluids 2022, 34, 056107. [Google Scholar] [CrossRef]
- Yan, X. Spaceport Cornwall Carbon Impact Assessment, Main Report; Environment and Sustainability Institute, University of Exeter: Penryn, UK, 2019. [Google Scholar]
- Wayson, R.L.; Fleming, G.G. Consideration of Air Quality Impacts by Airplane Operations at or above 3000 Feet AGL; U.S. Department of Transportation, Federal Aviation Administration: Washington, DC, USA, 2020; FAA-AEE-00-01 DTS-34.
- Stunning Video Shows Virgin Galactic Test Flight. The Telegraph. Available online: https://www.youtube.com/watch?v=Y-1QRivGgzI (accessed on 6 May 2023).
- Video Shown during NTSB Board Meeting on In-Flight Breakup of SpaceShipTwo near Mojave, CA. NTSBgov. Available online: https://www.youtube.com/watch?v=Qv8Y0aMNix8&t=32s (accessed on 6 May 2023).
- Foust, J. SpaceShipTwo Bounces Back to Rubber Fuel. Available online: https://spacenews.com/virgin-galactic-switching-back-to-rubber-fuel-for-spaceshiptwo/ (accessed on 6 May 2023).
- Messier, D. Virgin Galactic Spins Its Way Back to Rubber Engine for SpaceShipTwo. Available online: https://parabolicarc.com/2015/10/20/virgin-galactic-spins-rubber-engine-spaceshiptwo/ (accessed on 6 May 2023).
- Messier, D. “Minor Nuance” in SpaceShipTwo’s Propulsion System Was Neither. Available online: https://parabolicarc.com/2015/10/13/minor-nuance-spaceshiptwos-propulsion-system/ (accessed on 6 May 2023).
- Marquardt, T.; Majdalani, J. A Primer on Classical Regression Rate Modeling in Hybrid Rockets. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Virtual Event, 24–28 August 2020; p. 3758. [Google Scholar]
- Marquardt, T.; Majdalani, J. Review of Classical Diffusion-Limited Regression Rate Models in Hybrid Rockets. Aerospace 2019, 6, 75. [Google Scholar] [CrossRef] [Green Version]
- Marxman, G.; Gilbert, M. Turbulent boundary layer combustion in the hybrid rocket. Symp. (Int.) Combust. 1963, 9, 371–383. [Google Scholar] [CrossRef]
- Marxman, G.A. Combustion in the turbulent boundary layer on a vaporizing surface. Symp. (Int.) Combust. 1965, 10, 1337–1349. [Google Scholar] [CrossRef]
- Marxman, G.; Muzzy, R.; Wooldridge, C. Fundamentals of Hybrid Boundary Layer Combustion. In Proceedings of the Heterogeneous Combustion Conference, Palm Beach, FL, USA, 11 December–13 December 1963. [Google Scholar]
- Smoot, L.D.; Price, C.F. Pressure dependence of hybrid fuel regression rates. AIAA J. 1967, 5, 102–106. [Google Scholar] [CrossRef]
- Smoot, L.D.; Price, C.F. Regression rates of nonmetalized hybrid fuel systems. AIAA J. 1965, 3, 1408–1413. [Google Scholar] [CrossRef]
- Wooldridge, C.; Muzzy, R. Measurements in a turbulent boundary layer with porous wall injection and combustion. Symp. (Int.) Combust. 1965, 10, 1351–1362. [Google Scholar] [CrossRef]
- Wooldridge, C.E.; Muzzy, R.J. Internal ballistic considerations in hybrid rocket design. J. Spacecr. Rocket. 1967, 4, 255–262. [Google Scholar] [CrossRef]
- Netzer, D.W.; Bae, W.E. Hybrid Rocket Internal Ballistics. In Technical Report; Chemical Propulsion Information Agency: Laurel, MD, USA, 1972. [Google Scholar]
- Chiaverini, M.J. Review of Solid-Fuel Regression Rate Behavior in Classical and Nonclassical Hybrid Rocket Motors. In Fundamentals of Hybrid Rocket Combustion and Propulsion; American Institute of Aeronautics and Astronautics: Reston, VA, USA, 2007; pp. 49–92. [Google Scholar]
- Rampazzo, A.; Barato, F. Modeling and CFD Simulation of Regression Rate in Hybrid Rocket Motors. Fire 2023, 6, 100. [Google Scholar] [CrossRef]
- Kobald, M.; Fischer, U.; Tomilin, K.; Petrarolo, A.; Schmierer, C. Hybrid Experimental Rocket Stuttgart: A Low-Cost Technology Demonstrator. J. Spacecr. Rocket. 2018, 55, 484–500. [Google Scholar] [CrossRef]
- Barato, F.; Ghilardi, M.; Santi, M.; Pavarin, D. Numerical Optimization of Hybrid Sounding Rockets Through Coupled Motor Trajectory Simulation. In Proceedings of the 52nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Salt Lake City, Utah, USA, 25–27 July 2016. AIAA Paper 2016-4749. [Google Scholar]
- Schmierer, C.; Kobald, M.; Tomilin, K.; Fischer, U.; Schlechtriem, S. Low cost small-satellite access to space using hybrid rocket propulsion. Acta Astronaut. 2019, 159, 578–583. [Google Scholar] [CrossRef]
- Karabeyoglu, M.A.; Falconer, T.; Cantwell, B.J.; Stevens, J. Design of an Orbital Hybrid Rocket Vehicle Launched from Canberra Air Platform. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, AZ, USA, 10–13 July 2005. AIAA Paper 2005-4096. [Google Scholar]
- Karabeyoglu, M.A.; Stevens, J.; Geyzel, D.; Cantwell, B. High Performance Hybrid Upper Stage Motor. In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, San Diego, CA, USA, 31 July–3 August 2011. AIAA Paper 2011-6025. [Google Scholar]
- Philipps Driscopipe. Burning Characteristics of Polyethylene; PDI TN-11. 16 July 1987. Available online: https://isco-pipe.com/wp-content/uploads/2019/02/burning-characteristics-of-polyethylene.pdf (accessed on 4 June 2023).
- Karabeyoglu, M.A.; Altman, D.; Cantwell, B.J. Combustion of Liquefying Hybrid Propellants: Part 1, General Theory. J. Propuls. Power 2002, 18, 610–620. [Google Scholar] [CrossRef]
- Karabeyoglu, M.A.; Cantwell, B.J. Combustion of Liquefying Hybrid Propellants: Part 2, Stability of Liquid Films. J. Propuls. Power 2002, 18, 621–630. [Google Scholar] [CrossRef]
- Karabeyoglu, A.; Cantwell, B.; Stevens, J. Evaluation of the Homologous Series of Normal Alkanes as Hybrid Rocket Fuels. In Proceedings of the 41st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Tucson, AZ, USA, 10 July–13 July 2005. [Google Scholar]
- Karabeyoglu, M.A.; Zilliac, G.; Cantwell, B.J. DeZilwa, S. and Castellucci, P. Scale-Up Tests of High Regression Rate Paraffin-Based Hybrid Rocket Fuels. J. Propuls. Power 2004, 20, 621–630. [Google Scholar] [CrossRef]
- Weinstein, A.; Gany, A. Investigation of Paraffin-Based Fuels in hybrid Combustors. Int. J. Energetic Mater. Chem. Propuls. 2011, 10, 277–296. [Google Scholar] [CrossRef]
- Sisi, S.B.; Gany, A. Combustion of Plain and Reinforced Paraffin with Nitrous Oxide. Int. J. Energetic Mater. Chem. Propuls. 2015, 14, 4. [Google Scholar] [CrossRef]
- Sisi, S.B.; Gany, A. Heat and Mass Transfer Analysis for Paraffin/Nitrous Oxide Burning Rate in Hybrid Propulsion. Acta Astronaut. 2016, 120, 121–128. [Google Scholar]
- Barato, F.; Bellomo, N.; Lazzarin, M.; Moretto, F.; Bettella, A.; Pavarin, D. Numerical Modeling of Paraffin-Based Fuels Behavior. In Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit, Atlanta, GA, USA, 30 July–1 August 2012. [Google Scholar]
- Paccagnella, E.; Santi, M.; Ruffin, A.; Barato, F.; Pavarin, D.; Misté, G.; Venturelli, G.; Bellomo, N. Testing of a Long-Burning-Time Paraffin-based Hybrid Rocket Motor. J. Propuls. Power 2019, 35, 432–442. [Google Scholar] [CrossRef]
- Gurman, J.L. Polystyrenes: A Review of the Literature on the Products of Thermal Decomposition and Toxicity. Fire Mater. 1987, 11, 109–130. [Google Scholar] [CrossRef]
- Hawley-Fedder, R.A.; Parsons, M.L.; Karasek, F.W. Products Obtained During Combustion of Polymers Under Simulated Incinerator Conditions. J. Chromatogr. 1984, 315, 201–210. [Google Scholar] [CrossRef]
- Huggett, C.; Levin, B.C. Toxicity of the Pyrolysis and Combustion Products of Poly (Vinyl Chlorides): A Literature Assessment. Fire Mater. 1987, 11, 131–142. [Google Scholar] [CrossRef] [Green Version]
- McKenna, T.; Hull, T.R. The fire toxicity of polyurethane foams. Fire Sci. Rev. 2016, 5, 3. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, S.A.; Peterson, Z.; Eilers, S. Analytical and Experimental Comparisons of HTPB and ABS as Hybrid Rocket Fuels. In Proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, CA, USA, 31 July–3 August 2011. [Google Scholar]
- McFarland, M.; Elsa Antunes, E. Small-Scale Static Fire Tests of 3D Printing Hybrid Rocket Fuel Grains Produced from Different Materials. Aerospace 2019, 6, 81. [Google Scholar] [CrossRef] [Green Version]
- Whitmore, S.A.; Armstrong, I.W.; Heiner, M.C.; Martinez, C.J. High-Performing Hydrogen Peroxide Hybrid Rocket with 3-D Printed and Extruded ABS Fuel. In Proceedings of the 2018 Joint Propulsion Conference, Cincinnati, OH, USA, 9–11 July 2018. [Google Scholar]
- Whitmore, S.A.; Walker, S.D.; Merkley, D.P.; Sobbi, M. High Regression Rate Hybrid Rocket Fuel Grains with Helical Port Structures. J. Propuls. Power 2015, 31, 1727–1738. [Google Scholar] [CrossRef] [Green Version]
- Oztan, C.; Coverstone, V. Utilization of additive manufacturing in hybrid rocket technology: A review. Acta Astronaut. 2021, 180, 130–140. [Google Scholar] [CrossRef]
- Climate Change 2021, The Physical Science Basis, Summary for Policymakers, Working Group I Contribution to the WGI Sixth Assessment Report of the Intergovernmental Panel on Climate Change; The Intergovernmental Panel on Climate Change (IPCC): Geneva, Switzerland, 2021.
- Global Methane Assessment. United Nations Environment Programme and Climate and Clean Air Coalition (Report); United Nations Environment Programme: Nairobi, Kenya, 2022; p. 12. Available online: https://www.unep.org/resources/report/global-methane-assessment-benefits-and-costs-mitigating-methane-emissions (accessed on 6 May 2023).
- Al-Salem, S.M.; Lettieri, P.; Baeyens, J. Recycling and Recovery Routes of Plastic Solid Waste (PSW): A Review. Waste Manag. 2009, 29, 2625–2643. [Google Scholar] [CrossRef]
- Ignatyev, I.A.; Thielemans, W.; Beke, B.V. Recycling of Polymers: A Review. ChemSusChem 2014, 7, 1579–1593. [Google Scholar] [CrossRef]
- Lazarevic, D.; Aoustin, E.; Buclet, N.; Brandt, N. Plastic Waste Management in the Context of a European Recycling Society: Comparing Results and Uncertainties in a Life Cycle Perspective. Resour. Conserv. Recycl. 2010, 55, 246–259. [Google Scholar] [CrossRef]
- Hopewell, J.; Dvorak, R.; Kosior, E. Plastics Recycling: Challenges and Opportunities. Philos. Trans. R. Soc. B Biol. Sci. 2009, 364, 2115–2126. [Google Scholar] [CrossRef] [Green Version]
- Lange, J.-P. Managing Plastic Waste—Sorting, Recycling, Disposal, and Product Redesign. ACS Sustain. Chem. Eng. 2021, 9, 15722–15738. [Google Scholar] [CrossRef]
- Geyer, R.; Jambeck, J.R.; Law, K.L. Production, use, and fate of all plastics ever made. Sci. Adv. 2017, 3, e1700782. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Shen, L.; Worrell, E.; Patel, M.K. Open-Loop Recycling: A LCA Case Study of PET Bottle-to-Fibre Recycling. Resour. Conserv. Recycl. 2010, 55, 34–52. [Google Scholar] [CrossRef]
- Hdpe Multiple Recycling Proven in an Experiment. Available online: https://www.ese.com/en/ese-world/ese-news/news-details/article/hdpe-multiple-recycling-proven-in-an-experiment/ (accessed on 6 May 2023).
- Turku, I.; Kasala, S.; Kärki, T. Characterization of Polystyrene Wastes as Potential Extruded Feedstock Filament for 3D Printing. Recycling 2018, 3, 57. [Google Scholar] [CrossRef] [Green Version]
- United Nations. The Biofuels Market: Current Situation and Alternative Scenarios; United Nations Conference on Trade and Development; United Nations: Geneva, Switzerland; New York, NY, USA, 2009; UNCTAD/DITC/BCC/2009/1.
- Liu, Z.; Liu, H.; Yang, X. Life Cycle Assessment of the Cellulosic Jet Fuel Derived from Agriculture Residue. Aerospace 2023, 10, 129. [Google Scholar] [CrossRef]
- Siracusa, V.; Blanco, I. Bio-Polyethylene (Bio-PE), Bio-Polypropylene (Bio-PP) and Bio-Poly(ethylene terephthalate) (Bio-PET): Recent Developments in Bio-Based Polymers Analogous to Petroleum-Derived Ones for Packaging and Engineering Applications. Polymers 2020, 12, 1641. [Google Scholar] [CrossRef]
- Lubguban, A.A.; Ruda, R.J.G.; Aquiatan, R.H.; Paclijan, S.; Magadan, K.O.; Balangao, J.K.B.; Escalera, S.T.; Bayron, R.R.; Debalucos, B.; Lubguban, A.A.; et al. Soy-Based Polyols and Polyurethanes. Kimika 2017, 28, 1–19. [Google Scholar] [CrossRef] [Green Version]
- Rocco, L.; Gomes, S.R.; Nunes Almeida, L.E.; Rocco, J.A.; Iha, K. Experimental Study of Vegetal Based Polyurethane Fuel filled with Paraffin Particles for Hybrid Rocket Motors. In Proceedings of the 49th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, San Jose, CA, USA, 14–17 July 2013. AIAA 2013-4038. [Google Scholar]
- Tarmizi Ahmad, M.; Abidin, R.; Taha, A.L.; Anudip, A.; Amzaryi, A. Feasibility Study of Palm-Based Fuels for Hybrid Rocket Motor Applications. AIP Conf. Proc. 2018, 1930, 020010. [Google Scholar]
- Grayson Putnam, S. Investigation of Non-Conventional Bio-Derived Fuels for Hybrid Rocket Motors. Ph.D. Thesis, University of Tennessee, Knoxville, TN, USA, 2007. [Google Scholar]
- Naoumov, V.; Nguyen, H.; Alcalde, B. Study of the Combustion of Beeswax and Beeswax with Aluminum Powder in Hybrid Propellant Rocket Engine. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Sri Nithya Mahottamananda, J.; Vanchhit Kumar, D.; Afreen, A.K.; Dinesh, S.; Ashiq, W.; Kadiresh, P.N.; Thirumurugan, M. Mechanical Characteristics of Ethylene Vinyl Acetate Mixed Beeswax Fuel for Hybrid Rockets. In Advances in Design and Thermal Systems; Lecture Notes in Mechanical Engineering, Ganippa, L., Karthikeyan, R., Muralidharan, V., Eds.; Springer: Singapore, 2021. [Google Scholar]
- Jayapal, S.N.M.; Dubey, V.K.; Dinesh, S.; Wahab, A.; Khaleel, A.A.; Kadiresh, P.N. Thermal stability and kinetic study of blended Beeswax-ethylene vinyl acetate based hybrid rocket fuels. Thermochim. Acta 2021, 702, 178989. [Google Scholar] [CrossRef]
- Makled, A.E.S. Beeswax Material: Non-Conventional Solid Fuel for Hybrid Rocket Motors. Adv. Mil. Technol. 2019, 14, 99–113. [Google Scholar] [CrossRef] [Green Version]
- Hossain, M.E.; Ketata, C.; Islam, M.R. Experimental Study of Physical and Mechanical Properties of Natural and Synthetic Waxes Using Uniaxial Compressive Strength Test. In Proceedings of the Third International Conference on Modeling, Simulation and Applied Optimization, Sharjah, United Arab Emirates, 20–22 January 2009. [Google Scholar]
- Stober, K.J.; Sanchez, A.; Wanyiri, J.; Jiwani, S.; Wood, D. Centrifugal Casting of Paraffin and Beeswax for Hybrid Rockets. In Proceedings of the AIAA Propulsion and Energy 2020 Forum, Virtual Event, 24–28 August 2020. AIAA 2020-3736. [Google Scholar]
- Beeswax Production in 2020, Crops/Regions/World List/Production Quantity (Pick Lists); UN Food and Agriculture Organization, Corporate Statistical Database (FAOSTAT): Rome, Italy, 2022.
- SASOL Website. Available online: http://www.sasolwax.com/index.php?id=fischer_tropsch_wax/ (accessed on 6 May 2023).
- Grosse, M. Effect of a Diaphragm on Performance and Fuel Regression of a Laboratory Scale Hybrid Rocket Motor Using Nitrous Oxide and Paraffin. In Proceedings of the 45th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Denver, CO, USA, 2–5 August 2009. AIAA 2009-5113. [Google Scholar]
- Bettella, A.; Lazzarin, M.; Bellomo, N.; Barato, F.; Pavarin, D.; Grosse, M. Testing and CFD Simulation of Diaphragm Hybrid Rocket Motors. proceedings of the 47th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, San Diego, CA, USA, 31 July–3 August 2011. AIAA 2011-6023. [Google Scholar] [CrossRef]
- Bellomo, N.; Faenza, M.; Barato, F.; Bettella, A.; Pavarin, D. The “Vortex Reloaded” Project: Experimental Investigation on Fully Tangential Vortex Injection in N2O—Paraffin Hybrid Motors. In Proceedings of the 48th AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit, Atlanta, GA, USA, 29 July–1 August 2012. AIAA 2012-4304. [Google Scholar] [CrossRef]
- Cardillo, D.; Battista, F.; Elia, G.; Di Martino, G.D.; Mungiguerra, S.; Savino, R. Design and Testing of a Paraffin-Based Hybrid Rocket Demonstrator. In Proceedings of the Space Propulsion Conference 2018, Sevilla, Spain, 14–18 May 2018. [Google Scholar]
- Kobald, M.; Schmierer, C.; Ciezki, H.; Schlechtriem, S.; Toson, E.; De Luca, L.T. Evaluation of Paraffin Based Fuels for Hybrid Rocket Engines. In Proceedings of the 50th AIAA/ASME/SAE/ASEE Joint Propulsion Conference, Cleveland, OH, USA, 28–30 July 2014; AIAA 2014-3646. pp. 1–14. [Google Scholar]
- Piscitelli, F.; Saccone, G.; Gianvito, A.; Cosentino, G.; Mazzola, L. Characterization and manufacturing of a paraffin wax as fuel for hybrid rockets. Propuls. Power Res. 2018, 7, 218–230. [Google Scholar] [CrossRef]
- The Royal Society. Sustainable Synthetic Carbon Based Fuels for Transport: Policy Briefing. September 2019; DES6164, ISBN: 978-1-78252-422-9. Available online: http://royalsociety.org/synthetic-fuels/ (accessed on 6 May 2023).
- Developing Sustainable Aviation Fuel (SAF). Available online: https://www.iata.org/en/programs/environment/sustainable-aviation-fuels/ (accessed on 6 May 2023).
- Sustainable Aviation Fuels Guide. ICAO. Version 2. December 2018. Available online: https://www.icao.int/environmental-protection/Documents/Sustainable%20Aviation%20Fuels%20Guide_100519.pdf (accessed on 6 May 2023).
- Sustainable Aviation Fuels Fact Sheet. IATA. May 2019. Available online: https://www.iata.org/contentassets/ed476ad1a80f4ec7949204e0d9e34a7f/fact-sheet-alternative-fuels.pdf (accessed on 6 May 2023).
- Holladay, J.; Abdullah, Z.; Heyne, J. Sustainable Aviation Fuel: Review of Technical Pathways. United States Department of Energy. Bioenergy Technologies Office; Technical Report DOE/EE-2041 8292. 9 September 2020. Available online: https://www.energy.gov/eere/bioenergy/articles/sustainable-aviation-fuel-review-technical-pathways-report (accessed on 6 May 2023).
- Hileman, J.I.; Ortiz, D.S.S.; Bartis, J.T.; Wong, H.M.; Donohoo, P.E.; Weiss, M.A.; Waitz, I.A. Technical Report: Near-Term Feasibility of Alternative Jet Fuels. Sponsored by the FAA. Published by RAND Corporation. Available online: http://web.mit.edu/aeroastro/partner/reports/proj17/altfuelfeasrpt.pdf (accessed on 6 May 2023).
- Biofuel Factsheet—Aviation Biofuels. European Technology Innovation Platform—Bioenergy. 2017. Available online: https://www.etipbioenergy.eu/images/ETIP_Bioenergy_Factsheet_Aviation_Biofuels.pdf (accessed on 6 May 2023).
- Sustainable Aviation Fuel Users Group. Our Commitment to Sustainable Options. Available online: https://www.boeing.com/aboutus/environment/environmental_report_09/_inc/3.4.3-Sustainable-Aviation-Fuel-Users-group.pdf (accessed on 6 May 2023).
- Yousuf, A.; Gonzalez-Fernandez, C. (Eds.) Sustainable Alternatives for Aviation Fuels, 1st ed.; Elsevier: Amsterdam, The Netherlands, 31 May 2022; ISBN 9780323857154. eBook ISBN: 9780323857161. [Google Scholar]
- Gutierrez-Antonio, C.; Romero-Izquierdo, A.G.; Castro, F.G.; Hernández, S. Production Processes of Renewable Aviation Fuel Present Technologies and Future Trends, 1st ed.; Elsevier: Amsterdam, The Netherlands, 22 January 2021; ISBN 9780128197196. eBook ISBN: 9780128231715. [Google Scholar]
- Quante, G.; Bullerdiek, N.; Bube, S.; Neuling, U.; Kaltschmitt, M. Renewable fuel options for aviation—A System-Wide comparison of Drop-In and non Drop-In fuel options. Fuel 2023, 333, 126269. [Google Scholar] [CrossRef]
- Clean Skies for Tomorrow: Sustainable Aviation Fuels as a Pathway to Net-Zero Aviation: Insight Report; World Economic Forum (WEF); In Collaboration with McKinsey & Company. November 2020. Available online: https://www3.weforum.org/docs/WEF_Clean_Skies_Tomorrow_SAF_Analytics_2020.pdf (accessed on 6 May 2023).
- Staples, M.D.; Malina, R.; Suresh, P.; Hileman, J.I.; Barrett, S.R.H. Aviation CO2 emissions reductions from the use of alternative jet fuels. Energy Policy 2018, 114, 342–354. [Google Scholar] [CrossRef]
- Bauen, A.; Bitossi, N.; German, L.; Harris, A.; Leow, K. Sustainable aviation fuels. Status, challenges and prospects of drop-in liquid fuels, hydrogen and electrification in aviation. Johnson Matthey Technol. Rev. 2020, 64, 263. [Google Scholar] [CrossRef]
- Pechstein, J.; Zschocke, A. Blending of Synthetic Kerosene. In Biokerosene: Status and Prospects; Kaltschmitt, M., Neuling, U., Eds.; Springer: Berlin, Germany, 2018; pp. 665–686. ISBN 978-3-662-53063-4. [Google Scholar]
- Rumizen, M. Aviation Biofuel Standards and Airworthiness Approval. In Biokerosene: Status and Prospects; Kaltschmitt, M., Neuling, U., Eds.; Springer: Berlin, Germany, 2018; pp. 639–664. ISBN 978-3-662-53063-4. [Google Scholar]
- Sustainable Aviation Fuels—ReFuelEU Aviation; European Commission: Brussels, Belgium, 2021. Available online: https://ec.europa.eu/info/law/better-regulation/have-your-say/initiatives/12303-Carburanti-sostenibili-per-laviazione-ReFuelEU-Aviation_it (accessed on 6 May 2023).
- SkyNRG. SAF Market Outlook: SkyNRG’s Perspective on the ReFuelEU Aviation initiative Proposal. 2021. Available online: https://biofuelscentral.com/skynrg-refueleu-aviation-initiative-proposal/ (accessed on 6 May 2023).
- Zschocke, A.; Scheuermann, S.; Ortner, J. High Biofuel Blends in Aviation (HBBA); ENER/C2/2021/420-1 Final Report; European Comission: Belgium, Brussels, 2012.
- Moore, R.H.; Thornhill, K.L.; Weinzierl, B.; Sauer, D.; D’Ascoli, E.; Kim, J.; Lichtenstern, M.; Scheibe, M.; Beaton, B.; Beyersdorf, A.J.; et al. Biofuel blending reduces particle emissions from aircraft engines at cruise conditions. Nature 2017, 543, 411–415. [Google Scholar] [CrossRef] [Green Version]
- Falter, C.; Batteiger, V.; Sizmann, A. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production. Environ. Sci. Technol. 2016, 50, 470–477. [Google Scholar] [CrossRef]
- Synhelion Website. Available online: https://synhelion.com/solar-fuels (accessed on 6 May 2023).
- Sizmann, A. SOLAR-JET Project Final Report; SOLAR-JET-D5.5 R1.0; Grant Agreement Number: FP7—285098. 2016. [Google Scholar]
Oxidizers/ Chemical Species | LOX | H2O2 | N2O |
---|---|---|---|
H2O | 21 | 60 | 9 |
CO2 | 29 | 23 | 14 |
CO | 26 | 7 | 10 |
O2 | 13 | 5 | 4 |
O | 3 | 0 | 1 |
OH | 7 | 4 | 2 |
N2 | 0 | 0 | 56 |
NO | 0 | 0 | 2 |
others | 1 | 1 | 2 |
Sum | 100 | 100 | 100 |
Aviation Decarbonization Level/ Launches per Year (Day) | 0% (Current) | 90% | 95% | 99% |
---|---|---|---|---|
30 (1 every 10) | 0.00 | 0.00 | 0.00 | 0.01 |
300 (1) | 0.00 | 0.01 | 0.01 | 0.06 |
3000 (10) | 0.01 | 0.06 | 0.12 | 0.58 |
30,000 (100) | 0.06 | 0.58 | 1.15 | 5.77 |
Aviation Decarbonization Level/ Launches per Year (Day) | 0% (Current) | 90% | 95% | 99% |
---|---|---|---|---|
30 (1 every 10) | 0.00 | 0.01 | 0.01 | 0.06 |
300 (1) | 0.01 | 0.06 | 0.12 | 0.58 |
3000 (10) | 0.06 | 0.58 | 1.15 | 5.77 |
30,000 (100) | 0.58 | 5.77 | 11.5 | 57.7 |
Aviation Decarbonization Level/ Launches per Year (Day) | 0% (Current) | 90% | 95% | 99% |
---|---|---|---|---|
30 (1 every 10) | 0.01 | 0.07 | 0.14 | 0.70 |
300 (1) | 0.07 | 0.70 | 1.39 | 6.96 |
3000 (10) | 0.70 | 6.96 | 13.9 | 69.6 |
30,000 (100) | 6.96 | 69.6 | 139 | 696 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Barato, F. Review of Alternative Sustainable Fuels for Hybrid Rocket Propulsion. Aerospace 2023, 10, 643. https://doi.org/10.3390/aerospace10070643
Barato F. Review of Alternative Sustainable Fuels for Hybrid Rocket Propulsion. Aerospace. 2023; 10(7):643. https://doi.org/10.3390/aerospace10070643
Chicago/Turabian StyleBarato, Francesco. 2023. "Review of Alternative Sustainable Fuels for Hybrid Rocket Propulsion" Aerospace 10, no. 7: 643. https://doi.org/10.3390/aerospace10070643
APA StyleBarato, F. (2023). Review of Alternative Sustainable Fuels for Hybrid Rocket Propulsion. Aerospace, 10(7), 643. https://doi.org/10.3390/aerospace10070643