The Influence of Coordinate Systems on the Stability Analysis of Lateral–Torsional Coupled Vibration
Abstract
:1. Introduction
2. Model Formulation
3. Analysis in Two Coordinate Systems
3.1. Analysis in Inertial Coordinate System
3.1.1. Analytical Method
3.1.2. Modal Frequency and Stability
3.2. Analysis in Rotating Coordinate System
3.3. Comparison of Results in Two Coordinate Systems
4. Verification of the Results
4.1. Time Domain Results
4.2. Tracing to the Source of Misjudgment
4.2.1. On the Truncation Order in Hill’s Method
4.2.2. On the Correspondence of Solutions in Two Frames
4.2.3. On the Matrix Truncation in the Solving Process
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Appendix A
Appendix B
References
- Yu, P.C.; Zhang, D.Y.; Ma, Y.H.; Hong, J. Dynamic modeling and vibration characteristics analysis of the aero-engine dual-rotor system with Fan blade out. Mech. Syst. Signal Process. 2018, 106, 158–175. [Google Scholar] [CrossRef]
- Lu, W.X.; Chu, F.L. Radial and torsional vibration characteristics of a rub rotor. Nonlinear Dyn. 2014, 76, 529–549. [Google Scholar] [CrossRef]
- Abdelrahman, I.A.E.; Li, S.S.; Wasim, M.K.H. Study on the lateral and torsional vibration of single rotor-system using an integrated multi-body dynamics and finite element analysis. Adv. Mech. Eng. 2020, 12, 1687814020968336. [Google Scholar]
- Carlo, A.; Niccolini, M.; Du, H.; Fabrizio, A.; Paolo, S.; Aristide, F. Hysteresis and torsional-lateral vibration coupling in a complex shaft line supported by hydrodyanamic journal bearings. Mech. Syst. Signal Process. 2022, 181, 109505. [Google Scholar]
- Jiang, J. Determination of the global responses characteristics of a piecewise smooth dynamical system with contact. Nonlinear Dyn. 2009, 57, 351–361. [Google Scholar] [CrossRef] [Green Version]
- Tejas, P.H.; Zuo, M.J.; Zhao, X.M. Nonlinear lateral-torsional coupled motion of a rotor contacting a viscoelastically suspended stator. Nonlinear Dyn. 2012, 69, 325–339. [Google Scholar]
- Jerzy, T.S.; Joe, P.; Rabih, A.K. The dynamics of rotor with rubbing. Int. J. Rotating Mach. 1999, 5, 295–304. [Google Scholar]
- Gotz, V.G.; David, J.E. A mechanism of low subharmonic response in rotor/stator contact–measurements and simulations. J. Vib. Acoust. Trans. ASME 2002, 124, 350–358. [Google Scholar]
- Childs, D.W. Fractional-frequency rotor motion due to nonsymmetric clearance effects. J. Am. Soc. Mech. Eng. 1982, 104, 533–541. [Google Scholar] [CrossRef]
- Beatty, R.F. Differentiating rotor response due to radial rubbing. J. Vib. Acoust. Trans. ASME 1985, 107, 151–160. [Google Scholar] [CrossRef]
- Agnes, M.; Paul, G. Chaotic responses of unbalanced rotor/bearing/stator systems with looseness or rubs. Chaos Solitons Fractals 1995, 5, 1683–1704. [Google Scholar]
- Chu, F.L.; Zhang, Z.S. Periodic, quasi-periodic and chaotic vibrations of a rub-impact rotor system supported on oil film bearings. Int. J. Eng. Sci. 1997, 35, 963–973. [Google Scholar] [CrossRef]
- Sun, Z.C.; Xu, J.X.; Zhou, T. Analysis on complicated characteristics of a high-speed rotor system with rub-impact. Mech. Mach. Theory 2002, 37, 659–672. [Google Scholar] [CrossRef]
- Qin, W.Y.; Su, H.; Yang, Y.F. Grazing bifurcation and chaos in response of rubbing rotor. Chaos Solitons Fractals 2008, 37, 166–174. [Google Scholar] [CrossRef]
- Sunil, K.S. Rotordynamic analysis of asymmetric turbofan rotor due to fan blade-loss event with contact-impact rub loads. J. Sound Vib. 2013, 332, 2253–2283. [Google Scholar]
- Hong, J.; Yu, P.C.; Zhang, D.Y.; Ma, Y.H. Nonlinear dynamic analysis using the complex nonlinear modes for a rotor system with an additional constraint due to rub-impact. Mech. Syst. Signal Process. 2019, 116, 443–461. [Google Scholar] [CrossRef]
- Edwards, S.; Lees, A.W.; Friswell, M.I. The influence of torsion on rotor/stator contact in rotating machinery. J. Sound Vib. 1999, 225, 767–778. [Google Scholar] [CrossRef] [Green Version]
- Xiang, L.; Gao, N. Coupled torsion–bending dynamic analysis of gear-rotor-bearing system with eccentricity fluctuation. Appl. Math. Model. 2017, 50, 569–584. [Google Scholar] [CrossRef]
- Yuan, Z.W.; Chu, F.L.; Lin, Y.L. External and internal coupling effects of rotor’s bending and torsional vibrations under unbalances. J. Sound Vib. 2007, 299, 339–347. [Google Scholar] [CrossRef]
- Zhou, T.; Hu, M.H.; He, Y.; Ma, B. Vibration features of rotor unbalance and rub-impact compound fault. J. Adv. Manuf. Sci. Technol. 2022, 2, 2022002. [Google Scholar] [CrossRef]
- Tejas, P.H.; Ashish, K.D. Coupled bending-torsional vibration analysis of rotor with rub and crack. J. Sound Vib. 2009, 326, 740–752. [Google Scholar]
- Al-Bedoor, B.O. Modeling the coupled torsional and lateral vibrations of unbalanced rotors. Comput. Methods Appl. Mech. Eng. 2001, 190, 5999–6008. [Google Scholar] [CrossRef]
- Huang, D.G. Characteristics of torsional vibrations of a shaft with unbalance. J. Sound Vib. 2007, 308, 692–698. [Google Scholar] [CrossRef]
- Hong, J.; Yu, P.C.; Ma, Y.H.; Zhang, D.Y. Investigation on nonlinear lateral-torsional coupled vibration of a rotor system with substantial unbalance. Chin. J. Aeronaut. 2020, 33, 1642–1660. [Google Scholar] [CrossRef]
- Chen, X.; Han, S.; Li, J.; Deng, T.; Wei, H.B. Investigation of electromechanical coupling lateral/torsional vibration in a high-speed rotating continuous flexible shaft of PMSM. Appl. Math. Model. 2020, 77, 506–521. [Google Scholar] [CrossRef]
- Shi, Y.S.; Zhou, J.Z.; Lai, X.J.; Xu, Y.H.; Guo, W.C.; Liu, B.N. Stability and sensitivity analysis of the bending-torsional coupled vibration with the arcuate whirl of hydro-turbine generator unit. Mech. Syst. Signal Process. 2021, 149, 107306. [Google Scholar] [CrossRef]
- Emna, S.; Adeline, B.; Didier, R.; Jean, L.D.; Nicolas, P. Coupled bending torsional vibrations of non-ideal energy source rotors under non-stationary operating conditions. Int. J. Mech. Sci. 2019, 163, 105115. [Google Scholar]
- Zheng, N.; Chen, M.L.; Luo, G.H.; Ye, Z.F. Coupled lateral and torsional vibration of rub-impact rotor during hovering flight. Shock. Vib. 2021, 2021, 4077556. [Google Scholar] [CrossRef]
- Md, A.M.; Ashish, K.D.; Kshitij, G. Investigations on bending-torsional vibrations of rotor during rotor-stator rub using Lagrange multiplier method. J. Sound Vib. 2017, 401, 94–113. [Google Scholar]
- Cao, J.M.; Paul, A.; Timothy, D. Coupled lateral and torsional nonlinear transient rotor-bearing system analysis with applications. J. Dyn. Syst. Meas. Control. Trans. ASME 2015, 137, 091011. [Google Scholar] [CrossRef]
- Li, Q.H.; Chen, C.; Gao, S.; Ren, Y.L.; Wang, W.M. The coupled bending-torsional dynamic behavior in the rotating machinery: Modeling, simulation and experiment validation. Mech. Syst. Signal Process. 2022, 178, 109306. [Google Scholar] [CrossRef]
- Wang, Z.P.; Yuan, Y.B.; Wang, Z.Y.; Liu, W.; Guo, Y.B.; Wang, D.H. Lateral-torsional coupling characteristics of a two-stage planetary gear rotor system. Shock. Vib. 2018, 2018, 4293475. [Google Scholar] [CrossRef]
- Han, H.; Lee, K. Experimental verification for lateral-torsional coupled vibration of the propulsion shaft system in a ship. Eng. Fail. Anal. 2019, 104, 758–771. [Google Scholar] [CrossRef]
- Mohiuddin, M.A.; Khulief, Y.A. Coupled bending torsional vibration of rotors using finite element. J. Sound Vib. 1999, 223, 297–316. [Google Scholar] [CrossRef]
- Ma, W.M.; Wang, J.J.; Wang, Z. Frequency and stability analysis method of asymmetric anisotropic rotor-bearing system based on three-dimensional solid finite element method. J. Eng. Gas Turbines Power 2015, 137, 102502. [Google Scholar]
- Wu, J.Q.; Hong, L.; Jiang, J. A robust and efficient stability analysis of periodic solutions based on harmonic balance method and Floquet-Hill formulation. Mech. Syst. Signal Process. 2022, 173, 109057. [Google Scholar] [CrossRef]
- Renson, L.; Kerschen, G.; Cochelin, B. Numerical computation of nonlinear normal modes in mechanical engineering. J. Sound Vib. 2016, 364, 177–206. [Google Scholar] [CrossRef] [Green Version]
- Barend, B.; Arnaud, L. Modal and stability analysis of structures in periodic elastic states: Application to the Ziegler column. Nonlinear Dyn. 2018, 91, 1349–1370. [Google Scholar]
- Louis, G.; Arnaud, L.; Olivier, T.; Christophe, V.; Bruno, C. A purely frequency based Floquet-Hill formulation for the efficient stability computation of periodic solutions of ordinary differential systems. J. Comput. Phys. 2020, 416, 109477. [Google Scholar]
- Yang, X.D.; Yang, J.H.; Qian, Y.J.; Zhang, W.; Roderick, V.N.M. Dynamics of a beam with both axial moving and spinning motion: An example of bi-gyroscopic continua. Eur. J. Mech. A/Solids 2018, 69, 231–237. [Google Scholar] [CrossRef]
- Agnieszka, M. Rotordynamics. Mech. Eng. 2005, 22, 385702. [Google Scholar]
- Joseph, O.; Alan, P.; Hu, L.N. Stability of non-axisymmetric rotor and bearing systems modeled with three-dimensional-solid finite elements. J. Vib. Acoust. 2020, 142, 011010. [Google Scholar]
- Floquet, G. Sur la théorie des équations différentielles linéaires. Annales scientifiques de l’ENS 1879, 8, 3–32. [Google Scholar] [CrossRef] [Green Version]
- Hill, G.W. On the part of the motion of the lunar perigee which is a function of the mean motions of the sun and moon. Acta Math. 1886, 8, 1–36. [Google Scholar] [CrossRef]
- Lazarus, A.; Prabel, B.; Combescure, D. A 3D finite element model for the vibration analysis of asymmetric rotating machines. J. Sound Vib. 2010, 329, 3780–3797. [Google Scholar] [CrossRef] [Green Version]
Parameter | Variable | Value | Unit |
---|---|---|---|
Mass | 1 | ||
Lateral damping coefficient | 0 | ||
Lateral stiffness | 104 | ||
Mass moment of inertial | 0.5 | ||
Torsional damping coefficient | 0 | ||
Torsional stiffness | 1250 | ||
Eccentricity | 100 | ||
Rotation speed | varying |
Solutions | |||||||||
---|---|---|---|---|---|---|---|---|---|
obtained in inertial frame () | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
transferred to rotating frame () | ✓ | ✗ | ✗ | ✗ | ✗ | ✓ | ✓ | ✗ | ✗ |
obtained in rotating frame () | ✓ | - | - | - | - | ✓ | ✓ | - | - |
transferred to inertial frame () | ✓ | - | - | - | - | ✓ | ✓ | - | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qian, X.; Fan, Y.; Wu, Y.; Wang, W.; Li, L. The Influence of Coordinate Systems on the Stability Analysis of Lateral–Torsional Coupled Vibration. Aerospace 2023, 10, 699. https://doi.org/10.3390/aerospace10080699
Qian X, Fan Y, Wu Y, Wang W, Li L. The Influence of Coordinate Systems on the Stability Analysis of Lateral–Torsional Coupled Vibration. Aerospace. 2023; 10(8):699. https://doi.org/10.3390/aerospace10080699
Chicago/Turabian StyleQian, Xin, Yu Fan, Yaguang Wu, Wenjun Wang, and Lin Li. 2023. "The Influence of Coordinate Systems on the Stability Analysis of Lateral–Torsional Coupled Vibration" Aerospace 10, no. 8: 699. https://doi.org/10.3390/aerospace10080699
APA StyleQian, X., Fan, Y., Wu, Y., Wang, W., & Li, L. (2023). The Influence of Coordinate Systems on the Stability Analysis of Lateral–Torsional Coupled Vibration. Aerospace, 10(8), 699. https://doi.org/10.3390/aerospace10080699