Evaluation of Joint Clearance Effects on the Shimmy of Nose Landing Gear
Abstract
:1. Introduction
2. MBD Model of the NLG with Joint Clearance
2.1. Dynamic Equation of Multibody System
2.2. Simplified Model of NLG
2.3. Load Applied to NLG
2.3.1. Shock Absorber Load
2.3.2. Shimmy Damper Load
2.3.3. Tire Load
2.4. Establishment of Equivalent Model of Joint Clearance
2.4.1. Equivalent Model of Radial Clearance
2.4.2. Equivalent Model of Axial Clearance
2.5. Simulation Settings and Initial Conditions
3. Evaluation Method
3.1. Position Factor of NLG Joint
3.2. Wear Factor of NLG Joint
4. Result Analysis and Discussion
4.1. Influence of the Joint Clearance between NLG and Fuselage on Shimmy
4.2. Influence of the Joint Clearance between Turning Sleeve and Upper Torque Link on Shimmy
4.3. Influence of the Joint Clearance between Upper Torque Link and Lower Torque Link on Shimmy
4.4. Influence of the Joint Clearance between Lower Torque Link and Piston on Shimmy
4.5. Comparison of the Effects of Joint Clearance at Different Positions
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Grossman, D.T. F-15 Nose Landing Gear Shimmy, Taxi Test and Correlative Analyses. SAE Tech. Pap. 1980, 89, 3781–3791. [Google Scholar] [CrossRef]
- Howcroft, C.; Lowenberg, M.; Neild, S.; Krauskopf, B.; Coetzee, E. Shimmy of an Aircraft Main Landing Gear with Geometric Coupling and Mechanical Freeplay. J. Comput. Nonlinear Dyn. 2015, 10, 1–24. [Google Scholar] [CrossRef]
- Howcroft, C.; Lowenberg, M.; Neild, S.; Krauskopf, B. Effects of Freeplay on Dynamic Stability of an Aircraft Main Landing Gear. J. Aircr. 2013, 50, 1908–1922. [Google Scholar] [CrossRef]
- Atabay, E.; Ozkol, I. Application of a Magnetorheological Damper Modeled Using the Current-Dependent Bouc-Wen Model for Shimmy Suppression in a Torsional Nose Landing Gear with and without Freeplay. J. Vib. Control 2014, 20, 1622–1644. [Google Scholar] [CrossRef]
- William, J. Moreland The Story of Shimy. J. Aeronaut. Sci. 1954, 21, 793–808. [Google Scholar]
- Rahmani, M.; Behdinan, K. On the Effectiveness of Shimmy Dampers in Stabilizing Nose Landing Gears. Aerosp. Sci. Technol. 2019, 91, 272–286. [Google Scholar] [CrossRef]
- Feng, F.; Nie, H.; Zhang, M.; Peng, Y. Effect of Torsional Damping on Aircraft Nose Landing-Gear Shimmy. J. Aircr. 2015, 52, 561–568. [Google Scholar] [CrossRef]
- Rahmani, M.; Behdinan, K. Structural Design and Optimization of a Novel Shimmy Damper for Nose Landing Gears. Struct. Multidiscip. Optim. 2020, 62, 2783–2803. [Google Scholar] [CrossRef]
- Rahmani, M.; Behdinan, K. Parametric Study of a Novel Nose Landing Gear Shimmy Damper Concept. J. Sound Vib. 2019, 457, 299–313. [Google Scholar] [CrossRef]
- Rahmani, M.; Behdinan, K. Investigation on the Effect of Coulomb Friction on Nose Landing Gear Shimmy. J. Vib. Control 2019, 25, 255–272. [Google Scholar] [CrossRef]
- Thota, P.; Krauskopf, B.; Lowenberg, M. Nonlinear Analysis of the Influence of Tyre Inflation Pressure on Nose Landing Gear Shimmy. In Proceedings of the AIAA Modeling and Simulation Technologies Conference, Chicago, IL, USA, 10–13 August 2009. [Google Scholar] [CrossRef]
- Thota, P.; Krauskopf, B.; Lowenberg, M. Multi-Parameter Bifurcation Study of Shimmy Oscillations in a Dual-Wheel Aircraft Nose Landing Gear. Nonlinear Dyn. 2012, 70, 1675–1688. [Google Scholar] [CrossRef]
- Ran, S.; Besselink, I.J.M.; Nijmeijer, H. Application of Nonlinear Tyre Models to Analyse Shimmy. Veh. Syst. Dyn. 2014, 52, 387–404. [Google Scholar] [CrossRef]
- Terkovics, N.; Neild, S.; Lowenberg, M.; Krauskopf, B. Bifurcation Analysis of a Coupled Nose-Landing-Gear-Fuselage System. J. Aircr. 2014, 51, 259–272. [Google Scholar] [CrossRef]
- Kewley, S.; Lowenberg, M.; Neild, S.; Krauskopf, B. Investigation into the Interaction of Nose Landing Gear and Fuselage Dynamics. J. Aircr. 2016, 53, 881–891. [Google Scholar] [CrossRef]
- Jiang, Y.; Feng, G.; Liu, P.; Yuan, L.; Ding, J.; Jiang, B. Influence of Nose Landing Gear Torsional Damping on the Stability of Aircraft Taxiing Direction. Aerospace 2022, 9, 729. [Google Scholar] [CrossRef]
- Cheng, L.; Cao, H.; Zhang, L. Two-Parameter Bifurcation Analysis of an Aircraft Nose Landing Gear Model. Nonlinear Dyn. 2021, 103, 367–381. [Google Scholar] [CrossRef]
- Thota, P.; Krauskopf, B.; Lowenberg, M. Bifurcation Analysis of Nose-Landing-Gear Shimmy with Lateral and Longitudinal Bending. J. Aircr. 2010, 47, 87–95. [Google Scholar] [CrossRef]
- Thota, P.; Krauskopf, B.; Lowenberg, M. Interaction of Torsion and Lateral Bending in Aircraft Nose Landing Gear Shimmy. Nonlinear Dyn. 2009, 57, 455–467. [Google Scholar] [CrossRef]
- Sura, N.K.; Suryanarayan, S. Lateral Response of Nonlinear Nose-Wheel Landing Gear Models with Torsional Free Play. J. Aircr. 2007, 44, 1991–1997. [Google Scholar] [CrossRef]
- Sateesh, B.; Maiti, D.K. Non-Linear Analysis of a Typical Nose Landing Gear Model with Torsional Free Play. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2009, 223, 627–641. [Google Scholar] [CrossRef]
- Rahmani, M.; Behdinan, K. Interaction of Torque Link Freeplay and Coulomb Friction Nonlinearities in Nose Landing Gear Shimmy Scenarios. Int. J. Non. Linear. Mech. 2020, 119, 103338. [Google Scholar] [CrossRef]
- Marques, F.; Isaac, F.; Dourado, N.; Flores, P. An Enhanced Formulation to Model Spatial Revolute Joints with Radial and Axial Clearances. Mech. Mach. Theory 2017, 116, 123–144. [Google Scholar] [CrossRef]
- Yan, S.; Xiang, W.; Zhang, L. A Comprehensive Model for 3D Revolute Joints with Clearances in Mechanical Systems. Nonlinear Dyn. 2015, 80, 309–328. [Google Scholar] [CrossRef]
- Yin, Y.; Xu, K.; Nie, H.; Wei, X.; Wang, H. Dynamics Analysis of Spatial Landing-Gear Mechanism with Hinge Clearance and Axis Deviation. J. Aircr. 2021, 58, 30–42. [Google Scholar] [CrossRef]
- Zheng, E.; Zhu, R.; Zhu, S.; Lu, X. A Study on Dynamics of Flexible Multi-Link Mechanism Including Joints with Clearance and Lubrication for Ultra-Precision Presses. Nonlinear Dyn. 2016, 83, 137–159. [Google Scholar] [CrossRef]
- Lai, X.; Lai, Q.; Huang, H.; Wang, C.; Yang, J.; Zhang, Y. New Approach to Assess and Rank the Impact of Revolute Joint Wear on the Kinematic Accuracy in the Low-Velocity Planar Mechanism. Adv. Eng. Softw. 2016, 102, 71–82. [Google Scholar] [CrossRef]
- Chen, Y.; Liu, K.; Qiu, R.; Yu, C.; Xia, X.; Sun, Y. Dynamic Analysis of Planar Multibody Systems Considering Contact Characteristics of Ball Bearing Joint. Int. J. Struct. Stab. Dyn. 2021, 21, 1–27. [Google Scholar] [CrossRef]
- Rahmani, M.; Behdinan, K. Studying the Effect of Freeplay on Nose Landing Gear Shimmy Using a Fully Nonlinear Model. Proc. ASME Des. Eng. Tech. Conf. 2018, 6, 1–11. [Google Scholar] [CrossRef]
- XU, K.; YIN, Y.; YANG, Y.; NIE, H.; WEI, X. Bifurcation Analysis of Dual-Sidestay Landing Gear Locking Performance Considering Joint Clearance. Chin. J. Aeronaut. 2022, 35, 209–226. [Google Scholar] [CrossRef]
- Tourajizadeh, H.; Zare, S. Robust and Optimal Control of Shimmy Vibration in Aircraft Nose Landing Gear. Aerosp. Sci. Technol. 2016, 50, 1–14. [Google Scholar] [CrossRef]
- Sanches, L.; Guimarães, T.A.M.; Marques, F.D. Nonlinear Energy Sink to Enhance the Landing Gear Shimmy Performance. Acta Mech. 2021, 232, 2605–2622. [Google Scholar] [CrossRef]
- Laporte, D.J.; Lopes, V.; Bueno, D.D. An Approach to Reduce Vibration and Avoid Shimmy on Landing Gears Based on an Adapted Eigenstructure Assignment Theory. Meccanica 2020, 55, 7–17. [Google Scholar] [CrossRef]
- Orlando, C. Nose Landing Gear Simple Adaptive Shimmy Suppression System. J. Guid. Control. Dyn. 2020, 43, 1298–1312. [Google Scholar] [CrossRef]
- Li, Y.; Howcroft, C.; Neild, S.A.; Jiang, J.Z. Using Continuation Analysis to Identify Shimmy-Suppression Devices for an Aircraft Main Landing Gear. J. Sound Vib. 2017, 408, 234–251. [Google Scholar] [CrossRef]
- Liu, H.; Gu, H.; Chen, D. Application of High-Speed Solenoid Valve to the Semi-Active Control of Landing Gear. Chin. J. Aeronaut. 2008, 21, 232–240. [Google Scholar] [CrossRef]
- Orlando, C.; Alaimo, A. A Robust Active Control System for Shimmy Damping in the Presence of Free Play and Uncertainties. Mech. Syst. Signal Process. 2017, 84, 551–569. [Google Scholar] [CrossRef]
- Smiley, R.F. Correlation, Evaluation, and Extention of Linearized Theories for Tire Motion and Wheel Shimmy. NACA TN-3632, 1 June 1956. [Google Scholar]
- Young, W.C.; Budynas, R.; Sadegh, A. Roark’s Formulas for Stress and Strain, 9th ed.; McGraw-Hill: New York, NY, USA, 2011; ISBN 9781260453768. [Google Scholar]
Application Object | Load Type | Force Element |
---|---|---|
Shock absorber | Air spring force | Scalar Expression Force |
Oil damping force | Scalar Expression Force | |
Structural limiting force | Bump Stop Force | |
Shimmy damper | Anti-shimmy damping torque | Standard Bushing |
Tire | Tire force | Complex Tire |
Parameter | Description | Value | Unit |
---|---|---|---|
Pa0 | Initial gas pressure | 2,425,000 | Pa |
V0 | Initial gas volume | 3.059 × 10−3 | m3 |
Aa | Pressure area | 7.114 × 10−3 | m2 |
ρ | Oil density | 860 | kg/m3 |
Patm | Atmospheric pressure | 1,010,000 | Pa |
n | Air variability index | 1.1 | - |
kstrut | Structural limited stiffness | 1.96 × 108 | N/m |
Smax | Maximum stroke | 0.43 | m |
S | Stroke | - | m |
Parameter | Description | Value | Unit |
---|---|---|---|
Landing gear structural | |||
lg0 | Gear height | 2.3 | m |
t | Caster length | 38.0 | mm |
Cd | Torsional damping of strut | 130.0 | N m s rad−1 |
Tire of NLG | |||
RN | Radius of tire | 0.3854 | m |
KN | Vertical stiffness of tire | 1,174,000.0 | N m−1 |
Kφ | Torsional stiffness of tire | 7746.0 | N m rad−1 |
Nq | Cornering stiffness of tire | 173,088.9 | N m−1 |
Kλ | Lateral stiffness of tire | 392,273.7 | N m−1 |
Kβ | Longitudinal stiffness of tire | 786,381.1 | N m−1 |
Cλ | Lateral damping of tire | 550.0 | N m2 rad−1 |
Cφ | Torsional damping of tire | 550.0 | N m2 rad−1 |
External conditions | |||
μ | Tire rolling friction coefficient | 0.04 | - |
N | Nose wheel vertical load | 76,000 | N |
V | Taxiing speed | - | m s−1 |
No. | Joint Position | Radial Clearance/mm | Axial Clearance/mm |
---|---|---|---|
1 | NLG and fuselage | 0.01–0.04 | 0.1–0.2 |
2 | Turning sleeve and upper torque link | 0.01–0.04 | 0–0.1 |
3 | Upper and lower torque link | 0.01–0.04 | 0–0.1 |
4 | Lower torque link and piston | 0.01–0.04 | 0–0.1 |
No. | Clearance Type | Radial Clearance Cr/mm | Axial Clearance Ca/mm |
---|---|---|---|
1 | Reference clearance | 0.1 | 0.1 |
2 | Radial clearance | 0.2 | 0.1 |
3 | 0.5 | 0.1 | |
4 | 1.0 | 0.1 | |
5 | Axial clearance | 0.1 | 0.2 |
6 | 0.1 | 0.5 | |
7 | 0.1 | 1.0 | |
8 | Radial and axial clearance coupling | 0.2 | 0.2 |
9 | 0.5 | 0.5 | |
10 | 1.0 | 1.0 |
No. | Joint Position | Evaluation Index | Radial Clearance Cr Effect | Axial Clearance Ca Effect | Coupling Clearance Cc Effect |
---|---|---|---|---|---|
1 | NLG and fuselage | Initial torsion angle | Increase 0.03 deg | Increase 0.03 deg | Increase 0.07 deg |
Shimmy frequency | Reduce 0.14 Hz | 0 | Reduce 0.14 Hz | ||
Convergent property | Convergent | Convergent | Convergent | ||
2 | Turning sleeve and upper torque link | Initial torsion angle | 0 | 0 | Increase 0.14 deg |
Shimmy frequency | 0 | 0 | Increase 0.44 Hz | ||
Convergent property | Convergent | Convergent | Cc ≥ 0.2 mm, shimmy occurs, max amplitude is 0.95 deg | ||
3 | Upper and lower torque link | Initial torsion angle | 0 | Increase 0.04 deg | Increase 0.04 deg |
Shimmy frequency | 0 | Increase 0.29 Hz | Increase 0.29 Hz | ||
Convergent property | Convergent | Ca ≥ 0.5 mm, shimmy occurs, max amplitude is 0.23 deg | Cc ≥ 0.5 mm, shimmy occurs, max amplitude is 0.23 deg | ||
4 | Lower torque link and piston | Initial torsion angle | 0 | 0 | Increase 0.11 deg |
Shimmy frequency | 0 | Increase 0.01 Hz | Increase 0.44 Hz | ||
Convergent property | Convergent | Convergent | Cc ≥ 0.5 mm, shimmy occurs, max amplitude is 0.75 deg |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jiang, Y.; Feng, G.; Liu, P.; Yuan, L.; Ding, J.; Jiang, B. Evaluation of Joint Clearance Effects on the Shimmy of Nose Landing Gear. Aerospace 2023, 10, 722. https://doi.org/10.3390/aerospace10080722
Jiang Y, Feng G, Liu P, Yuan L, Ding J, Jiang B. Evaluation of Joint Clearance Effects on the Shimmy of Nose Landing Gear. Aerospace. 2023; 10(8):722. https://doi.org/10.3390/aerospace10080722
Chicago/Turabian StyleJiang, Yiyao, Guang Feng, Panglun Liu, Li Yuan, Jianbin Ding, and Bingyan Jiang. 2023. "Evaluation of Joint Clearance Effects on the Shimmy of Nose Landing Gear" Aerospace 10, no. 8: 722. https://doi.org/10.3390/aerospace10080722
APA StyleJiang, Y., Feng, G., Liu, P., Yuan, L., Ding, J., & Jiang, B. (2023). Evaluation of Joint Clearance Effects on the Shimmy of Nose Landing Gear. Aerospace, 10(8), 722. https://doi.org/10.3390/aerospace10080722