Efficient Global Aerodynamic Shape Optimization of a Full Aircraft Configuration Considering Trimming
Abstract
:1. Introduction
2. Methodology
2.1. Geometric Parametrization
2.2. Laplacian Smoothing of Aerodynamic Shape
Algorithm 1 Laplacian smoothing algorithm |
Input yinitial /*initial y-axis direction deformations of FFD control point* / Output ysmoothing /*y-axis direction deformations of FFD control points obtained via Laplacian smoothing* / Procedure Smoothing (yinitial) ysmoothing = yinitial /*convergence criterion is set as 0.035* / vsmoothing = FED(yinitial) / * perform FFD parameterization and get initial y - axis deirection coordinates of the wing surface mesh * / while do for each FFD control point i do / *Laplacian smoothing function * / *θ = 0.5 in this article, nneighbor = 4 for the wing* / end for Vsmoothing = FFD(ysmoothing) / *update the y - axis direction coordinates of the wing surface mesh * / / * calculate the relative error * / end while end Procedure |
2.3. Flow Solver
2.3.1. Governing Equation of Flow and Discretization Scheme
2.3.2. Discrete Adjoint Method
2.4. Mesh Perturbation Method
2.5. SBO Algorithm
- (1)
- LHS is selected to generate 100 initial samples. Then, the aerodynamic shapes generated by these samples are smoothed by using the Laplacian smoothing method, and corresponding responses are solved by Adflow;
- (2)
- Initial kriging models are built based on the samples and corresponding responses;
- (3)
- The parallel infill-sampling criteria, combining the expected improvement (EI) and minimizing surrogate prediction (MSP), are used to generate two new samples. The new aerodynamic shapes are smoothed by using the Laplacian smoothing method, and corresponding responses are solved by Adflow;
- (4)
- Kriging models are updated based on these smoothed samples and their responses.
- (5)
- Steps 3 and 4 are repeated until one of the termination conditions is satisfied.
3. Problem Formulation
3.1. Baseline Geometry
3.2. Mesh Convergence Study
3.3. Optimization Problem Formulation
4. Optimization Results
4.1. Strategy I: Untrimmed Optimization + Manual Trimming
4.2. Strategy II: Trimmed Optimization
4.3. Comparison of the Results Obtained by Using Different Optimization Strategies
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Queipo, N.V.; Haftka, R.T.; Shyy, W.; Goela, T.; Vaidyanathan, R.; Tucker, P.K. Surrogate-based analysis and optimization. Prog. Aerosp. Sci. 2005, 45, 1–28. [Google Scholar] [CrossRef]
- Forrester, A.I.J.; Keane, A.J. Recent advances in surrogate-based optimization. Prog. Aerosp. Sci. 2009, 45, 50–79. [Google Scholar] [CrossRef]
- Haftka, R.T.; Villanueva, D.; Chaudhuri, A. Parallel surrogate-assisted global optimization with expensive functions-a survey. Struct. Multidiscip. Optim. 2016, 54, 3–13. [Google Scholar] [CrossRef]
- Parr, J.M.; Keane, A.J.; Forrester, A.I.J.; Holden, C.M.E. Infill sampling criteria for surrogate-based optimization with constraint handling. Eng. Optimiz. 2012, 44, 1147–1166. [Google Scholar] [CrossRef]
- Han, Z.H. Kriging surrogate model and its application to design optimization: A review of recent progress. Acta Aeronaut. Astronaut. Sin. 2016, 37, 3197–3225. (In Chinese) [Google Scholar]
- Viana, F.A.C.; Simpson, T.W.; Balabanov, V.; Toropov, V. Metamodeling in multidisciplinary design optimization: How far have we really come? AIAA J. 2014, 52, 670–690. [Google Scholar] [CrossRef]
- Han, Z.H.; Goertz, S.; Zimmermann, R. Improving variable-fidelity surrogate modeling via gradient enhanced Kriging and a generalized hybrid bridge function. Aerosp. Sci. Tech. 2013, 25, 177–189. [Google Scholar] [CrossRef]
- Han, Z.H. SurroOpt: A generic surrogate-based optimization code for aerodynamic and multidisciplinary design. In Proceedings of the ICAS 2016, Daejeon, Republic of Korea, 25–30 September 2016. [Google Scholar]
- Liu, J.; Song, W.P.; Han, Z.H.; Zhang, Y. Efficient aerodynamic shape optimization of transonic wings using a parallel infilling strategy and surrogate models. Struct. Multidiscip. Optim. 2017, 55, 925–943. [Google Scholar] [CrossRef]
- Han, Z.H.; Xu, C.Z.; Zhang, L.; Zhang, Y.; Zhang, K.S.; Song, W.P. Efficient aerodynamic shape optimization using variable-fidelity surrogate models and multilevel computational grids. Chin. J Aeronaut. 2020, 33, 31–47. [Google Scholar] [CrossRef]
- Courrier, N.; Boucard, P.A.; Soulier, B. Variable-fidelity modeling of structural analysis of assemblies. J. Global. Optim. 2016, 64, 577–613. [Google Scholar] [CrossRef]
- Ha, H.; Oh, S.; Yee, K. Feasibility study of hierarchical kriging model in the design optimization process. J. Korean Soc. Aero. Spac. Sci. 2014, 42, 108–118. [Google Scholar] [CrossRef]
- Jo, Y.; Choi, S.; Lee, D.J.; Choi, D.Z. Adaptive variable-fidelity analysis and design using dynamic fidelity indicators. AIAA J. 2016, 54, 3564–3579. [Google Scholar] [CrossRef]
- Leifsson, L.; Koziel, S. Aerodynamic shape optimization by variable-fidelity computational fluid dynamics models: A review of recent progress. J. Comput. Sci. 2015, 10, 45–54. [Google Scholar] [CrossRef]
- Leifsson, L.; Koziel, S.; Tesfahunegn, Y.A. Multiobjective aerodynamic optimization by variable-fidelity models and response surface surrogate models. AIAA J. 2016, 54, 531–541. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Z.H.; Zhang, K.S. Variable-fidelity expected improvement for efficient global optimization of expensive functions. Struct. Multidiscip. Optim. 2018, 58, 1431–1451. [Google Scholar] [CrossRef]
- Han, Z.H.; Zhang, Y.; Song, C.X.; Zhang, K.S. Weighted gradient-enhanced kriging for high-dimensional surrogate modeling and design optimization. AIAA J. 2017, 55, 4330–4346. [Google Scholar] [CrossRef]
- Laurenceau, J.; Meaux, M.; Montagnac, M.; Sagaut, P. Comparison of gradient-based and gradient-enhanced response-surface-based optimizers. AIAA J. 2012, 48, 981–994. [Google Scholar] [CrossRef]
- Mortished, C.; Ollar, J.; Jones, R.; Benzie, P.; Toropov, V.; Sienz, J. Aircraft wing optimization based on computationally efficient gradient-enhanced Kriging. In Proceedings of the 57th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Bouhlel, M.A.; Martins, J.R.R.A. Gradient-enhanced kriging for high-dimensional problems. Eng. Comput. Ger. 2019, 35, 157–173. [Google Scholar] [CrossRef]
- Li, J.C.; Zhang, M. Adjoint-free Aerodynamic Shape Optimization of the Common Research Model Wing. AIAA J. 2021, 59, 1990–2000. [Google Scholar] [CrossRef]
- Li, J.C.; Cai, J.S.; Qu, K. Surrogate-based aerodynamic shape optimization with the active subspace method. Struct. Multidiscip. Optim. 2019, 59, 403–419. [Google Scholar] [CrossRef]
- Bouhlel, M.A.; Bartoli, N.; Regis, R.G.; Otsmane, A.; Morlier, J. Efficient global optimization for high-dimensional constrained problems by using the Kriging models combined with the partial least squares method. Eng. Optimiz. 2018, 50, 2038–2053. [Google Scholar] [CrossRef]
- Zhang, K.S.; Han, Z.H.; Gao, Z.J.; Wang, Y. Constraint aggregation for large number of constraints in wing surrogate-based optimization. Struct. Multidiscip. Optim. 2019, 59, 421–438. [Google Scholar] [CrossRef]
- Wang, K.; Han, Z.H.; Zhang, K.S.; Song, W.P. An Efficient Geometric Constraint Handling Method for Surrogate-Based Aerodynamic Shape Optimization. Eng. Appl. Comp. Fluid 2023, 17, e2153173. [Google Scholar] [CrossRef]
- Zhang, Y.; Han, Z.H.; Shi, L.X.; Song, W.P. Multi-round Surrogate-based Optimization for Benchmark Aerodynamic Design Problems. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Li, J.C.; Zhang, M. Drag Reduction of Transonic Wings with Surrogate-Based Optimization. In Proceedings of the 2018 Asia-Pacific International Symposium on Aerospace Technology, Chengdu, China, 15–19 October 2018. [Google Scholar]
- Han, Z.H.; Zhang, Y.; Xu, C.Z.; Wang, K.; Wu, M.M.; Zhu, Z.; Song, W.P. Aerodynamic optimization design of large civil aircraft wings using surrogate-based model. Acta Aeronaut. Astronaut. Sin. 2019, 40, 522398. (In Chinese) [Google Scholar]
- Chen, S.; Lyu, Z.J.; Kenway, G.K.W.; Martins, J.R.R.A. Aerodynamic shape optimization of common research model wing-body-tail configuration. J. Aircr. 2016, 53, 276–293. [Google Scholar] [CrossRef]
- Lyu, Z.J.; Martins, J.R.R.A. Aerodynamic design optimization studies of a blended-wing-body aircraft. J. Aircr. 2014, 51, 1604–1617. [Google Scholar] [CrossRef]
- Koo, D.; Zingg, D.W. Progress in Aerodynamic Shape Optimization Based on the Reynolds-Averaged Navier-Stokes Equations. In Proceedings of the 54th AIAA Aerospace Sciences Meeting, San Diego, CA, USA, 4–8 January 2016. [Google Scholar]
- Merle, A.; Stück, D.W.; Rempke, A. An Adjoint-based Aerodynamic Shape Optimization Strategy for Trimmed Aircraft with Active Engines. In Proceedings of the 35th AIAA Applied Aerodynamics Conference, Denver, CO, USA, 5–9 June 2017. [Google Scholar]
- Kenway, G.K.W.; Secco, N.; Martins, J.R.R.A.; Mishra, A.; Duraisamy, K. An Efficient Parallel Overset Method for Aerodynamic Shape Optimization. In Proceedings of the 58th AIAA/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Conference, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar]
- Lei, R.W.; Bai, J.Q.; Xu, D.Y. Aerodynamic optimization of civil aircraft with wing-mounted engine jet based on adjoint method. Aerosp. Sci. Tech. 2019, 93, 105285. [Google Scholar] [CrossRef]
- Sederberg, T.W.; Parry, S.R. Free-form deformation of solid geometric models. ACM Siggraph Comput. Graph. 1986, 20, 151–160. [Google Scholar] [CrossRef]
- Giunta, A.A.; Wojtkiewicz, J.S.F.; Eldred, M.S. Overview of Modern Design of Experiments Methods for Computa-tional Simulations. In Proceedings of the 41st AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 6–9 January 2003. [Google Scholar]
- Mader, C.A.; Kenway, G.K.W.; Yildirim, A.; Martins, J.R.R.A. ADflow: An Open-Source Computational Fluid Dynamics Solver for Aerodynamic and Multidisciplinary Optimization. J. Aerosp. Inf. Syst. 2020, 17, 508–527. [Google Scholar] [CrossRef]
- Jameson, A.; Schmidt, W.; Turkel, E. Numerical Solution of the Euler Equations by Finite Volume Methods Using Runge–Kutta Time Stepping Schemes. In Proceedings of the 14th Fluid and Plasma Dynamics Conference, Palo Alto, CA, USA, 23–25 June 1981. [Google Scholar]
- Klopfer, G.; Hung, C.; Wijngaart, R.V.D.; Onufer, J. A diagonalized diagonal dominant alternating direction implicit (D3ADI) scheme and subiteration correction. In Proceedings of the 29th AIAA, Fluid Dynamics Conference, Albuquerque, NM, USA, 15–18 June 1998. [Google Scholar]
- Saad, Y.; Schultz, M.H. GMRES: A Generalized Minimal Residual Algorithm for Solving Nonsymmetric Linear Systems. Siam J. Sci. Comput. 1986, 7, 856–869. [Google Scholar] [CrossRef]
- Balay, S.; Brown, J.; Buschelman, K.; Eijkhout, V.; Gropp, W.D.; Kaushik, D.; Knepley, M.G.; McInnes, L.C.; Smith, B.F.; Zhang, H. PETSc Users Manual, Technical Report ANL-95/11—Revision 3.4; Argonne National Laboratory: Lemont, IL, USA, 2013. [Google Scholar]
- Han, Z.H.; Chen, J.; Zhang, K.S.; Xu, Z.M.; Zhu, Z.; Song, W.P. Aerodynamic Shape Optimization of Natural-Laminar-Flow Wing Using Surrogate-Based Approach. AIAA J. 2018, 56, 2579–2593. [Google Scholar] [CrossRef]
- Bu, Y.P.; Song, W.P.; Han, Z.H.; Zhang, Y.; Zhang, L. Aerodynamic/aeroacoustic variable-fidelity optimization of helicopter rotor based on hierarchical Kriging model. Chin. J. Aeronaut. 2020, 33, 476–492. [Google Scholar] [CrossRef]
- Han, Z.H.; Xu, C.Z.; Qiao, J.L.; Liu, F.; Chi, J.B.; Meng, G.Y.; Zhang, K.S.; Song, W.P. Recent progress of efficient global aerodynamic shape optimization using surrogate-based approach. Acta Aeronaut. Astronaut. Sin. 2020, 41, 623344. (In Chinese) [Google Scholar]
- Kreisselmeier, G.; Steinhauser, R. Systematic control design by optimizing a vector performance index. In Proceedings of the IFAC Symposium on computer Aided Design of Control Systems, Zurich, Switzerland, 29–31 August 1979. [Google Scholar]
- He, X.L. Multi-Component Adaptive Aerodynamic Shape Optimization Methods for Civil Transport Aircrafts. Ph.D. Thesis, Northwestern Polytechnical University, Wuhan, China, 2019. (In Chinese). [Google Scholar]
- Yu, L.; Lyu, Z.J.; Xu, Z.L.; Martins, J.R.R.A. On the influence of optimization algorithm and initial design on wing aerodynamic shape optimization. Aerosp. Sci. Tech. 2018, 75, 183–199. [Google Scholar] [CrossRef]
Number | ∆1 | Y+ | Number of Cells (Million) |
---|---|---|---|
L2 | 3.69 × 10−5 | 1.0 | 0.887 |
L1 | 2.46 × 10−5 | 2/3 | 6.776 |
L0 | 1.64 × 10−5 | 4/9 | 59.355 |
Mesh Levels | CL | CD | CMZ |
---|---|---|---|
L00 | 0.5 | 0.02720 | / |
L0 | 0.5 | 0.02736 | −0.0422 |
L1 | 0.5 | 0.02838 | −0.0463 |
L2 | 0.5 | 0.03351 | −0.0640 |
Optimization Strategy | Design Variables | Objective | Constraints | |||
---|---|---|---|---|---|---|
Description | Quantity | Function | Description | Quantity | ||
Strategy I | Angle of attack | 1 | Min. CD | CL = 0.5 | Lift constraint | 1 |
t−0.85t0 ≥ 0 | Geometric constraints | 525 | ||||
v ≥ v0 | Volume constraint | 1 | ||||
Wing shape | 80 | Fix the leading edge | 5 | |||
Fix the trailing edge | 5 | |||||
Strategy II | Angle of attack | 1 | Min. CD | CL =0.5 | 1 | |
CMZ= 0 | zero pitching moment constraint | 1 | ||||
Wing shape | 80 | t−0.85t0 ≥ 0 | 525 | |||
v ≥ v0 | 1 | |||||
Tail deflection angle | 1 | 5 | ||||
5 |
Optimization Algorithm | Computational Cost (Hours) |
---|---|
GBO | 182.27 |
SBO | 165.58 |
Optimization Algorithm | Computational Cost (Hours) |
---|---|
GBO | 218.14 |
SBO | 200.25 |
Optimization Strategy | CL | CD (Counts) | CMZ | Tail Deflection Angle | Angle of Attack | |
---|---|---|---|---|---|---|
Strategy I | untrimmed | 0.5 | 277.48 | −0.05649 | 0° | 2.2432° |
trimmed manually | 0.5 | 281.77 | 0 | −0.8350° | 2.3487° | |
Strategy II | 0.5 | 278.61 | 0 | −0.3996° | 2.3604° |
Optimization Method | CL | CD (Counts) | CMZ | Tail Deflection Angle | Angle of Attack | |
---|---|---|---|---|---|---|
GBO | Strategy I: trimmed manually | 0.5 | 281.40 | 0 | −0.8990° | 2.4087° |
Strategy II | 0.5 | 279.38 | 0 | −0.4065° | 2.3543° | |
SBO | Strategy I: trimmed manually | 0.5 | 281.77 | 0 | −0.8350° | 2.3487° |
Strategy II | 0.5 | 278.61 | 0 | −0.3996° | 2.3604° |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Han, Z.; Zhang, K.; Song, W. Efficient Global Aerodynamic Shape Optimization of a Full Aircraft Configuration Considering Trimming. Aerospace 2023, 10, 734. https://doi.org/10.3390/aerospace10080734
Wang K, Han Z, Zhang K, Song W. Efficient Global Aerodynamic Shape Optimization of a Full Aircraft Configuration Considering Trimming. Aerospace. 2023; 10(8):734. https://doi.org/10.3390/aerospace10080734
Chicago/Turabian StyleWang, Kai, Zhonghua Han, Keshi Zhang, and Wenping Song. 2023. "Efficient Global Aerodynamic Shape Optimization of a Full Aircraft Configuration Considering Trimming" Aerospace 10, no. 8: 734. https://doi.org/10.3390/aerospace10080734
APA StyleWang, K., Han, Z., Zhang, K., & Song, W. (2023). Efficient Global Aerodynamic Shape Optimization of a Full Aircraft Configuration Considering Trimming. Aerospace, 10(8), 734. https://doi.org/10.3390/aerospace10080734