Developments in Wingtip Vorticity Mitigation Techniques: A Comprehensive Review
Abstract
:1. Introduction
1.1. Wingtip Vortices and Their formation
1.2. Role of Wingtip Vortices in Aerodynamics
1.3. Control of Wingtip Vortices
2. History of Wingtip Devices and Some Commercial Applications
3. Survey of Various Types of Wingtip Devices
3.1. Passive Wingtip Devices
3.1.1. Endplates
3.1.2. Hoerner-Style Tip
3.1.3. Half Delta Wingtip (HDW)
3.1.4. Porous Wingtips
3.1.5. Slotted/Serrated Wingtip
3.1.6. Fenced Wingtip
3.1.7. Blended Winglet
3.1.8. Canted Winglet
3.1.9. Sharklets
3.1.10. Split Scimitar Winglet
3.1.11. Upswept and Drooped Wingtips
3.1.12. Spiroid Wingtip
3.1.13. Raked Wingtip
3.2. Active Wingtip Devices
3.2.1. Oscillating Winglet
3.2.2. Folding Wingtip
3.2.3. Flapping Wingtip
3.2.4. Synthetic Jet Wingtip
3.2.5. Adaptive Multi-Winglets (Tip Sail)
3.2.6. ATLAS Active Winglets
4. Summary and Conclusions
Funding
Conflicts of Interest
Nomenclature
Latin Alphabet | |
c | Chord length |
CD | Drag coefficient |
CL | Lift coefficient |
D | Drag |
Di | Induced drag |
fP | frequency of flapping motion |
L | Lift |
Re | Reynolds number |
u | Time–mean velocity |
U∞ | Free stream velocity |
x | Stream-wise coordinate |
(x, y) | Coordinate system |
Greek Alphabet | |
α | Angle of attack, degree |
Acronym | |
AR | Aspect ratio |
BW | Baseline wing |
CFD | Computational Fluid Dynamic |
DBD | Dielectric Barrier Discharge |
DDES | Delayed Detached-Eddy Simulation |
DNS | Direct Numerical Simulation |
HDW | Half Delta Wingtip |
HRDW | reversed half-delta wingtips |
LES | Large Eddy Simulation |
LSA | Linear Stability Analysis |
NACA | National Advisory Committee for Aeronautics |
FVM | Finite volume method |
MFC | Macro Fibber Composite |
PLT | Prandtl lifting-line theory |
PIV | Particle Image Velocimetry |
RANS | Reynolds-Averaged Navier–Stokes |
RSM | Reynolds stress equation model |
SAT | Spalart–Allmaras Turbulence |
SRS | Scale-Resolving Simulation |
SPIV | Stereo Particle Image Velocity |
UAV | Unmanned Aerial Vehicles |
HECS | Hyper Elliptic Cambered Span |
References
- Bhatt, R.; Alam, M.M. Vibrations of a square cylinder submerged in a wake. J. Fluid Mech. 2018, 853, 301–332. [Google Scholar] [CrossRef]
- Wang, L.; Alam, M.M.; Rehman, S.; Zhou, Y. Effects of blowing and suction jets on the aerodynamic performance of wind turbine airfoil. Renew. Energy 2022, 196, 52–64. [Google Scholar] [CrossRef]
- Zheng, Q.; Alam, M.M. Intrinsic features of flow past three square prisms in side-by-side arrangement. J. Fluid Mech. 2017, 826, 996–1003. [Google Scholar] [CrossRef]
- McCormick, B.W.; Tangler, J.L.; Sherries, H.E. Structure of trailing vortices. J. Aircr. 1968, 5, 260–267. [Google Scholar] [CrossRef]
- Green, S.I. Fluid Vortices; Springer: Berlin/Heidelberg, Germany, 1995. [Google Scholar]
- Bertin, J.J.; Smith, M.L. Aerodynamics for Engineers-Second Edition. Aeronaut. J. 1991, 259, 19–99. [Google Scholar]
- Wang, S.; Zhou, Y.; Alam, M.M.; Yang, H. Turbulent intensity and Reynolds number effects on an airfoil at low Reynolds numbers. Phys. Fluids 2014, 26, 115107. [Google Scholar] [CrossRef]
- Wang, L.J.; Alam, M.M.; Zhou, Y. Experimental Study of a Passive Control of Airfoil Lift Using Bioinspired Feather Flap. In Lecture Notes in Mechanical Engineering; Springer: Berlin, Germany, 2021; pp. 39–44. [Google Scholar] [CrossRef]
- Martin, S. 5 Factors That Affect the Strength of Wingtip Vortices|Boldmethod. Boldmethod. 2017. Available online: https://www.boldmethod.com/blog/lists/2017/02/5-factors-that-affect-vortex-strength/ (accessed on 8 March 2023).
- Zhang, Z.; Ji, C.; Xu, D.; Zhu, H.; Derakhshandeh, J.F.; Chen, W. Effect of yaw angle on vibration mode transition and wake structure of a near-wall flexible cylinder. Phys. Fluids 2022, 34, 077106. [Google Scholar] [CrossRef]
- Alam, M.M.; Zheng, Q.; Derakhshandeh, J.F.; Rehman, S.; Ji, C.; Zafar, F. On forces and phase lags between vortex sheddings from three tandem cylinders. Int. J. Heat Fluid Flow 2018, 69, 117–135. [Google Scholar] [CrossRef]
- Derakhshandeh, J.F. Analysis of wake induced vibration of a coupled circular cylinder-piezoelectric using two-way fluid structural interaction. Appl. Ocean Res. 2022, 121, 103116. [Google Scholar] [CrossRef]
- Birch, D.; Lee, T.; Mokhtarian, F.; Kafyeke, F. Structure and induced drag of a tip vortex. J. Aircr. 2004, 41, 1138–1145. [Google Scholar] [CrossRef]
- Céron-Muñoz, H.D.; Cosin, R.; Coimbra, R.F.F.; Correa, L.G.N.; Catalano, F.M. Experimental investigation of wing-tip devices on the reduction of induced drag. J. Aircr. 2013, 50, 441–449. [Google Scholar] [CrossRef]
- Bowers, A.H.; Murillo, O.J.; Jensen, R.R.; Eslinger, B.; Gelzer, C. On Wings of the Minimum Induced Drag: Spanload Implications for Aircraft and Birds; Nasa/Tp—2016–219072; NASA: Washington, DC, USA, 2016; pp. 1–22.
- Giuni, M. Formation and Early Development of Wingtip Vortices; University of Glasgow: Glasgow, UK, 2013. [Google Scholar]
- Arndt, R.E.A. Cavitation in vortical flows. Annu. Rev. Fluid Mech. 2002, 34, 143–175. [Google Scholar] [CrossRef]
- Drummond, A.M.; Onno, R.; Panneton, B. Trajectories and Stability of Trailing Vortices Very Near the Ground; National Research Counccil Canada: Ottawa, ON, Canada, 1991. [Google Scholar]
- Rastan, M.R.; Shahbazi, H.; Sohankar, A.; Alam, M.M.; Zhou, Y. The wake of a wall-mounted rectangular cylinder: Cross-sectional aspect ratio effect. J. Wind Eng. Ind. Aerodyn. 2021, 213, 104615. [Google Scholar] [CrossRef]
- Zhao, C.; Wang, H.; Zeng, L.; Alam, M.M.; Zhao, X. Effects of oncoming flow turbulence on the near wake and forces of a 3D square cylinder. J. Wind Eng. Ind. Aerodyn. 2021, 214, 104674. [Google Scholar] [CrossRef]
- Rastan, M.R.; Sohankar, A.; Alam, M.M. Low-Reynolds-number flow around a wall-mounted square cylinder: Flow structures and onset of vortex shedding. Phys. Fluids 2017, 29, 103601. [Google Scholar] [CrossRef]
- Glegg, S.A.L. Prediction of blade wake interaction noise based on a turbulent vortex model. AIAA J. 2012, 29, 1545–1551. [Google Scholar] [CrossRef]
- Greenblatt, D. Fluidic control of a wing tip vortex. AIAA J. 2012, 50, 375–386. [Google Scholar] [CrossRef]
- Noda, R.; Nakata, T.; Senda, K.; Liu, H. Development of Microstructured Low Noise Propeller for Aerial Acoustic Surveillance. In Proceedings of the 2021 IEEE/SICE International Symposium on System Integration (SII), Iwaki, Japan, 11–14 January 2021; pp. 482–486. [Google Scholar] [CrossRef]
- Gruschka, J.G.; Borchers, H.D.; Coble, I.U. Aerodynamic noise produced by a gliding owl. Nature 1971, 233, 409–411. [Google Scholar] [CrossRef]
- Ortega, C.P. Chapter 2: Effects of noise pollution on birds: A brief review of our knowledge. Source Ornithol. Monogr. Ornithol. Monogr. 2012, 74, 6–22. [Google Scholar] [CrossRef]
- Greenewalt, C.H. The flight of birds: The significant dimensions, their departure from the requirements for dimensional similarity, and the effect on flight aerodynamics of that departure. Trans. Am. Philos. Soc. 1975, 65, 1–67. [Google Scholar] [CrossRef]
- Sarradj, E.; Fritzsche, C.; Geyer, T.; Gutmark, E. Silent OWL flight: Bird flyover noise measurements. AIAA J. 2011, 49, 769–779. [Google Scholar] [CrossRef]
- Dacles-Mariani, J.; Zilliac, G.G.; Chow, J.S.; Bradshaw, P. Numerical/experimental study of a wingtip vortex in the near field. AIAA J. 1995, 33, 1561–1568. [Google Scholar] [CrossRef]
- Chow, J.S. Turbulence Measurements in the Near-Field of a Wingtip Vortex; Stanford University: Stanford, CA, USA, 1994. [Google Scholar]
- Chow, J.S.; Zilliac, G.G.; Bradshaw, P. Mean and turbulence measurements in the near field of a wingtip vortex. AIAA J. 1997, 35, 1561–1567. [Google Scholar] [CrossRef]
- Stinebring, D.B.; Farrell, K.J.; Billet, M.L. The structure of a three- dimensional tip vortex at high reynolds numbers. J. Fluids Eng. Trans. ASME 1991, 113, 496–503. [Google Scholar] [CrossRef]
- Devenport, B.W.J.; Rife, M.C. The structure and development of a wing-tip vortex. J. Fluid Mech. 1996, 312, 67–106. [Google Scholar] [CrossRef]
- Anderson, E.; Wright, C. Experimental study of the structure of the wingtip vortex. In Proceedings of the 38th Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2000; p. 269. [Google Scholar]
- Mishra, N.; Gupta, A.S.; Dawar, J.; Kumar, A.; Mitra, S. Numerical and Experimental Study on Performance Enhancement of Darrieus Vertical Axis Wind Turbine With Wingtip Devices. J. Energy Resour. Technol. 2018, 140, 121201. [Google Scholar] [CrossRef]
- Srinivasan, G.R.; McCroskey, W.J.; Baeder, J.D.; Edwards, T.A. Numerical simulation of tip vortices of wings in subsonic and transonic flows. AIAA J. 1988, 26, 1153–1162. [Google Scholar] [CrossRef]
- Dacles-Mariani, J.; Rogers, S.; Kwak, D.; Zilliac, G.; Chow, J. A computational study of wingtip vortex flowfield. In Proceedings of the 23rd Fluid Dynamics, Plasmadynamics, and Lasers Conference, Orlando, FL, USA, 6–9 July 1993; p. 3010. [Google Scholar]
- Dacles-Mariani, J.; Kwak, D.; Zilliac, G. On numerical errors and turbulence modeling in tip vortex flow prediction. Int. J. Numer. Methods Fluids 1999, 30, 65–82. [Google Scholar] [CrossRef]
- Lombard, J.E.W.; Moxey, D.; Sherwin, S.J.; Hoessler, J.F.A.; Dhandapani, S.; Taylor, M.J. Implicit large-eddy simulation of a wingtip vortex. AIAA J. 2016, 54, 506–518. [Google Scholar] [CrossRef]
- Pereira, F.S.; Eça, L.; Vaz, G. Simulation of wingtip vortex flows with reynolds-averaged navier-Stokes and scale-resolving simulation methods. AIAA J. 2019, 57, 932–948. [Google Scholar] [CrossRef]
- García-Ortiz, J.H.; Domínguez-Vázquez, A.; Serrano-Aguilera, J.J.; Parras, L.; del Pino, C. A complementary numerical and experimental study of the influence of Reynolds number on theoretical models for wingtip vortices. Comput. Fluids 2019, 180, 176–189. [Google Scholar] [CrossRef]
- Spillman, J.J.; Ratcliffe, H.Y.; McVitie, A. Flight Experiments To Evaluate the Effect of Wing-Tip Sails on Fuel Consumption and Handling Characteristics. Aeronaut. J. 1979, 83, 279–281. [Google Scholar] [CrossRef]
- Wu, M.; Shi, Z.; Xiao, T.; Ang, H. Effect of wingtip connection on the energy and flight endurance performance of solar aircraft. Aerosp. Sci. Technol. 2021, 108, 106404. [Google Scholar] [CrossRef]
- Balatti, D.; Khodaparast, H.H.; Friswell, M.I.; Manolesos, M.; Amoozgar, M. The effect of folding wingtips on the worst-case gust loads of a simplified aircraft model. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 219–237. [Google Scholar] [CrossRef]
- Patil, M.J.; Hodges, D.H.; Cesnik, C.E.S. Nonlinear aeroelasticity and flight dynamics of high-altitude long-endurance aircraft. J. Aircr. 2001, 38, 88–94. [Google Scholar] [CrossRef]
- Imamura, T.; Enomoto, S.; Yamamoto, K. Noise simulation around NACA0012 wingtip using large eddy simulation. Trans. Jpn. Soc. Aeronaut. Space Sci. 2012, 55, 214–221. [Google Scholar] [CrossRef]
- Klei, C.E.; Buffo, R.M.; Stumpf, E. Effects of wing tip shaping on noise generation. In Proceedings of the INTERNOISE 2014—43rd International Congress on Noise Control Engineering, Melbourne, Australia, 16–19 November 2014; pp. 1–10. [Google Scholar]
- Snyder, M.P.; Weisshaar, T.A. Flutter and directional stability of aircraft with wing-tip fins: Conflicts and compromises. J. Aircr. 2013, 50, 615–625. [Google Scholar] [CrossRef]
- Bushnell, D.M. Potential Impact of Advanced Aerodynamic Technology on Air Transportation System Productivit; Memorandum 109154; NASA Tech: Washington, DC, USA, 1994.
- Bargsten, C.J.; Gibson, M.T. NASA Innovation in Aeronautics: Select Technologies that have Shaped Modern Aviation; NASA Tech: Washington, DC, USA, 2011.
- Hoerner, S. Aerodynamic Shape of the Wing Tips; USAF Technical Reports Engineering Division Air Materiel Command; United States Air Force Arch; The De Havilland Aircraft of Canada Limited, Technical Report No. 5752; Wright-Patterson Air Force Base: Dayton, OH, USA, 1952. [Google Scholar]
- Whitcomb, R.T. A Design Approach and Selected Wind Tunnel Results at High Subsonic Speeds for Wing-Tip Mounted Winglets; NASA Technical Note No. TN D-8260; NASA: Washigton, DC, USA, 1976.
- Reynolds, P.T. The Learjet “Longhorn” Series—The First Jets with Winglets; Section 3: 790527–790858 (1979); SAE Transactions: New York, NY, USA, 1979; Volume 88, pp. 2034–2038. [Google Scholar]
- Padfield, R. Historic Learjet 28 Flies Again—Aviation International News. 2013. Available online: https://www.ainonline.com/aviation-news/galleries/historic-learjet-28-flies-again (accessed on 9 March 2023).
- Eickmann, K.E. Assessment of Wingtip Modifications to Increase the Fuel Efficiency of Air Force Aircraft; National Academies Press: Washonton, DC, USA, 2007. [Google Scholar] [CrossRef]
- Siddiqui, N.A.; Asrar, W.; Sulaeman, E. Literature review: Biomimetic and conventional aircraft wing tips. Int. J. Aviat. Aeronaut. Aerosp. 2017, 4, 6. [Google Scholar] [CrossRef]
- Gharbia, Y.A.; Hussain, Z.; Arshad, A. Effect of Porous Wing Tip on Wing Performance and Vortex Strength. In Proceedings of the 2nd International Symposium on Aeronautical Science and Technology, Jakarta, Indonesia, 24–27 June 1996. [Google Scholar]
- Zhang, T.; Moreau, D.; Geyer, T.; Fischer, J.; Doolan, C. Dataset on tip vortex formation noise produced by wall-mounted finite airfoils with sinusoidal and porous tip geometries. Data Br. 2020, 30, 105471. [Google Scholar] [CrossRef]
- Gharbia, Y.A.; Arshad, S.A.; Husain, Z. Improvment of Wing Performance and Vortex Structure Using Wing-tip Devices. In Proceedings of the 3rd International Symposium on Aerothermodynamics and Internal Flow, Beijing, China, 1–6 September 1996. [Google Scholar]
- Khan, F.N.; Batul, B.; Aizaz, A. A CFD Analysis of Wingtip Devices to Improve Lift and Drag Characteristics of Aircraft Wing. IOP Conf. Ser. Mater. Sci. Eng. 2019, 642, 012006. [Google Scholar] [CrossRef]
- Samal, S.K.; Dash, P.K. Effect of Slotted Wing Tip on Aerodynamic Efficiency. Test Eng. Manag. 2020, 83, 17204–17212. [Google Scholar]
- Guerrero, J.E.; Sanguineti, M.; Wittkowski, K. Variable cant angle winglets for improvement of aircraft flight performance. Meccanica 2020, 55, 1917–1947. [Google Scholar] [CrossRef]
- Beves, C.C.; Barber, T.J. The Wingtip Vortex of a Dimpled Wing with an Endplate. J. Fluids Eng. Trans. ASME 2017, 139, 021202. [Google Scholar] [CrossRef]
- Jung, J.H.; Kim, M.J.; Yoon, H.S.; Hung, P.A.; Chun, H.H.; Park, D.W. Endplate effect on aerodynamic characteristics of threedimensional wings in close free surface proximity. Int. J. Nav. Archit. Ocean Eng. 2012, 4, 477–487. [Google Scholar] [CrossRef]
- Gehlert, P.; Cherfane, Z.; Cafiero, G.; Vassilicos, J.C. Effect of Multiscale Endplates on Wing-Tip Vortex. AIAA J. 2021, 59, 1614–1628. [Google Scholar] [CrossRef]
- Park, K.; Lee, J. Influence of endplate on aerodynamic characteristics of low-aspect-ratio wing in ground effect. J. Mech. Sci. Technol. 2008, 22, 2578–2589. [Google Scholar] [CrossRef]
- Wei, Y.; Yang, Z. Aerodynamic investigation on tiltable endplate for WIG craft. Aircr. Eng. Aerosp. Technol. 2012, 84, 4–12. [Google Scholar] [CrossRef]
- Texas Aeroplastics. The Story Behind The Hoerner Wing Tip. Available online: https://texasaeroplastics.com/pages/the-story-behind-the-hoerner-wing-tip (accessed on 17 December 2023).
- Lee, T.; Pereira, J. Modification of static-wing tip vortex via a slender half-delta wing. J. Fluids Struct. 2013, 43, 1–14. [Google Scholar] [CrossRef]
- Lu, A.; Lee, T. Passive Wingtip Vortex Control by Using Tip-Mounted Half Delta Wings in Ground Effect. J. Fluids Eng. Trans. ASME 2020, 142, 021201. [Google Scholar] [CrossRef]
- Smith, H.C. Effects of a Porous Wingtip on an Aircraft Trailing Vortex. Master’s Thesis, Pennsylvania State University, State College, PA, USA, 1967. [Google Scholar]
- Scheimm, J.; Shivers, J.P. Exploratory Investigation of the Structure of the Tip Vortex of a Semispan Wing For—Several Wing-Tip Modifications; NASA Technical Note D-6101; National Aeronautics and Space Administration: Washington, DC, USA, 1971.
- Deslich, J.; Gunasekaran, S. Effect of slotted winglet on the wingtip vortex. In Proceedings of the AIAA Aviation 2019 Forum, Dallas, TX, USA, 17–21 June 2019; pp. 1–20. [Google Scholar] [CrossRef]
- Liu, D.; Song, B.; Yang, W.; Yang, X.; Xue, D.; Lang, X. A Brief Review on Aerodynamic Performance of Wingtip Slots and Research Prospect. J. Bionic Eng. 2021, 18, 1255–1279. [Google Scholar] [CrossRef]
- Gehlert, P.; Sabnis, K.; Babinsky, H. Effect of Winglet Serration Geometry on the Wingtip Vortex. In Proceedings of the AIAA SCITECH 2022 Forum, San Diego, CA, USA, 3–7 January 2022. [Google Scholar] [CrossRef]
- Mariofan. Wingtip Fence Airbus A320. 2014. Available online: https://commons.wikimedia.org/wiki/File:Wingtip_Fence_Airbus_A320.JPG (accessed on 18 July 2022).
- Gratzer, L.B. Blended Winglet. US Patent 5,348,253, 1 February 1993. [Google Scholar]
- Bravo-Mosquera, P.D.; Vaca-Rios, J.J.; Diaz-Molina, A.I.; Amaya-Ospina, M.A.; Cerón-Muñoz, H.D. Design and aerodynamic evaluation of a medium short takeoff and landing tactical transport aircraft. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 825–841. [Google Scholar] [CrossRef]
- Abdelghany, E.S.; Khalil, E.E.; Abdellatif, O.E.; Elhariry, G. Air craft winglet design and performance: Cant angle effect. In Proceedings of the 14th International Energy Conversion Engineering Conference, Salt Lake City, UT, USA, 25–27 July 2016. [Google Scholar] [CrossRef]
- Smith, D.D.; Ajaj, R.M.; Isikveren, A.T.; Friswell, M.I. Multi-objective optimization for the multiphase design of active polymorphing wings. J. Aircr. 2012, 49, 1153–1160. [Google Scholar] [CrossRef]
- Mrazova, M. Innovations, Technology and Efficiency Shaping the Aerospace Environment. Incas Bull. 2013, 5, 91–99. [Google Scholar] [CrossRef]
- Flydubai Introduces Split Scimitar® Winglets on its Next-Generation Boeing 737–800 Fleet. Biz Today News. 2019. Available online: https://www.biztoday.news/2019/10/04/flydubai-introduces-split-scimitar-winglets-on-its-next-generation-boeing-737-800-fleet/ (accessed on 17 December 2023).
- Cheng, Z.; Wu, Y.; Xiang, Y.; Liu, H.; Wang, F. Benefits comparison of vortex instability and aerodynamic performance from different split winglet configurations. Aerosp. Sci. Technol. 2021, 119, 107219. [Google Scholar] [CrossRef]
- Rajendran, S. Design of Parametric Winglets and Wing Tip Devices—A Conceptual Design Approach. Ph.D. Thesis, Linkoping Univerity, Likoping, Sweden, 2012. [Google Scholar]
- Dhara, A.; Ubhi, K.S.; Kumari, P.; Purewal, R.K. A Systematic Review of Morphing Wing in Aviation Industry. J. Emerg. Technol. Innov. Res. 2022, 9, 557–563. [Google Scholar]
- Gratzer, L.B. Spiroid-Tipped Wing. U.S. Patent 5,102,068, 7 April 1992. [Google Scholar]
- Kravchenko, I.F.; Loginov, V.V.; Ukrainets, Y.O.; Hlushchenko, P.A. Aerodynamic Characteristics of a Straight Wing with a Spiroid Wingtip Device. Trans. Aerosp. Res. 2021, 2021, 46–62. [Google Scholar] [CrossRef]
- Guerrero, J.E.; Maestro, D.; Bottaro, A. Biomimetic spiroid winglets for lift and drag control. Comptes Rendus Mécanique 2012, 340, 67–80. [Google Scholar] [CrossRef]
- Guha, T.K.; Kumar, R. Characteristics of a wingtip vortex from an oscillating winglet. Exp. Fluids 2017, 58, 8. [Google Scholar] [CrossRef]
- Breitsamter, C.; Allen, A. Transport aircraft wake influenced by oscillating winglet flaps. J. Aircr. 2009, 46, 175–188. [Google Scholar] [CrossRef]
- Healy, F.; Cheung, R.; Neofet, T.; Lowenberg, M.; Rezgui, D.; Cooper, J.; Castrichini, A.; Wilson, T. Folding Wingtips for Improved Roll Performance. J. Aircr. 2022, 59, 15–28. [Google Scholar] [CrossRef]
- Lassen, M.; Douglas, C.; Jones, K.T.; Kenning, T.B. Wing Fold Controller. European Patent EP2727829B1, 7 May 2014. [Google Scholar]
- Kaygan, E.; Gatto, A. Investigation of Adaptable Winglets for Improved UAV Control and Performance. Int. J. Aerosp. Mech. Eng. 2014, 8, 1281–1286. [Google Scholar]
- Qin, S.; Weng, Z.; Li, Z.; Xiang, Y.; Liu, H. On the controlled evolution for wingtip vortices of a flapping wing model at bird scale. Aerosp. Sci. Technol. 2021, 110, 106460. [Google Scholar] [CrossRef]
- Muniappan, A.; Baskarand, V.; Duriyanandhan, V. Lift and thrust characteristics of flapping wing Micro Air Vehicle (MAV). In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; pp. 4035–4045. [Google Scholar] [CrossRef]
- Azargoon, Y.; Djavareshkian, M.H. Unsteady characteristic study on the flapping wing with the corrugated trailing edge and slotted wingtip. Aerosp. Sci. Technol. 2023, 139, 108402. [Google Scholar] [CrossRef]
- Dutta, D.; Dasgupta, A.; Raj, P.R.L.; Debnath, K. Drag Reduction and Turbulent Characteristics of a Low Aspect Ratio Wing with Fluidic On-Demand Winglet. SAE Int. J. Aerosp. 2022, 16, 39–55. [Google Scholar] [CrossRef]
- Jiang, Y.; Wang, W.; Qin, C.; Okolo, P.N.; Tang, K. Investigation of the Normal Blowing Approach to Controlling Wingtip Vortex Using les. Int. J. Aerosp. Eng. 2021, 2021, 6688569. [Google Scholar] [CrossRef]
- Margaris, P.; Gursul, I. Vortex topology of wing tip blowing. Aerosp. Sci. Technol. 2010, 14, 143–160. [Google Scholar] [CrossRef]
- Heyes, A.L.; Smith, D.A.R. Spatial perturbation of a wing-tip vortex using pulsed span-wise jets. Exp. Fluids 2004, 37, 120–127. [Google Scholar] [CrossRef]
- García-Ortiz, J.H.; Blanco-Rodríguez, F.J.; Parras, L.; del Pino, C. Experimental observations of the effects of spanwise blowing on the wingtip vortex evolution at low Reynolds numbers. Eur. J. Mech. B/Fluids 2020, 80, 133–145. [Google Scholar] [CrossRef]
- Dghim, M.; Ferchichi, M.; Perez, R.E.; BenChiekh, M. Near wake development of a wing tip vortex under the effect of synthetic jet actuation. Aerosp. Sci. Technol. 2016, 54, 88–107. [Google Scholar] [CrossRef]
- Hasebe, H.; Naka, Y.; Fukagata, K. An Attempt for Suppression of Wing-Tip Vortex Using Plasma Actuators. J. Fluid Sci. Technol. 2011, 6, 976–988. [Google Scholar] [CrossRef]
- Margaris, P.; Gursul, I. Wing tip vortex control using synthetic jets. Aeronaut. J. 2006, 110, 673–681. [Google Scholar] [CrossRef]
- Holloway, A.G.L.; Richardson, S. Development of a Trailing Vortex Formed with Spanwise Tip Jets. J. Aircr. 2007, 44, 845–857. [Google Scholar] [CrossRef]
- Cosin, R.; Catalano, F.M.; Correa, L.G.N.; Entz, R.M.U. Aerodynamic analysis of multi-winglets for low speed aircraft. In Proceedings of the 27th International Congress of the Aeronautical Sciences (ICAS 2010), Nice, France, 19–24 September 2010; Volume 2, pp. 1622–1631. [Google Scholar]
- Reddy, S.R.; Sobieczky, H.; Dulikravic, G.S.; Abdoli, A. Multi-element winglets: Multi-objective optimization of aerodynamic shapes. J. Aircr. 2016, 53, 992–1000. [Google Scholar] [CrossRef]
- Segui, M.; Abel, F.R.; Botez, R.M.; Ceruti, A. New aerodynamic studies of an adaptive winglet application on the regional jet CRJ700. Biomimetics 2021, 6, 54. [Google Scholar] [CrossRef] [PubMed]
- Cerón-Muñoz, H.D.; Catalano, F.M.; Coimbra, R.F. Passive, active, and adaptative systems for wing vortex drag reduction. In Proceedings of the 26th International Congress of the Aeronautical Sciences, Anchorage, AK, USA, 14–19 September 2008; Volume 2015, pp. 1537–1548. [Google Scholar]
- Catalano, F.M.; Ceron-Muñoz, H.D. Experimental analysis of aerodynamics characteristics of adaptive multi-winglets. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; pp. 4695–4703. [Google Scholar] [CrossRef]
- Guerrero, J.; Sanguineti, M.; Wittkowski, K. CFD Study of the Impact of Variable Cant Angle Winglets on Total Drag Reduction. Aerospace 2018, 5, 126. [Google Scholar] [CrossRef]
- Tamarack Aerospace Group. “Unlock the Beauty and Performance of Your Jet” Sandpoint, ID 83864, USA. [Online]. Available online: https://www.aas.ag/fileadmin/redaktion/media/Service/Modification/Tamarack/Tamarack_Active_Winglet_M2_Info_v3.0.pdf (accessed on 18 December 2023).
- Winglet Maker Tamarack Emerges from Chapter 11 with Its Business and Bold Performance Claims Intact. Available online: https://www.forbes.com/sites/erictegler/2020/07/12/winglet-maker-tamarack-emerges-from-chapter-11-with-its-business-and-bold-performance-claims-intact/?sh=449157bf6e80 (accessed on 20 October 2023).
- Delavenne, M.; Barriety, B.; Vetrano, F.; Ferrand, V.; Salaun, M. Assessment of the efficiency of an active winglet concept for a long-range aircraft. CEAS Aeronaut. J. 2020, 11, 971–990. [Google Scholar] [CrossRef]
- Delavenne, M.; Barriety, B.; Vetrano, F.; Ferrand, V.; Salaun, M. Parametric analysis of an active winglet concept for high aspect ratio wing using cfd/csm computations. In Proceedings of the AIAA Aviation 2020 Forum, Virtual, 15–19 June 2020; p. 17. [Google Scholar] [CrossRef]
- Babigian, R.; Hayashibara, S. Computational study of the vortex wake generated by a three-dimensional wing with dihedral, taper, and sweep. In Proceedings of the 27th AIAA Applied Aerodynamics Conference, San Antonio, TX, USA, 22–25 June 2009; pp. 1–13. [Google Scholar] [CrossRef]
- de Mattos, B.S.; Macedo, A.P.; da Silva Filho, D.H. Considerations about winglet design. In Proceedings of the 21st AIAA Applied Aerodynamics Conference, Orlando, FL, USA, 16 June 2003. [Google Scholar] [CrossRef]
- Yahaya, N.; Ismail AM, M.; Sabrin, N.A.; Amilin, N.; Nalisa, A.; Izyan, I.; Ramli, Y. Investigation of Whitcomb’s Winglet Flow Behaviour using PIV and FLUENT. J. Adv. Res. Fluid Mech. Therm. Sci. ISSN 2015, 13, 22–28. [Google Scholar]
- Narayan, G.; John, B. Effect of winglets induced tip vortex structure on the performance of subsonic wings. Aerosp. Sci. Technol. 2016, 58, 328–340. [Google Scholar] [CrossRef]
- Gavrilović, N.N.; Rašuo, B.P.; Dulikravich, G.S.; Parezanović, V.B. Commercial aircraft performance improvement using winglets. FME Trans. 2015, 43, 1–8. [Google Scholar] [CrossRef]
- Faye, R. Blended Winglets for Improved Airplane Performance. Aero Mag. Boeing 2009, 1, 16–30. [Google Scholar]
- Makgantai, B.; Subaschandar, N.; Jamisola, S., Jr. A Review on Wingtip Devices for Reducing Induced Drag on Fixed-Wing Drones. J. Xi’an Univ. Archit. Technol. 2021, 13, 143–160. [Google Scholar]
- Bodell, L. How Wingtips Increase Aircraft Fuel Efficiency. 2020. Available online: https://simpleflying.com/wing-tip-fuel-efficiency/ (accessed on 24 July 2022).
- Kubrynski, K. Wing-winglet design methodology for low speed applications. In Proceedings of the 41st AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 6–9 January 2003; p. 215. [Google Scholar]
- Slooff, J.W.; de Wolf, W.B.; van der Wal, H.M.M.; Maseland, J.E.J. Aerodynamic and aero-acoustic effects of flap tip fences. In Proceedings of the 40th AIAA Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 14–17 January 2002. [Google Scholar] [CrossRef]
- Maksoud, T.M. Wingtips and Multiple Wing Tips Effects on Wing Performance: Theoretical and Experimental Analyses. In Proceedings of the 10th International Conference on Heat Transfer, Fluid Mechanics and Thermodynamics—HEFAT2014, Orlando, FL, USA, 14–16 July 2014; pp. 2224–2230. [Google Scholar]
- Aldheeb, M.; Asrar, W.; Omar, A.; Altaf, A.; Sulaeman, E. Effect of a directionally porous wing tip on tip vortex. J. Appl. Fluid Mech. 2020, 13, 651–665. [Google Scholar] [CrossRef]
- Wan, T.; Chou, H.C.; Lien, K.W. Aerodynamic efficiency study of modern spiroid winglets. In Proceedings of the ICAS-Secretariat—25th Congress of the International Council of the Aeronautical Sciences 2006, Hamburg, Germany, 3–8 September 2006; Volume 2, pp. 707–713. [Google Scholar]
- Dhileep, K.; Arunvinthan, S.; Pillai, S.N. Aerodynamic Characteristics of Semi-Spiroid Winglets at Subsonic Speed; Springer: Singapore, 2019. [Google Scholar] [CrossRef]
- Reneaux, J. Overview on drag reduction technologies for civil transport aircraft. In Proceedings of the ECCOMAS 2004—European Congress on Computational Methods in Applied Sciences and Engineering, Jyväskylä, Finland, 24–28 July 2004. [Google Scholar]
- Oda, Y.; Rinoie, K.; Yuhara, T. Studies on wingtip geometries by optimum spanwise lift distribution design method. In Proceedings of the 55th AIAA Aerospace Sciences Meeting, Grapevine, TX, USA, 9–13 January 2017. [Google Scholar] [CrossRef]
- Merryisha, S.; Rajendran, P. Review of winglets on tip vortex, drag and airfoil geometry. J. Adv. Res. Fluid Mech. Therm. Sci. 2019, 63, 218–237. [Google Scholar]
- Deng, S.; Wang, J.; Liu, H. Experimental study of a bio-inspired flapping wing MAV by means of force and PIV measurements. Aerosp. Sci. Technol. 2019, 94, 105382. [Google Scholar] [CrossRef]
- Mouawad, J. Eye-Catching Wingtips, but They Aren’t for Show. The New York Times. 12 October 2013. Available online: https://www.nytimes.com/2013/10/24/business/eye-catching-wingtips-but-they-arent-for-show.html (accessed on 7 September 2023).
Configuration | Winglet Angles in Degree |
---|---|
Conf. 11 | A = −30, B = −15, and C = 0 |
Conf. 19 | A = −30, B = 0, and C = +30 |
Conf. 40 | A = +45, B = +30, and C = +15 |
Conf. 44 | A = −15, B = −30, and C = −45 |
Conf. 47 | A = +60, B = +30, and C = 0 |
Conf. 48 | A = +45, B = +15, and C = +15 |
Wingtip Name | Wingtip Type | Salient Features |
---|---|---|
Blended | Passive | |
Fenced | Passive | |
Endplates | Passive |
|
Porous wingtip | Passive |
|
Canted winglet | Passive |
|
Spiroid | Passive | |
Raked | Passive |
|
Sharklets | Passive | |
Oscillating winglet | Active | |
Pulsed jet winglet | Active |
|
Flapping winglet | Active |
|
Adaptive Multi-winglets | Active |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gharbia, Y.; Derakhshandeh, J.F.; Alam, M.M.; Amer, A.M. Developments in Wingtip Vorticity Mitigation Techniques: A Comprehensive Review. Aerospace 2024, 11, 36. https://doi.org/10.3390/aerospace11010036
Gharbia Y, Derakhshandeh JF, Alam MM, Amer AM. Developments in Wingtip Vorticity Mitigation Techniques: A Comprehensive Review. Aerospace. 2024; 11(1):36. https://doi.org/10.3390/aerospace11010036
Chicago/Turabian StyleGharbia, Yousef, Javad Farrokhi Derakhshandeh, Md. Mahbub Alam, and A. M. Amer. 2024. "Developments in Wingtip Vorticity Mitigation Techniques: A Comprehensive Review" Aerospace 11, no. 1: 36. https://doi.org/10.3390/aerospace11010036
APA StyleGharbia, Y., Derakhshandeh, J. F., Alam, M. M., & Amer, A. M. (2024). Developments in Wingtip Vorticity Mitigation Techniques: A Comprehensive Review. Aerospace, 11(1), 36. https://doi.org/10.3390/aerospace11010036