Numerical Simulation of Heat Pipe Thermal Performance for Aerospace Cooling System Applications
Abstract
:1. Introduction
1.1. Thermal Management Challenges in the Aerospace Sector
1.2. Recent Studies of Heat Pipes
- Heat pipes designed for the STRATOFLY (Stratospheric Flying Opportunities for High-Speed Propulsion Concepts) MR3 hypersonic vehicle in the crotch leading-edge area, which is subjected to convective overheating due to its very small radius (about 2 mm).
- Heat pipes designed to cool down a Printed Circuit Board (PCB) for a generic small LEO satellite.
2. Development of the Numerical Tool
- Conduction: internal energy exchange between one body in perfect contact with another or from one part of a body to another part due to a temperature gradient.
- Convection: energy exchange between a body and a surrounding fluid.
- Radiation: energy transfer from a body or between two bodies by electromagnetic waves.
- q = heat flow rate per unit area in direction n.
- Knm = thermal conductivity in direction n.
- T = temperature.
- = thermal gradient in direction n.
- h = convective film coefficient;
- TS = surface temperature;
- TF = bulk fluid temperature.
- σ = Stefan–Boltzmann constant;
- ε = emissivity;
- Ai = area of surface i;
- Fij = form factor from surface i to surface j;
- Ti = absolute temperature of surface i;
- Tj = absolute temperature of surface j.
3. Case Study No. 1: STRATOFLY MR3 Hypersonic Vehicle
- Convective heat fluxes on external wet areas (derived by CFD calculations with a peak value of about 1.2 MW/m2 as heat transfer coefficient on the crotch);
- Radiation to ambient for external surfaces;
- Adiabatic wall at cut surface locations;
- Subtractive heat flux applied at leading-edge internal additional part/heat pipe interface;
- Heat pipe is modelled as a perfect contact body with the internal part of the vehicle crotch.
4. Case Study No. 2: LEO Small Satellite
- Stepwise heat fluxes applied from PCB center (heat fluxes corresponding to the PCB dissipated energy, i.e., 3 W and 10 W at peak);
- Constant conservative temperature applied at the pipe edges.
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Ahp | |
Ai | Area of surface i |
ΔT | Overall temperature difference between the heat source and the heat sink [K] |
ε | Emissivity [−] |
Fij | Form factor from surface i to surface j |
h | Convective film coefficient |
Keff | Effective liquid/wick conductivity [W/m K] |
Knm | Thermal conductivity in direction n |
Leff | Effective heat pipe length [m] |
Q | Overall heat transfer rate [W] |
Rtot | Overall thermal resistance [K/W] |
σ | Stefan–Boltzmann constant |
θ | Euler parameter |
Tcondencer | Temperature of the working fluid in the condenser section [K] |
Tevporator | Temperature of the working fluid in the evaporator section [K] |
TS | Surface temperature |
TF | Bulk fluid temperature |
TI | Absolute temperature of surface i |
Tj | Absolute temperature of surface j |
Acronyms | |
APDL | Ansys Parametric Design Language |
CCHP | Constant Conductance Heat Pipe |
CFD | Computational Fluid Dynamics |
CMC | Ceramic Matrix Composite |
FEM | Finite Element Method |
MLI | Multi-Layer Insulation |
NASP | National Aerospace Plane program |
NePCM | Nano-enhanced phase change material |
OHP | Oscillating Heat Pipe |
PCM | Phase Change Material |
PCB | Printed Circuit Board |
TCS | Thermal control system |
VCHP | Variable Conductance Heat Pipe |
References
- Figueiras, I.; Coutinho, M.; Afonso, F.; Suleman, A. On the Study of Thermal-Propulsive Systems for Regional Aircraft. Aerospace 2023, 10, 113. [Google Scholar]
- Eisenhut, D.; Moebs, N.; Windels, E.; Bergmann, D.; Geiß, I.; Reis, R.; Strohmayer, A. Aircraft Requirements for Sustainable Regional Aviation. Aerospace 2021, 8, 61. [Google Scholar]
- Viswanathan, V.; Knapp, B.M. Potential for electric aircraft. Nat. Sustain. 2019, 2, 88–89. [Google Scholar] [CrossRef]
- Van Heerden, A.; Judt, D.; Jafari, S.; Lawson, C.; Nikolaidis, T.; Bosak, D. Aircraft thermal management: Practices, technology, system architectures, future challenges, and opportunities. Prog. Aerosp. Sci. 2022, 128, 100767. [Google Scholar]
- Freeman, J.; Osterkamp, P.; Michael Green, A.G.; Schiltgen, B. Challenges and opportunities for electric aircraft thermal management. Aircr. Eng. Aerosp. Technol. 2014, 86, 519–524. [Google Scholar] [CrossRef]
- Hirschel, E.H. Basics of Aerothermodynamics, 2nd ed.; Springer: Berlin/Heidelberg, Germany, 2015. [Google Scholar]
- Hirschel, E.H.; Weiland, C. Selected Aero-Thermodynamic Design Problems of Hypersonic Flight Vehicles; Springer: Berlin/Heidelberg, Germany, 2009. [Google Scholar]
- Viola, N.; Ferretto, D.; Fusaro, R.; Scigliano, R. Performance Assessment of an Integrated Environmental Control System of Civil Hypersonic Vehicles. Aerospace 2022, 9, 201. [Google Scholar] [CrossRef]
- Kun, L.; Zekuan, L.; Jing, X.; He, L.; Shiyi, X.; Cong, W.; Jiang, Q. Evaluation of high-speed aircraft thermal management system based on spray cooling technology: Energy analysis, global cooling, and multi-objective optimization. Appl. Therm. Eng. 2023, 229, 120632. [Google Scholar] [CrossRef]
- Silverstein, C.C. A Feasibility Study of Heat-Pipe-Cooled Leading Edges for Hypersonic Cruise Aircraft; National and Space Administration (NASA): Washington, DC, USA, 1971; NASA/CR-1857. [Google Scholar]
- Camarda, C.J. Analysis and Radiant Heating Tests of a Heat-Pipe-Cooled Leading Edge; National and Space Administration (NASA): Washington, DC, USA, 1977; NASA/TN D.-8468. [Google Scholar]
- Camarda, C.J. Application of Formal Optimization Techniques in Thermal/Structural Design of a Heat-Pipe-Cooled Panel for a Hypersonic Vehicle; National and Space Administration (NASA): Washington, DC, USA, 1987; NASA/TM-81931. [Google Scholar]
- Glass, D.E.; Merrigan, M.A.; Sena, J.T. Fabrication and Testing of a Leading-Edge-Shaped Heat Pipe; National and Space Administration (NASA): Washington, DC, USA, 1998; NASA/CR-208720. [Google Scholar]
- Steeves, G.A.; He, M.Y.; Kasen, S.D. Feasibility of metallic structural heat pipes as sharp leading edges for hypersonic vehicles. J. Appl. Mech. 2009, 76, 031014. [Google Scholar]
- Xiao, G.; Du, Y.; Gui, Y.; Liu, L.; Yang, X.; Wei, D. Heat transfer characteristics and limitations analysis of heat- pipecooled thermal protection structure. Appl. Therm. Eng. 2014, 70, 655–664. [Google Scholar]
- Glass, D.E. Ceramic Matrix Composite (CMC) Thermal Protection Systems (TPS) and Hot Structures for Hypersonic Vehicles. In Proceedings of the 15th AIAA Space Planes and Hypersonic Systems and Technologies Conference AIAA, Dayton, OH, USA, 28 April–1 May 2008. [Google Scholar] [CrossRef]
- Faghri, A. Heat Pipe Science and Technology; CRC Press: New York, NY, USA, 1995. [Google Scholar]
- Meseguer, J.; Pérez-Grande, I.; Sanz-Andrés, A. Spacecraft Thermal Control; Whoodhead Publishing Limited: Cambridge, UK, 2012. [Google Scholar]
- Sharifi, N.; Roesler, D.; Gold, A.; Shabgard, H. Thermal Management System for Lithium-Ion Batteries Using Phase Change Material, Heat Pipes and Fins. In Proceedings of the International Mechanical Engineering Congress and Exposition IMECE 2023, New Orleans, LA, USA, 29 October–2 November 2023. [Google Scholar]
- Faraji, H.; Alami, M.E.; Arshad, A.; Hariti, Y. Numerical Survey on Performance of Hybrid NePCM for Cooling of Electronics: Effect of Heat Source Position and Heat Sink Inclination. J. Thermal Sci. Eng. Appl. 2021, 13, 051010. [Google Scholar] [CrossRef]
- Arshad, A.; Jabbal, M.; Faraji, H.; Talebizadehsardari, P.; Bashir, M.A.; Yan, Y. Numerical study of nanocomposite phase change material-based heat sink for the passive cooling of electronic components. Heat Mass Transfer 2021. [Google Scholar] [CrossRef]
- Hu, C.; Yu, D.; He, M.; Li, T.; Yu, J. Design and Verification of Ultra-High Temperature Lithium heat pipe based experimental facility. Therm. Sci. 2022, 26, 3413–3426. [Google Scholar] [CrossRef]
- Ababneh, M.; Tarau, C.; Anderson, W.; Farmer, J. Thermal Control of Lunar and Mars Rovers/Landers Using Hybrid Heat Pipes. J. Thermophys. Heat Transf. 2019, 33, 705–713. [Google Scholar]
- Miesner, S.; Wolk, K.; Furst, B.; Daimaru, T.; Sunada, E.; Roberts, S.; Bellardo, J.; Kuo, J. Thermal Testing of An Amdrohp (Additively Manufactured Deployable Radiator Oscillating Heat Pipes) for Use in High-Powered Cubesats. In Proceedings of the International Mechanical Engineering Congress and Exposition IMECE2023, New Orleans, LA, USA, 29 October–2 November 2023. [Google Scholar]
- Iwata, N.; Saitoh, M.; Yanagase, K.; Iso, Y.; Inoue, Y.; Ogawa, H.; Miyazaky, Y. Thermal and Structural Performance of a Small Satellite with Networked Oscillating Heat Pipes. J. Spacecr. Rocket. 2022, 59, 1016–1028. [Google Scholar]
- Niblock, G.A.; Reeder, J.C.; Huneidi, F. Four space shuttle wing leading edge concepts. J. Spacecr. Rocket. 1974, 11, 314–320. [Google Scholar] [CrossRef]
- Tang, H.; Lian, L.; Zhang, J.; Liu, Y. Heat transfer performance of cylind- rical heat pipes with axially graded wick at anti-gravity orientations. Appl. Therm. Eng. 2019, 163, 114413. [Google Scholar] [CrossRef]
- Nazari, M.A.; Ghasempour, R.; Ahmadi, M.H. A review on using nanofluids in heat pipes. J. Therm. Anal. Calorim. 2019, 137, 1847–1855. [Google Scholar] [CrossRef]
- Koito, Y. Numerical analyses on heat transfer characteristics of ultra-thin heat pipes: Fundamental studies with a three-dimensional thermal-fluid model. Appl. Therm. Eng. 2019, 148, 430–437. [Google Scholar] [CrossRef]
- Liao, G.; Liu, L.; Zhang, F.; Jiaqiang, E.; Chen, J. A comparison of numerical investigations on the flow and heat transfer characteristics in the rotor- stator cavity. Appl. Therm. Eng. 2019, 162. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W. A numerical model for the platelet heat-pipe-cooled leading edge of hypersonic vehicle. Acta Astronaut. 2016, 118, 210–217. [Google Scholar] [CrossRef]
- Liu, H.; Liu, W. Thermal–structural analysis of the platelet heat-pipe-cooled leading edge of hypersonic vehicle. Acta Astronaut. 2016, 127, 13–19. [Google Scholar]
- Yin, L.; Liu, H.; Liu, W. Capillary character and evaporation heat transfer in the wicks of high temperature liquid metal heat pipe. Appl. Therm. Eng. 2020, 175, 115284. [Google Scholar] [CrossRef]
- Ranjan, R.; Murthy, J.Y.; Garimella, S.V. A microscale model for thin-film evaporation in capillary wick structures. Int. J. Heat Mass Transf. 2011, 54, 169–179. [Google Scholar]
- Ryu, S.; Lee, W.; Nam, Y. Heat transfer and capillary performance of dual-height super hydrophilic micro post wicks. Int. J. Heat Mass Transf. 2014, 73, 438–444. [Google Scholar] [CrossRef]
- Tokuda, D.; Inoue, T. Heat transport characteristics of a sodium oscillating heat pipe: Thermal performance. Int. J. Heat Mass Transf. 2022, 196, 123281. [Google Scholar] [CrossRef]
- Fusaro, R.; Ferretto, D.; Viola, N.; Scigliano, R.; De Simone, V.; Marini, M. Liquid Metals Heat-Pipe solution for hypersonic air-intake leading edge: Conceptual design, numerical analysis and verification. Acta Astronaut. 2022, 197, 336–352. [Google Scholar] [CrossRef]
- El-Nasr, A.; El-Haggar, S.M. Effective Thermal Conductivity of Heat Pipes, Heat and Mass Transfer; Springer: Berlin/Heidelberg, Germany, 1996; pp. 97–101. [Google Scholar]
- Peterson, G.P. An Introduction to Heat Pipes: Modeling, Testing, and Applications; Wiley: Hoboken, NJ, USA, 1994. [Google Scholar]
- Iorizzo, F. Coupling of Lumped and Distributed Parameter Models for Numerical Simulation of A Sintered Heat Pipe. Master Thesis, Politecnico di Milano (POLIMI), Milano, Italy, 2011. [Google Scholar]
- Viola, N.; Fusaro, R.; Ferretto, D.; Gori, O.; Saracoglu, B.; Ispir, A.C.; Schram, C.; Grewe, V.; Plezer, J.F.; Martinez, J.; et al. H2020 STRATOFLY Project: From Europe to Australia in less than 3 hours. In Proceedings of the 32nd Congress of the International Council of the Aeronautical Sciences, Shanghai, China, 6–10 September 2021. [Google Scholar]
- Ferretto, D.; Viola, N. Preliminary design and simulation of a thermal management system with integrated secondary power generation capability for a Mach 8 aircraft concept exploiting liquid hydrogen. Aerospace 2023, 10, 180. [Google Scholar] [CrossRef]
- Fusaro, R.; Ferretto, D.; Viola, N.; Villace, V.; Steelant, J. A methodology for preliminary sizing of a Thermal and Energy Management System for a hypersonic vehicle. Aeronaut. J. 2019, 123, 1508–1544. [Google Scholar] [CrossRef]
- Villace, V.F.; Steelant, J. The Thermal Paradox of Hypersonic Cruisers. In Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, UK, 6–9 July 2015. [Google Scholar] [CrossRef]
- Steelant, J. ATLLAS: Aero-thermal loaded material investigations for high-speed vehicles. In Proceedings of the 15th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Dayton, OH, USA, 28 April–1 May 2008; p. 2582. [Google Scholar]
- Steelant, J.; Langener, T.; Hannemann, K.; Marini, M.; Serre, L.; Bouchez, M.; Falempin, F. Conceptual Design of the High-Speed Propelled Experimental Flight Test Vehicle HEXAFLY. In Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, 6–9 July 2015. [Google Scholar]
- Steelant, J.; Varvill, R.; Defoort, S.; Hannemann, K.; Marini, M. Achievements Obtained for Sustained Hypersonic Flight within the LAPCAT-II Project. In Proceedings of the 20th AIAA International Space Planes and Hypersonic Systems and Technologies Conference, Glasgow, Scotland, 6–9 July 2015. [Google Scholar]
- Di Benedetto, S.; Di Donato, M.P.; Rispoli, A.; Pezzella, G.; Scigliano, R.; Nebula, F.; Cristillo, D.; Marini, M.; Cardone, S.; Steelant, J.; et al. Multidisciplinary Design and Flight Test of the HEXAFLY-INT Experimental Flight Vehicle Hexafly-Int. In Proceedings of the HiSST: International Conference on High-Speed Vehicle Science Technology, Moscow, Russia, 26–29 November 2018. [Google Scholar]
- Andro, J.Y.; Scigliano, R.; Kallembach, A.; Steelant, J. Thermal Management of the Hexafly-Int Hypersonic Glider. In Proceedings of the HiSST: International Conference on High-Speed Vehicle Science Technology, Moscow, Russia, 26–29 November 2018. [Google Scholar]
- Scigliano, R.; Di Benedetto, S.; Marini, M.; Villace, V.; Steelant, J. Hexafly-Int Hypersonic Vehicle Thermal Protection System Design. In Proceedings of the 71st International Astronautical Congress (IAC)—The CyberSpace Edition, Online, 12–14 October 2020. IAC-20-56572. [Google Scholar]
- Scigliano, R.; Pezzella, G.; Di Benedetto, S.; Marini, M.; Steelant, J. HEXAFLY-INT Experimental Flight Test Vehicle (EFTV) Aero-Thermal Design. In Proceedings of the ASME International Mechanical Engineering Congress & Exposition (IMECE), Tampa, FL, USA, 3–9 November 2017. IMECE2017-70392. [Google Scholar]
- Viola, N.; Fusaro, R.; Saracoglu, B.; Schram, C.; Grewe, V.; Martinez, J.; Marini, M.; Hernandez, S.; Lammers, K.; Vincent, A.; et al. Main challenges and goals of the H2020 STRATOFLY project. Aerotec. Missili Spazio 2021, 100, 95–110. [Google Scholar] [CrossRef]
- Brouwer, H.S.B. Performance Characterization of Water Heat Pipes and their Application in CubeSats Solving the Thermal Challenge of Next Generation CubeSats. Master Thesis, Delft University of Technology, Delft, The Netherlands, 18 May 2016. [Google Scholar]
- Van Es, J.; Pauw, A.; Van den Berr, R.; Van Kleef, A. Micro-pumped cooling loop to standardize micro-sat thermal control. In Proceedings of the 69th International Astronautical Congress (IAC), Bremen, Germany, 1–5 October 2018. IAC-18, C2,7,3x42197. [Google Scholar]
- Weeren, H.; Brake, M.T.; Hamann, R.; Holl, G.; Price, S. Thermal Aspects of Satellite Downscaling. J. Thermophys. Heat Transf. 2009, 23, 592. [Google Scholar]
- Brower, H.; Van Gerner, H.; Guo, J. Solving the Thermal Challenge in Power-Dense CubeSats with Water Heat Pipes. In Proceedings of the 31st Annual AIAA/USU Conference on Small Satellites, Logan, Utah, USA, 5–10 August 2017. SSC17-VII-06. [Google Scholar]
Component | K (W m−1 C−1) | Cp (J kg−1 C−1) | Density (Kg m−3) |
---|---|---|---|
Pipe copper (case and wick) | 385 | 385 | 8930 |
Copper plate | 385 | 385 | 8930 |
Water liquid | 0.6 | 4182 | 998.2 |
PCB | 35 | 385 | 2700 |
Component | 3 W EXP | 3 W + Pipe EXP | 3 W Numerical | 3 W + Pipe Numerical | 10 W + Pipe EXP | 10 W Numerical | 10 W + Pipe Numerical |
---|---|---|---|---|---|---|---|
PCB | 103.10 | 57.46 | 99 | 62 | 95.75 | 139 | 92 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Scigliano, R.; De Simone, V.; Fusaro, R.; Ferretto, D.; Viola, N. Numerical Simulation of Heat Pipe Thermal Performance for Aerospace Cooling System Applications. Aerospace 2024, 11, 85. https://doi.org/10.3390/aerospace11010085
Scigliano R, De Simone V, Fusaro R, Ferretto D, Viola N. Numerical Simulation of Heat Pipe Thermal Performance for Aerospace Cooling System Applications. Aerospace. 2024; 11(1):85. https://doi.org/10.3390/aerospace11010085
Chicago/Turabian StyleScigliano, Roberto, Valeria De Simone, Roberta Fusaro, Davide Ferretto, and Nicole Viola. 2024. "Numerical Simulation of Heat Pipe Thermal Performance for Aerospace Cooling System Applications" Aerospace 11, no. 1: 85. https://doi.org/10.3390/aerospace11010085
APA StyleScigliano, R., De Simone, V., Fusaro, R., Ferretto, D., & Viola, N. (2024). Numerical Simulation of Heat Pipe Thermal Performance for Aerospace Cooling System Applications. Aerospace, 11(1), 85. https://doi.org/10.3390/aerospace11010085