Variations in Heart Rate Variability and Physiological Responses during Analog Space Missions: An Exploratory Study
Abstract
:1. Introduction
2. Materials and Methods
2.1. Subjects
2.2. Data Collection and Preprocessing
2.3. HRV Parameters
2.4. Linear HRV Parameters
2.5. Nonlinear HRV Parameters
2.6. Borg Scale
2.7. Statistical Analysis
3. Results
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Demontis, G.C.; Germani, M.M.; Caiani, E.G.; Barravecchia, I.; Passino, C.; Angeloni, D. Human Pathophysiological Adaptations to the Space Environment. Front. Physiol. 2017, 8, 547. [Google Scholar] [CrossRef] [PubMed]
- Clément, G. Fundamentals of Space Medicine; Springer: New York, NY, USA, 2011. [Google Scholar] [CrossRef]
- Ayala, R.G.; Duran, M.P. Cardiovascular. In Enfermeria Espacial, 1st ed.; Intersistemas: Mexico City, Mexico, 2018; Available online: https://web.eneo.unam.mx/wp-content/uploads/2021/09/Enfermeria-Espacial-ENEO-UNAM-2018.pdf (accessed on 17 July 2024).
- Otsuka, K.; Cornelissen, G.; Kubo, Y.; Shibata, K.; Hayashi, M.; Mizuno, K.; Ohshima, H.; Furukawa, S.; Mukai, C. Circadian challenge of astronauts’ unconscious mind adapting to microgravity in space, estimated by heart rate variability. Sci. Rep. 2018, 8, 10381. [Google Scholar] [CrossRef] [PubMed]
- Perhonen, M.A.; Franco, F.; Lane, L.D.; Buckey, J.C.; Blomqvist, C.G.; Zerwekh, J.E.; Peshock, R.M.; Weatherall, P.T.; Levine, B.D. Cardiac atrophy after bed rest and spaceflight. J. Appl. Physiol. 2001, 91, 645–653. [Google Scholar] [CrossRef]
- Carrasco-Poyatos, M.; González-Quílez, A.; Martínez-González-Moro, I.; Granero-Gallegos, A. HRV-Guided Training for Professional Endurance Athletes: A Protocol for a Cluster-Randomized Controlled Trial. Int. J. Environ. Res. Public Health 2020, 17, 5465. [Google Scholar] [CrossRef] [PubMed]
- NASA Human Exploration & Development of Space Strategic Plan. Available online: https://ntrs.nasa.gov/api/citations/20010012823/downloads/20010012823.pdf (accessed on 10 August 2024).
- NASA. Technology Transfer Program. Biometric Sensor Tracks Vital Signs for Health; NASA: Washington, DC, USA, 2019. Available online: https://spinoff.nasa.gov/Spinoff2019/hm_6.html (accessed on 6 August 2024).
- Kim, H.-G.; Cheon, E.-J.; Bai, D.-S.; Lee, Y.H.; Koo, B.-H. Stress and Heart Rate Variability: A Meta-Analysis and Review of the Literature. Psychiatry Investig. 2018, 15, 235–245. [Google Scholar] [CrossRef] [PubMed]
- Stein, P.K.; Reddy, A. Non-linear heart rate variability and risk stratification in cardiovascular disease. Indian Pacing Electrophysiol. J. 2005, 210–220. [Google Scholar]
- Baevsky, R.M.; Baranov, V.M.; Funtova, I.I.; Diedrich, A.; Pashenko, A.V.; Chernikova, A.G.; Drescher, J.; Jordan, J.; Tank, J. Autonomic cardiovascular and respiratory control during prolonged spaceflights aboard the International Space Station. J. Appl. Physiol. 2007, 103, 156–161. [Google Scholar] [CrossRef]
- Baran, R.; Marchal, S.; Garcia Campos, S.; Rehnberg, E.; Tabury, K.; Baselet, B.; Wehland, M.; Grimm, D.; Baatout, S. The Cardiovascular System in Space: Focus on In Vivo and In Vitro Studies. Biomedicines 2021, 10, 59. [Google Scholar] [CrossRef]
- NASA. Analog Missions. Available online: https://www.nasa.gov/analog-missions/ (accessed on 5 August 2024).
- University College London. First of Its Kind UK Analogue Space Research Mission. Available online: https://www.ucl.ac.uk/nature-inspired-engineering/news/2022/jun/first-its-kind-uk-analogue-space-research-mission (accessed on 29 July 2024).
- LUNARES. What Is an Analog Mission? Available online: https://lunares.space/what-is-an-analog-mission/ (accessed on 8 October 2024).
- Martínez, D. Aproximaciones al Constructo de Astronauta Análogo. Hacia el Espacio Agencia Espacial Mexicana. Available online: https://haciaelespacio.aem.gob.mx/revistadigital/articul.php?interior=1572 (accessed on 27 July 2024).
- Gronwald, B.J.; Kijak, K.; Jezierska, K.; Gronwald, H.A.; Kosko, K.; Matuszczak, M.; Bielawska-Victorini, H.B.; Podraza, W.; Orzechowski, L.; Lietz-Kijak, D. Influence of Freeze-Dried Diet on Oral Hygiene Indicators in Strict Isolation Condition of an Analog Space Mission. Int. J. Environ. Res. Public Health 2022, 19, 1367. [Google Scholar] [CrossRef]
- Pagel, J.I.; Choukèr, A. Effects of isolation and confinement on humans-implications for manned space explorations. J. Appl. Physiol. 2016, 120, 1449–1457. [Google Scholar] [CrossRef]
- Mastro, A.D.; Salotti, J.M.; Garofalo, G. A Method for Analog Space Missions Risk Analysis. J. Space Saf. Eng. 2022, 9, 132–144. [Google Scholar] [CrossRef]
- Gruber, S.; Groemer, G.; Paternostro, S.; Larose, T.L. AMADEE-18 and the Analog Mission Performance Metrics Analysis: A Benchmarking Tool for Mission Planning and Evaluation. Astrobiology 2020, 20, 1295–1302. [Google Scholar] [CrossRef] [PubMed]
- Poulet, L.; Zeidler, C.; Bunchek, J.; Zabel, P.; Vrakking, V.; Schubert, D.; Massa, G.; Wheeler, R. Crew time in a space greenhouse using data from analog missions and Veggie. Life Sci. Space Res. 2021, 31, 101–112. [Google Scholar] [CrossRef]
- Antunes, A.; Lau Vetter, M.C.Y.; Flannery, D.; Li, Y. Editorial: Mars analogs: Environment, habitability and biodiversity. Front. Astron. Space Sci. 2023, 10, 1208367. [Google Scholar] [CrossRef]
- Sedghamiz, H. Matlab Implementation of Pan Tompkins ECG QRS detector. 2014. Unpublished. [Google Scholar] [CrossRef]
- Vandeput, S.; Widjaja, D.; Aubert, A.E.; Van Huffel, S. Adaptation of autonomic heart rate regulation in astronauts after spaceflight. Med. Sci. Monit. Int. Med. J. Exp. Clin. Res. 2013, 19, 9–17. [Google Scholar] [CrossRef]
- Task Force of the European Society of Cardiology the North American Society of Pacing Electrophysiology. Heart Rate Variability: Standards of Measurement, Physiological Interpretation, and Clinical Use. Circulation 1996, 93, 1043–1065. [Google Scholar] [CrossRef]
- Pham, T.; Lau, Z.J.; Chen, S.H.A.; Makowski, D. Heart Rate Variability in Psychology: A Review of HRV Indices and an Analysis Tutorial. Sensors 2021, 21, 3998. [Google Scholar] [CrossRef]
- Lombardi, F. Heart rate variability and its sympatho-vagal modulation. Cardiovasc. Res. 1996, 32, 208–216. [Google Scholar] [CrossRef]
- Mccraty, R.; Shaffer, F. Heart Rate Variability: New Perspectives on Physiological Mechanisms, Assessment of Self-regulatory Capacity, and Health Risk. Glob. Adv. Health Med. 2015, 4, 46–61. [Google Scholar] [CrossRef]
- Shaffer, F.; Ginsberg, J.P. An Overview of Heart Rate Variability Metrics and Norms. Front. Public Health 2017, 5, 258. [Google Scholar] [CrossRef] [PubMed]
- Moore, T.P. US Space Flight Experience. Physical Exertion and Metabolic Demand of Extravehicular Activity: Past, Present, and Future. Presented at the Workshop on Exercise Prescription for Long-Duration Space Flight, NASA, Johnson Space Center. 1989. Available online: https://ntrs.nasa.gov/api/citations/19910001262/downloads/19910001262.pdf (accessed on 4 August 2024).
- Küpper, T.; Heussen, N.; Morrison, A.; Schöffl, V.; Basnyat, B.; Hillebrandt, D.; Milledge, J.; Steffgen, J.; Meier, B. The Borg Scale at high altitude. Health Promot. Phys. Act. 2021, 15, 1–8. [Google Scholar] [CrossRef]
- Wadgave, U.; Khairnar, M.R. Parametric test for non-normally distributed continuous data: For and against. Electron. Physician 2019, 11, 7468–7470. [Google Scholar] [CrossRef]
- Beckers, F.; Verheyden, B.; Aubert, A.E. Aging and nonlinear heart rate control in a healthy population. Am. J. Physiol.-Heart Circ. Physiol. 2006, 290, H2560–H2570. [Google Scholar] [CrossRef] [PubMed]
- Shin, K.; Minamitani, H.; Onishi, S.; Yamazaki, H.; Lee, M. The power spectral analysis of heart rate variability in athletes during dynamic exercise—Part I. Clin. Cardiol. 1995, 18, 583–586. [Google Scholar] [CrossRef]
- DeBoer, R.W.; Karemaker, J.M.; Strackee, J. Hemodynamic fluctuations and baroreflex sensitivity in humans: A beat-to-beat model. Am. J. Physiol.-Heart Circ. Physiol. 1987, 253, H680–H689. [Google Scholar] [CrossRef]
- Kordi, M.; Kluge, N.; Kloeckner, M.; Russomano, T. Gender Influence on the Performance of Chest Compressions in Simulated Hypogravity and Microgravity. Aviat. Space Environ. Med. 2012, 83, 643–648. [Google Scholar] [CrossRef] [PubMed]
- Smith, C.M.; Segovia, M.D.; Salmon, O.F. Impact of reduced weight on motor and cognitive function in astronaut analogs: A simulated lunar gravity workload study. Acta Astronaut. 2023, 206, 18–29. [Google Scholar] [CrossRef]
- Heinicke, C.; Poulet, L.; Dunn, J.; Meier, A. Crew self-organization and group-living habits during three autonomous, long-duration Mars analog missions. Acta Astronaut. 2021, 182, 160–178. [Google Scholar] [CrossRef]
- Mall, K.; Brown, A.; Kuhn, M.; Black, A.; Pritchard, K.A.; Whitaker, M.; Rush, M.; Guariniello, C.; Porterfield, M.; DeLaurentis, D. Using Analog Astronautics to Advance Human Mars Exploration. In Proceedings of the ASCEND 2023, Orlando, FL, USA, 11–14 June 2023; American Institute of Aeronautics and Astronautics: Las Vegas, NA, USA, 2023. [Google Scholar] [CrossRef]
- Vigo, D.E.; Tuerlinckx, F.; Ogrinz, B.; Wan, L.; Simonelli, G.; Bersenev, E.; Van den Bergh, O.; Aubert, A.E. Circadian Rhythm of Autonomic Cardiovascular Control During Mars500 Simulated Mission to Mars. Aviat. Space Environ. Med. 2013, 84, 1023–1028. [Google Scholar] [CrossRef]
- Umetani, K.; Singer, D.H.; McCraty, R.; Atkinson, M. Twenty-Four Hour Time Domain Heart Rate Variability and Heart Rate: Relations to Age and Gender Over Nine Decades. J. Am. Coll. Cardiol. 1998, 31, 593–601. [Google Scholar] [CrossRef] [PubMed]
- Pulopulos, M.M.; Vanderhasselt, M.-A.; De Raedt, R. Association between changes in heart rate variability during the anticipation of a stressful situation and the stress-induced cortisol response. Psychoneuroendocrinology 2018, 94, 63–71. [Google Scholar] [CrossRef] [PubMed]
- Murakami, M.; Yoshikawa, T.; Nakamura, T.; Ohba, T.; Matsuzaki, Y.; Sawamura, D.; Kuwasako, K.; Yanagisawa, T.; Ono, K.; Nakaji, S.; et al. Involvement of the histamine H1 receptor in the regulation of sympathetic nerve activity. Biochem. Biophys. Res. Commun. 2015, 458, 584–589. [Google Scholar] [CrossRef] [PubMed]
Linear HRV Indices | |||||
---|---|---|---|---|---|
Time domain | |||||
Index | sol 1 | sol 2 | sol 3 | sol 4 | p-Value |
RMSSD (ms) | 31.39 (74.36–20.76) | 24.76 (71.72–20.96) | 41.53 (75.26–32.25) | 32.72 (47.75–22.76) | 0.2982 |
AvRR (ms) | 806.72 (966.54–762.57) | 1041.25 (1173.7–887.75) + | 1003.96 (1137.90–873.70) # | 901.89 (1101.87–801.65) | 0.0003 |
SDNN (ms) | 34.74 (65.64–23.75) | 27.35 (60–21.22) | 37.69 (62.35–28.94) | 34.27 (39.99–23.13) | 0.6522 |
pNN50 (%) | 11.47 (13.23–2.63) | 4.21 (13.80–2.31) | 17.34 (19.84–9.99) #,% | 10.73 (20.28–2.91) | 0.0313 |
Frequency domain | |||||
LF peak (Hz) | 0.06 (0.1–0.05) | 0.07 (0.1–0.06) | 0.11 (0.13–0.06) | 0.05 (0.06–0.04) ° | 0.0260 |
HF peak (Hz) | 0.18 (0.28–0.16) | 0.21 (0.31–0.16) | 0.19 (0.26–0.16) | 0.3 (0.32–0.22) | 0.8566 |
LF HF ratio | 1.29 (3.06–0.79) | 1.11 (2.99–0.66) | 1.16 (1.44–0.45) | 1.13 (3.97–0.74) | 0.5206 |
LF (ms2) | 543.26 (1812.4–366.8) | 575.36 (935.47–184.69) | 801.84 (2660.9–344.82) | 396.49 (820.97–273.6) | 0.2982 |
HF (ms2) | 406.9 (2190.9–157.45) | 222.14 (1789–116.31) | 489.22 (4870.9–392.79) | 388.76 (683.3–135.1) | 0.3720 |
Nonlinear HRV Indices | |||||
---|---|---|---|---|---|
Index | sol 1 | sol 2 | sol 3 | sol 4 | p-Value |
SD1 | 22.23 (52.68–14.7) | 17.54 (50.83–14.85) | 29.42 (37.94–22.84) | 23.18 (33.83–16.12) | 0.9438 |
SD2 | 43.85 (76.53–29.91) | 35.69 (67.94–25.3) | 44.46 (61.34–33.79) | 43.51 (46.09–26.57) | 0.9999 |
SD1/SD2 | 1.53 (2.33–1.44) | 1.55 (1.98–1.34) | 1.22 (1.63–1.15) | 1.39 (2.13–1.25) | 0.2096 |
ApEn | 1.11 (1.14–1.03) | 1.01 (1.04–0.97) | 1.02 (1.09–0.93) | 1.06 (1.07–1.01) | 0.1232 |
SampEn | 1.79 (1.91–1.69) | 1.80 (1.95–1.64) | 1.84 (2.14–1.58) | 2.01 (2.19–1.62) | 0.7090 |
DFA α1 | 1.10 (1.33–0.82) | 0.94 (1.19–0.73) | 0.81 (1.09–0.67) | 0.84 (1.2–0.77) | 0.3720 |
DFA α2 | 0.40 (0.44–0.26) | 0.33 (0.4–0.21) | 0.19 (0.36–0.11) # | 0.44 (0.7–0.27) ° | 0.0313 |
Linear HRV Indices | ||||
---|---|---|---|---|
Time domain | ||||
Index | sol 1 | sol 2 | sol 3 | p-Value |
RMSSD | 43.83 (60.69–22.95) | 42.42 (61.94–18.92) | 34.82 (63.89–22.32) | 0.9537 |
AvRR | 862.03 (917.93–839.66) | 946.46 (1048.40–728.94) | 814.50 (906.34–745.64) | 0.9537 |
SDNN | 36.97 (51.96–20.6) | 38.81 (55.38–22.03) | 23.36 (56.73–19.97) | 0.3673 |
HR | 69.60 (71.5–65.46) | 63.39 (82.35–57.58) | 73.66 (80.96–66.76) | 0.3673 |
pNN50 | 18.38 (24.86–1.91) | 15.17 (20.34–1.19) | 10.19 (12.95–1.83) | 0.3673 |
Frequency domain | ||||
LF peak (Hz) | 0.07 (0.11–0.07) | 0.09 (0.12–0.07) | 0.06 (0.09–0.05) | 0.5216 |
HF peak (Hz) | 0.25 (0.33–0.17) | 0.27 (0.36–0.16) | 0.35 (0.37–0.21) | 0.4228 |
LF HF ratio | 1.05 (3.42–0.69) | 1.50 (3.84–0.92) | 1.34 (2.01–0.95) | 0.6914 |
LF (ms2) | 559.9 (3858.89–204.96) | 659.65 (1728.5–354.86) | 698.97 (1609.59–237.25) | 0.6914 |
HF (ms2) | 530.35 (3789.17–127.5) | 557.37 (1468.38–89.23) | 610.85 (1427.69–117.05) | 0.5216 |
Nonlinear Indices | ||||
---|---|---|---|---|
Index | sol 1 | sol 2 | sol 3 | p-Value |
SD1 | 31.05 (42.57–16.25) | 30.05 (43.89–13.39) | 25.51 (45.26–15.81) | 0.9537 |
SD2 | 42.17 (60.16–24.15) | 45.99 (64.95–28.03) | 45.62 (66.73–23.35) | 0.9999 |
SD1/SD2 | 1.35 (1.64–1.18) | 1.57 (2.03–1.44) | 1.53 (1.59–1.36) | 0.6914 |
ApEn | 1.02 (1.08–0.91) | 1.07 (1.18–0.98) | 1.15 (1.28–1.05) # | 0.0085 |
SampEn | 1.83 (2.07–1.36) | 1.93 (2.16–1.8) | 2.11 (2.25–1.86) | 0.5216 |
DFA α1 | 0.94 (1.09–0.89) | 0.97 (1.19–0.86) | 1.04 (1.1–0.86) | 0.5216 |
DFA α2 | 0.36 (0.54–0.28) | 0.31 (0.44–0.21) | 0.36 (0.43–0.23) | 0.9537 |
Borg Scale | |||||
---|---|---|---|---|---|
Data | sol 1 | sol 2 | sol 3 | sol 4 | p-Value |
Borg Scale (points) | 6 (7–5) | 3 (3.5–2.5) + | 5 (6–4) | 5 (6–4) | 0.0022 |
Habitat Data | ||||
---|---|---|---|---|
Data | sol 1 | sol 2 | sol 3 | sol 4 |
Temperature at 7:30 a.m. (°C) | 20.5 | 21.1 | 22.7 | 20.5 |
Humidity at 7:30 a.m. (%) | 7% | 7% | 8% | 9% |
Temperature at 7:30 p.m. (°C) | 31.6 | 31.1 | 31.6 | 30.5 |
Humidity at 7:30 p.m. (%) | 9% | 10% | 11% | 12% |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Benítez-Salgado, A.; Peña-Castillo, M.Á.; Santiago-Fuentes, L.M.; Zúñiga-Avilés, L.A.; Abarca-Castro, E.A.; Talavera-Peña, A.K.; Avila-Gutierrez, L.; Rodríguez-Arce, J.; Reyes-Lagos, J.J. Variations in Heart Rate Variability and Physiological Responses during Analog Space Missions: An Exploratory Study. Aerospace 2024, 11, 833. https://doi.org/10.3390/aerospace11100833
Benítez-Salgado A, Peña-Castillo MÁ, Santiago-Fuentes LM, Zúñiga-Avilés LA, Abarca-Castro EA, Talavera-Peña AK, Avila-Gutierrez L, Rodríguez-Arce J, Reyes-Lagos JJ. Variations in Heart Rate Variability and Physiological Responses during Analog Space Missions: An Exploratory Study. Aerospace. 2024; 11(10):833. https://doi.org/10.3390/aerospace11100833
Chicago/Turabian StyleBenítez-Salgado, Acatzin, Miguel Ángel Peña-Castillo, Laura Mercedes Santiago-Fuentes, Luis Adrián Zúñiga-Avilés, Eric Alonso Abarca-Castro, Ana Karen Talavera-Peña, Lizeth Avila-Gutierrez, Jorge Rodríguez-Arce, and José Javier Reyes-Lagos. 2024. "Variations in Heart Rate Variability and Physiological Responses during Analog Space Missions: An Exploratory Study" Aerospace 11, no. 10: 833. https://doi.org/10.3390/aerospace11100833
APA StyleBenítez-Salgado, A., Peña-Castillo, M. Á., Santiago-Fuentes, L. M., Zúñiga-Avilés, L. A., Abarca-Castro, E. A., Talavera-Peña, A. K., Avila-Gutierrez, L., Rodríguez-Arce, J., & Reyes-Lagos, J. J. (2024). Variations in Heart Rate Variability and Physiological Responses during Analog Space Missions: An Exploratory Study. Aerospace, 11(10), 833. https://doi.org/10.3390/aerospace11100833