State Analysis and Emergency Control of Planetary Rover with Faulty Drive Wheel
Abstract
:1. Introduction
2. Experimental Study
2.1. Experimental System
2.2. Vehicle Test of Fault Planetary Rover
2.2.1. Mobile Test
2.2.2. Obstacle Crossing Test
2.3. Single Wheel Test of Faulty Drive Wheel
3. State Analysis
3.1. Planetary Rover Model with Faulty Drive Wheel
3.2. Drag Motion Relationship of Faulty Drive Wheel
4. Emergency Control
4.1. Path Planning
4.2. Motion Control
5. Conclusions and Future Work
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Grotzinger, J.P.; Gupta, S.; Malin, M.C.; Rubin, D.M.; Schieber, J.; Siebach, K.; Sumner, D.Y.; Stack, K.M.; Vasavada, A.R.; Arvidson, R.E.; et al. Deposition, exhumation, and paleoclimate of an ancient lake deposit, Gale crater, Mars. Science 2015, 350, aac7575. [Google Scholar] [CrossRef] [PubMed]
- Sarkar, R.; Edgett, K.S.; Ghosh, D.; Porwal, A.; Singh, P. Tectonic evolution of Juventae Chasma, Mars, and the deformational and depositional structural attributes of the four major light-toned rock exposures therein. Icarus 2019, 333, 199–233. [Google Scholar] [CrossRef]
- Arvidson, R.; DeGrosse, P.; Grotzinger, J.; Heverly, M.; Shechet, J.; Moreland, S.; Newby, M.; Stein, N.; Steffy, A.; Zhou, F.; et al. Relating geologic units and mobility system kinematics contributing to Curiosity wheel damage at Gale Crater, Mars. J. Terramechanics 2017, 73, 73–93. [Google Scholar] [CrossRef]
- Sullivan, R.J.; Anderson, R.C.; Biesiadecki, J.J.; Bond, T.K.; Stewart, H. Cohesions, friction angles, and other physical properties of Martian regolith from Mars Exploration Rover wheel trenches and wheel scuffs. J. Geophys. Res. 2011, 116. [Google Scholar] [CrossRef]
- Arvidson, R.E.; Bell, J.F.; Bellutta, P.; Cabrol, N.A.; Catalano, J.G.; Cohen, J.; Crumpler, L.S.; Marais, D.J.D.; Estlin, T.A.; Farrand, W.H.; et al. Spirit Mars Rover Mission: Overview and selected results from the northern Home Plate Winter Haven to the side of Scamander crater. J. Geophys. Res-Planet 2010, 115. [Google Scholar] [CrossRef]
- Skibbe, J.; Aitier, E.; Barthelmes, S.; Bihler, M.; Brusq, G.; Hacker, F.; Sedlmayr, H. Fault Detection, Isolation and Recovery in the MMX Rover Locomotion Subsystem. In Proceedings of the 2023 IEEE Aerospace Conference, Big Sky, MT, USA, 4–11 March 2023; pp. 1–9. [Google Scholar]
- Kolcio, K.; Mackey, R.M.; Fesq, L.M. Model-Based Approach to Rover Health Assessment—Mars Yard Discoveries. In Proceedings of the 2019 IEEE Aerospace Conference, Big Sky, MT, USA, 2–9 March 2019; pp. 1–12. [Google Scholar]
- Yunpeng, Y.; Zou, M.; Yao, J.; Baofeng, Y.; Yuncheng, L.; Jingfu, J. Endurance study of bionic wheels for Mars rovers. J. Terramechanics 2017, 74, 57–68. [Google Scholar]
- Wang, Z.; Yang, H.; Ding, L.; Yuan, B.; Lv, F.; Gao, H.; Deng, Z. Wheels’ performance of Mars exploration rovers: Experimental study from the perspective of terramechanics and structural mechanics. J. Terramechanics 2020, 92, 23–42. [Google Scholar] [CrossRef]
- Baofeng, Y.; Wang, C.; Zou, M.; Liu, Y.; Yuncheng, L.; Yang, J.; Chen, B.; Jin, J. Experimental Study on the Durability of China’s Mars Rover’s Mobility System. J. Aerosp. Eng. 2021, 34, 04021047. [Google Scholar]
- Park, B.; Chung, H. Deep Reinforcement Learning-Based Failure-Safe Motion Planning for a 4-Wheeled 2-Steering Lunar Rover. Aerospace 2023, 10, 219. [Google Scholar] [CrossRef]
- Khelladi, F.; Boudali, M.; Orjuela, R.; Cassaro, M.; Basset, M.; Roos, C. An Emergency Hierarchical Guidance Control Strategy for Autonomous Vehicles. IEEE T. Intell. Transp. 2022, 23, 4319–4330. [Google Scholar] [CrossRef]
- Chen, T.; Cai, Y.; Chen, L.; Xu, X.; Sun, X. Trajectory tracking control of steer-by-wire autonomous ground vehicle considering the complete failure of vehicle steering motor. Simul. Model. Pract. Theory 2020, 109, 102235. [Google Scholar] [CrossRef]
- Rankin, A.L.; Maimone, M.W.; Biesiadecki, J.J.; Patel, N.; Levine, D.; Toupet, O. Mars curiosity rover mobility trends during the first 7 years. J. Field Robot. 2021, 38, 759–800. [Google Scholar] [CrossRef]
- Zheng, J.; Gao, H.; Yuan, B.; Liu, Z.; Yu, H.; Ding, L.; Deng, Z. Design and terramechanics analysis of a Mars rover utilising active suspension. Mech. Mach. Theory 2018, 128, 125–149. [Google Scholar] [CrossRef]
- Fu, Y.; He, X.; Wang, S.; Han, L.; Ma, Y. Topological Analysis and Control on Mobile Robot with Partially-Failed Propulsive Wheel. In Proceedings of the 2005 IEEE International Conference on Robotics and Automation, Barcelona, Spain, 18–22 April 2005; pp. 3440–3445. [Google Scholar]
- Xu, H.; Gao, X.Z.; Xu, Y.; Wang, K.; Yu, H.; Li, Z.; Alipour, K.; Ani, O.A. Continuous mobility of mobile robots with a special ability for overcoming driving failure on rough terrain. Robotica 2016, 35, 2076–2096. [Google Scholar] [CrossRef]
- Guo, J.; Li, W.; Ding, L.; Gao, H.; Guo, T.; Huang, B.; Deng, Z. Linear Expressions of Drawbar Pull and Driving Torque for Grouser-Wheeled Planetary Rovers Without Terrain Mechanical Parameters. IEEE Robot. Autom. Lett. 2021, 6, 8197–8204. [Google Scholar] [CrossRef]
- Fujiwara, D.; Tsujikawa, N.; Oshima, T.; Iizuka, K. Analysis of a resistance force for the locked-wheel of push-pull locomotion rovers using large subsidence. J. Terramechanics 2021, 94, 1–12. [Google Scholar] [CrossRef]
- Wong, J.Y.; Reece, A.R. Prediction of rigid wheel performance based on the analysis of soil-wheel stresses part I. Performance of driven rigid wheels. J. Terramechanics 1967, 4, 81–98. [Google Scholar] [CrossRef]
- Gao, H.; Guo, J.; Ding, L.; Nan, L.; Liu, Z.; Liu, G.; Deng, Z. Longitudinal skid model for wheels of planetary exploration rovers based on terramechanics. J. Terramechanics 2013, 50, 327–343. [Google Scholar] [CrossRef]
- Wong, J. Theory of Ground Vehicle, 4th ed.; John Wiley & Sons: Hoboken, NJ, USA, 2008. [Google Scholar]
- Li, J.; He, J.; Xing, Y.; Gao, F. Simultaneous Control of Terrain Adaptation and Wheel Speed Allocation for a Planetary Rover with an Active Suspension System. IEEE Robot. Autom. Lett. 2021, 6, 6410–6417. [Google Scholar] [CrossRef]
- Han, J. From PID to Active Disturbance Rejection Control. IEEE T. Ind. Electron. 2009, 56, 900–906. [Google Scholar] [CrossRef]
- Ding, L.; Gao, H.; Deng, Z.; Nagatani, K.; Yoshida, K. Experimental study and analysis on driving wheels’ performance for planetary exploration rovers moving in deformable soil. J. Terramechanics 2011, 48, 27–45. [Google Scholar] [CrossRef]
- Gao, H.; Xia, K.; Ding, L.; Deng, Z.; Liu, Z.; Liu, G. Optimized control for longitudinal slip ratio with reduced energy consumption. Acta Astronaut. 2015, 115, 1–17. [Google Scholar] [CrossRef]
Simulated Soil | Deformation Index | Cohesion | Internal Friction Angle |
---|---|---|---|
JLU Mars 1 | 1.07 | 0.54 kPa | 30.6° |
JLU Mars 3 | 1.02 | 0.17 kPa | 36.8° |
JLU-2b | 1.06 | 1.82 kPa | 32.7° |
Faulty Drive Wheel | Number of Obstacle Slabs | |||||
---|---|---|---|---|---|---|
RF | RM | RR | LF | LM | LR | |
Right front wheel | 0 | — | — | 5 | 4 | 3 |
Right middle wheel | 1 | 0 | — | 5 | 4 | 3 |
Right rear wheel | 4 | 3 | 0 | 5 | 5 | 4 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Jia, Z.; Jin, J.; Dong, X.; Qi, Y.; Zou, M.; Yu, Q. State Analysis and Emergency Control of Planetary Rover with Faulty Drive Wheel. Aerospace 2024, 11, 838. https://doi.org/10.3390/aerospace11100838
Jia Z, Jin J, Dong X, Qi Y, Zou M, Yu Q. State Analysis and Emergency Control of Planetary Rover with Faulty Drive Wheel. Aerospace. 2024; 11(10):838. https://doi.org/10.3390/aerospace11100838
Chicago/Turabian StyleJia, Zhicheng, Jingfu Jin, Xinju Dong, Yingchun Qi, Meng Zou, and Qingyu Yu. 2024. "State Analysis and Emergency Control of Planetary Rover with Faulty Drive Wheel" Aerospace 11, no. 10: 838. https://doi.org/10.3390/aerospace11100838
APA StyleJia, Z., Jin, J., Dong, X., Qi, Y., Zou, M., & Yu, Q. (2024). State Analysis and Emergency Control of Planetary Rover with Faulty Drive Wheel. Aerospace, 11(10), 838. https://doi.org/10.3390/aerospace11100838