Chemical Kinetic Analysis of High-Pressure Hydrogen Ignition and Combustion toward Green Aviation
Abstract
:1. Introduction
1.1. Selection of the Kinetic Mechanisms
1.2. Mueller—1999
1.3. Li—2004
1.4. O’Conaire—2004
1.5. CRECK—2012
1.6. Kéromnès—2013
1.7. Z22—2018
1.8. Z24—2022
1.9. Considered Detailed Kinetic Mechanisms
2. Methodology
2.1. Mathematical Chemical Model
2.2. Comparison of Computational Ignition Delay Times against Shock Tube Measurements
3. Results and Discussion
3.1. Shock Tube Tests in Argon with Fuel-Lean Composition
3.2. Shock Tube Tests in Argon with Stoichiometric Composition
3.3. Shock Tube Tests in Argon with Fuel-Rich Composition
3.4. Laminar Flame Speed Analysis
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
List of Variables
ADM | Average absolute degree of mismatching [%] |
ADMi | Absolute degree of mismatching for a single data point [%] |
cp,mix | Reacting mixture specific heat at constant pressure [J/(kg K)] |
cp,k | k-th component specific heat at constant pressure [J/(kg K)] |
Expi | Single experimental measurement of IDT or LFS |
hk | Specific enthalpy of the k-th component [J/kg] |
i | Single data point for IDT or LFS |
jk | Diffusive mass flux of the k-th component |
Mw,k | Molecular weight of the k-th chemical component [kg/mol] |
mtot | Total mixture mass [kg] |
mk | Mass of the k-th chemical component [kg] |
Numi | Single numerical prediction of IDT or LFS |
N | Number of data points [/] |
rk | Rate constant of the k-th component [mol/(m3 s)] |
r | Radial coordinate [m] |
t | Time [s] |
T | Temperature [K] |
U | Internal energy [J] |
u | Axial velocity [m/s] |
u | Axial velocity [m/s] |
V | Reacting mixture volume [m3] |
v | Radial velocity [m/s] |
w | Tangential velocity [m/s] |
Yk | Mass fraction of the k-th species [/] |
z | Axial coordinate [m] |
φ | Equivalence Ratio |
Λ | Pressure eigenvalue |
λ | Thermal conductivity [W/(mK)] |
μ | Dynamic viscosity [Pa·s] |
ρ | Density [kg/m3] |
ν | Stoichiometric coefficient |
τign | Ignition delay time [s] |
Molar production rate of the k-th chemical species |
References
- Cecere, D.; Ingenito, A.; Giacomazzi, E.; Romagnosi, L.; Bruno, C. Hydrogen/air supersonic combustion for future hypersonic vehicles. Int. J. Hydrogen Energy 2011, 30, 11969–11984. [Google Scholar] [CrossRef]
- Tsujikawa, Y.; Northambi, G.B. Effects of hydrogen active cooling on scramjet engine performance. Int. J. Hydrogen Energy 1996, 21, 299–304. [Google Scholar] [CrossRef]
- Viola, N.; Fusaro, R.; Gori, O.; Marini, M.; Roncioni, P.; Saccone, G.; Saracoglu, B.H.; Ispir, A.C.; Fureby, C.; Nilsson, T.; et al. STRATOFLY MR3—How to reduce the environmental impact of high-speed transportation. In AIAA Scitech Forum Virtual Event; Aerospace Research Central: Reston, VA, USA, 2021. [Google Scholar] [CrossRef]
- Viola, N.; Fusaro, R.; Ferretto, D.; Gori, O.; Saracoglu, B.H.; Ispir, A.C.; Schram, C.; Grewe, V.; Plezer, J.F.; Martinez, J.; et al. H2020 STRATOFLY project: From Europe to Australi in less than 3 hours. In Proceedings of the CAS 2021 The 32nd Congress of the International Council of the Aeronautical Sciences, Shanghai, China, 6–10 September 2021. [Google Scholar]
- Saccone, G.; Natale, P.; Cutrone, L.; Marini, M. Hydrogen/Air Supersonic Combustion Modelling and Validation for Scramjet Applications. J. Fluid Flow Heat Mass Transf. 2022, 9, 136–147. [Google Scholar] [CrossRef]
- Saccone, G.; Ispir, A.C.; Saracoglu, B.H.; Cutrone, L.; Marini, M. Computational evaluations of emissions indexes released by the STRATOFLY air-breathing combined propulsive system. Aircr. Eng. Aerosp. Technol. 2022, 94, 1499–1507. [Google Scholar] [CrossRef]
- Goodwin, D.; Moffat, H.K.; Speth, R.L. Cantera: An Object-Oriented Software Toolkit for Chemical Kinetics, Thermodynamics, and Transport Processes, (Version 2.6). 2023. Available online: http://www.cantera.org (accessed on 1 December 2023).
- Mueller, M.A.; Yetter, R.A.; Dryer, F.L. Flow reactor studies and kinetic modeling of the H2/O2 reaction. Int. J. Chem. Kinet. 1999, 31, 113–125. [Google Scholar] [CrossRef]
- Li, J.; Zhao, Z.; Kazanov, A.; Dryer, F.L. An Updated Comprehensive Kinetic Model of Hydrogen Combustion. Int. J. Chem. Kinet. 2004, 36, 566–575. [Google Scholar] [CrossRef]
- Conaire, M.Ó.; Curran, H.J.; Simmie, J.M.; Pitz, W.J.; Westbrook, C.K.A. Comprehensive Modeling Study of Hydrogen Oxidation. Int. J. Chem. Kinet. 2004, 36, 603–622. [Google Scholar] [CrossRef]
- Yetter, R.A.; Dryer, F.L.; Rabbitz, H. A Comprehensive Reaction Mechanism for Carbon Monoxide/Hydrogen/Oxygen Kinetics. Combust. Sci. Technol. 1991, 79, 97–128. [Google Scholar] [CrossRef]
- Kim, T.J.; Yetter, R.A.; Dryer, F.L. New results on moist CO oxidation: High pressure, high temperature experiments and comprehensive kinetic modelling. Proc. Combust. Inst. 1994, 25, 759–766. [Google Scholar] [CrossRef]
- Frassoldati, A.; Faravalli, T.; Ranzi, E. A wide range modeling study of NOx formation and nitrogen chemistry in hydrogen combustion. Int. J. Hydrogen Energy 2006, 31, 2310–2328. [Google Scholar] [CrossRef]
- Ranzi, E.; Frassoldati, A.; Granata, S.; Faravelli, T. Wide-Range Kinetic Modeling Study of the Pyrolysis, Partial Oxidation, and Combustion of Heavy n-Alkanes. Ind. Eng. Chem. Res. 2005, 44, 5170–5183. [Google Scholar] [CrossRef]
- Ruscic, B.; Wagner, A.F.; Harding, L.B.; Asher, R.L.; Feller, D.; Dixon, D.A.; Peterson, K.A.; Song, Y.; Qian, X.; Ng, C.Y.; et al. On the Enthalpy of Formation of Hydroxyl Radical and Gas-Phase Bond Dissociation Energies of Water and Hydroxyl. J. Phys. Chem. A 2002, 106, 2727–2747. [Google Scholar] [CrossRef]
- Metcalfe, W.K.; Burke, S.M.; Ahmed, S.S.; Curran, H.J. A hierarchical and comparative kinetic modeling study of C1−C2 hydrocarbon and oxygenated fuels. Int. J. Chem. Kinet. 2013, 45, 638–675. [Google Scholar] [CrossRef]
- Bagheri, G.; Ranzi, E.; Pelucchi, M.; Parente, A.; Frassoldati, A.; Faravelli, T. Comprehensive kinetic study of combustion technologies for low environmental impact: MILD and OXY-fuel combustion of methane. Combust. Flame 2020, 212, 142–155. [Google Scholar] [CrossRef]
- Ranzi, E.; Frassoldati, A.; Stagni, A.; Pelucchi, M.; Cuoci, A.; Faravelli, T. Reduced kinetic schemes of complex reaction systems: Fossil and biomass-derived transportation fuels. Int. J. Chem. Kinet. 2014, 46, 512–542. [Google Scholar] [CrossRef]
- Kéromnès, A.; Metcalfe, W.K.; Heufer, K.A.; Donohoe, N.; Das, A.K.; Sung, C.J.; Herzler, J.; Naumann, C.; Griebel, P.; Mathieu, O.; et al. An Experimental and Detailed Chemical Kinetic Modelling Study of Hydrogen and Syngas Mixtures at Elevated Pressures. Combust. Flame 2013, 160, 995–1011. [Google Scholar] [CrossRef]
- Zettervall, N.; Fureby, C. Computational Study of Ramjet, Scramjet and Dual Mode Ramjet/Scramjet Combustion in a Combustor with a Cavity Flameholder. In Proceedings of the AIAA Aerospace Science, Kissimmee, FL, USA, 8–12 January 2018. [Google Scholar]
- Larsson, A.; Zettervall, N.; Hurtig, T.; Nilsson, E.J.K.; Ehn, A.; Petersson, P.; Alden, M.; Larfeldt, J.; Fureby, C. Skeletal Methane-Air Reaction Mechanism for Large Eddy Simulation of Turbulent Microwave-Assisted Combustion. Energy Fuels 2017, 31, 1904. [Google Scholar] [CrossRef]
- Alekseev, V.A.; Christensen, M.; Konnov, A.A. The Effect of Temperature on the Adiabatic Burning Velocities of Diluted Hydrogen Flames: A Kinetic Study using an Updated Mechanism. Combust. Flame 2015, 162, 1884. [Google Scholar] [CrossRef]
- Zettervall, N. Reaction Mechanism for Hydrogen-Air Combustion, FOI-D-1153-SE. 2022. Available online: https://www.foi.se/en/foi.htm (accessed on 1 December 2021).
- Petersen, E.L.; Davidson, D.F.; Hanson, R.K. Kinetic Modelling of Shock-Induced Ignition in Low-Dilution CH4/O2 Mixtures at High Pressures and Intermediate Temperatures. Combust. Flame 1999, 11, 272–290. [Google Scholar] [CrossRef]
- Smith, G.P.; Golden, D.M.; Frenklach, M.; Moriarty, N.W.; Eiteneer, B.; Goldenberg, M.; Bowman, C.T.; Hanson, R.K.; Song, S.; Gardiner, W.C.; et al. GRI-Mech 3.0. 1999. Available online: http://www.me.berkeley.edu/gri_mech/ (accessed on 1 December 2023).
- Wang, H.; You, X.; Joshi, A.V.; Davis, S.G.; Laskin, A.; Egolfopoulos, F.; Law, C.K. USC Mech Version II. High-Temperature Combustion Reaction Model of H2/CO/C1-C4 Compounds. 2007. Available online: https://ignis.usc.edu/USC_Mech_II.htm (accessed on 1 December 2023).
- Li, Y.; Zhou, C.W.; Somers, K.P.; Zhang, K.; Curran, H.J. The Oxidation of 2-Butene: A High Pressure Ignition Delay, Kinetic Modeling Study and Reactivity Comparison with Isobutene and 1-Butene. Proc. Combust. Inst. 2017, 36, 403–411. [Google Scholar] [CrossRef]
- Zhou, C.W.; Li, Y.; O’Connor, E.; Somers, K.P.; Thion, S.; Keesee, C.; Mathieu, O.; Petersen, E.L.; DeVerter, T.A.; Oehlschlaeger, M.A.; et al. A Comprehensive experimental and modeling study of isobutene oxidation. Combust. Flame 2016, 167, 353–379. [Google Scholar] [CrossRef]
- Burke, U.; Metcalfe, W.K.; Burke, S.M.; Heufer, K.A.; Dagaut, P.; Curran, H.J. A Detailed Chemical Kinetic Modeling, Ignition Delay time and Jet-Stirred Reactor Study of Methanol Oxidation. Combust. Flame 2016, 165, 125–136. [Google Scholar] [CrossRef]
- Frenklach, M.; Wang, H.; Goldenberg, M.; Smith, G.P.; Golden, D.M.; Bowman, C.T.; Hanson, R.K.; Gardiner, W.C.; Lissianski, V. GRI Topical Report No. GRI-95/0058. 1995. Available online: https://www.gti.energy/ (accessed on 1 December 2023).
- Yamada, E.; Kitabayashi, N.; Koichi Hayashi, A.; Tsuboi, N. Mechanism of high-pressure hydrogen auto-ignition when spouting into air. Int. J. Hydrogen Energy 2011, 36, 2560–2566. [Google Scholar] [CrossRef]
- Herzler, J.; Naumann, C. Shock-tube study of the ignition of methane/ethane/hydrogen mixtures with hydrogen contents from 0% to 100% at different pressures. Proc. Combust. Inst. 2009, 32, 213–220. [Google Scholar] [CrossRef]
- Petersen, E.L. Turbulent Flame Speeds and NOx Kinetics of HHC Fuels with Contaminants and High Dilution Levels; Topical Report 1; Texas Engineering Experiment Station: College Station, TX, USA, 2011. [Google Scholar]
- Hu, E.; Pan, L.; Gao, Z.; Lu, X.; Meng, X.; Huang, Z. Shock tube study on ignition delay of hydrogen and evaluation of various kinetic models. Int. J. Hydrogen Energy 2016, 41, 13261–13280. [Google Scholar] [CrossRef]
- Konnov, A.A.; Mohammad, A.; Kishore, V.R.; Kim, N.I.; Prathap, C.; Kumar, S. A comprehensive review of measurements and data analysis of laminar burning velocities for various fuel + air mixtures. Prog. Energy Combust. Sci. 2018, 68, 197–267. [Google Scholar] [CrossRef]
- Tse, S.D.; Zhu, D.L.; Law, C.K. Morphology and Burning Rates of Expanding Spherical Flames in H2/O2/Inert Mixtures up to 60 Atmospheres. Proc. Combust. Inst. 2000, 28, 1793–1800. [Google Scholar] [CrossRef]
- Zhang, W.; Gou, X.; Kong, W.; Chen, Z. Laminar flame speeds of lean high-hydrogen syngas at normal and elevated pressures. Fuel 2016, 181, 958–963. [Google Scholar] [CrossRef]
- Chaos, M.; Dryer, F.L. Chemical-Kinetic Modeling of Ignition Delay: Considerations in Interpreting Shock Tube Data. Int. J. Chem. Kinet. 2010, 42, 143–150. [Google Scholar] [CrossRef]
- Krejci, M.C.; Mathieu, O.; Vissotski, A.J.; Ravi, S.; Sikes, T.G.; Petersen, E.L.; Kéromnès, A.; Metcalfe, W.; Curran, H.J. Laminar Flame Speed and Ignition Delay Time Data for the Kinetic Modeling of Hydrogen and Syngas Fuel Blends. J. Eng. Gas Turbine Power 2013, 135, 021503. [Google Scholar] [CrossRef]
- Aung, K.T.; Hassan, M.I.; Faeth, G.M. Effects of pressure and nitrogen dilution on flame/stretch interactions of laminar premixed H2/O2/N2 flames. Combust. Flame 1998, 112, 1–15. [Google Scholar] [CrossRef]
Kinetic Scheme | Species | Reactions |
---|---|---|
Mueller—1999 | 9 | 28 |
Li—2004 | 9 | 20 |
Ó’Conaire—2004 | 9 | 19 |
CRECK—2012 | 9 | 23 |
Kèromnès—2013 | 10 | 31 |
Z22—2018 | 9 | 22 |
Z24—2022 | 9 | 24 |
RAMEC | 38 | 190 |
GRI-Mech 3.0 | 53 | 325 |
USC-II | 111 | 784 |
Aramco-II | 493 | 2174 |
φ = 0.5 | ||||||
---|---|---|---|---|---|---|
ADM [%] ~4 bars Herzler | ADM [%] ~16 bars Herzler | ADM [%] 13.3 atm Petrsen | ADM [%] 4 atm Hu | ADM [%] 10 atm Hu | ADM [%] 16 atm Hu | |
Mueller—1999 | 7129 | 525 | 68711 | 11654 | 3564 | 1697 |
Li—2004 | 742 | 136 | 252 | 696 | 295 | 225 |
Ó’Conaire—2004 | 1059 | 146 | 369 | 933 | 389 | 271 |
CRECK—2012 | 99 | 45 | 21 | 45 | 30 | 42 |
Kèromnès—2013 | 122 | 55 | 36 | 93 | 46 | 46 |
Z22—2018 | 505 | 25 | 405 | 527 | 225 | 106 |
Z24—2022 | 1057 | 205 | 854 | 1121 | 911 | 448 |
RAMEC—1999 | 498 | 153 | 251 | 493 | 293 | 248 |
GRI—Mech 3.0 | 1239 | 207 | 451 | 1102 | 507 | 366 |
USC-II | 1825 | 252 | 1074 | 1576 | 693 | 475 |
Aramco-II | 124 | 53 | 42 | 107 | 46 | 46 |
φ = 1.0 | ||||||
---|---|---|---|---|---|---|
ADM [%] ~4 bars Herzler | ADM [%] ~16 bars Herzler | ADM [%] 13.8 atm Petrsen | ADM [%] 4 atm Hu | ADM [%] 10 atm Hu | ADM [%] 16 atm Hu | |
Mueller—1999 | 4798 | 1532 | 8752 | 5750 | 2369 | 1510 |
Li—2004 | 316 | 171 | 110 | 476 | 182 | 122 |
Ó’Conaire—2004 | 436 | 236 | 183 | 636 | 242 | 158 |
CRECK—2012 | 54 | 45 | 20 | 36 | 45 | 53 |
Kèromnès—2013 | 72 | 47 | 11 | 76 | 48 | 49 |
Z22—2018 | 318 | 223 | 280 | 388 | 180 | 113 |
Z24—2022 | 818 | 676 | 610 | 960 | 832 | 464 |
RAMEC—1999 | 223 | 243 | 126 | 332 | 198 | 164 |
GRI-Mech 3.0 | 582 | 382 | 245 | 834 | 366 | 254 |
USC-II | 983 | 570 | 876 | 1377 | 568 | 368 |
Aramco-II | 74 | 58 | 11 | 81 | 48 | 48 |
φ = 2.0 | |||
---|---|---|---|
ADM [%] 4 atm Hu | ADM [%] 10 atm Hu | ADM [%] 16 atm Hu | |
Mueller—1999 | 3440 | 1434 | 483 |
Li—2004 | 312 | 173 | 121 |
Ó’Conaire—2004 | 362 | 202 | 141 |
CRECK—2012 | 28 | 26 | 46 |
Kèromnès—2013 | 60 | 37 | 52 |
Z22—2018 | 238 | 139 | 42 |
Z24—2022 | 737 | 773 | 336 |
RAMEC—1999 | 238 | 194 | 163 |
GRI-Mech 3.0 | 569 | 365 | 256 |
USC-II | 962 | 581 | 355 |
Aramco-II | 65 | 37 | 51 |
ADM [%] 1 atm Krejci | ADM [%] 1 atm Aung | ADM [%] 2 atm Aung | ADM [%] 3 atm Aung | ADM [%] 5 atm Tse | ADM [%] 10 atm Tse | ADM [%] 15 atm Tse | ADM [%] 20 atm Tse | |
---|---|---|---|---|---|---|---|---|
Mueller—1999 | 81 | 49 | 66 | 69 | 71 | 16 | 7 | 7 |
Li—2004 | 54 | 15 | 11 | 10 | 16 | 110 | 132 | 158 |
Ó’Conaire—2004 | 6 | 16 | 13 | 13 | 19 | 116 | 137 | 164 |
CRECK—2012 | 8 | 18 | 15 | 14 | 18 | 146 | 177 | 210 |
Kèromnès—2013 | 8 | 18 | 16 | 14 | 18 | 141 | 169 | 201 |
Z22—2018 | 21 | 33 | 31 | 32 | 35 | 235 | 305 | 387 |
Z24—2022 | 7 | 11 | 8 | 9 | 11 | 135 | 170 | 213 |
GRI-Mech 3.0 | 8 | 15 | 10 | 13 | 17 | 108 | 112 | 116 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Saccone, G.; Marini, M. Chemical Kinetic Analysis of High-Pressure Hydrogen Ignition and Combustion toward Green Aviation. Aerospace 2024, 11, 112. https://doi.org/10.3390/aerospace11020112
Saccone G, Marini M. Chemical Kinetic Analysis of High-Pressure Hydrogen Ignition and Combustion toward Green Aviation. Aerospace. 2024; 11(2):112. https://doi.org/10.3390/aerospace11020112
Chicago/Turabian StyleSaccone, Guido, and Marco Marini. 2024. "Chemical Kinetic Analysis of High-Pressure Hydrogen Ignition and Combustion toward Green Aviation" Aerospace 11, no. 2: 112. https://doi.org/10.3390/aerospace11020112
APA StyleSaccone, G., & Marini, M. (2024). Chemical Kinetic Analysis of High-Pressure Hydrogen Ignition and Combustion toward Green Aviation. Aerospace, 11(2), 112. https://doi.org/10.3390/aerospace11020112