Experimental Investigation on Ice–Aluminum Interface Adhesion Strength under Heating Conditions
Abstract
:1. Introduction
2. Experimental Setup
2.1. Experimental Design
2.2. Calibration of the Experimental Setup
3. Results and Discussion
3.1. Calibration Results
3.2. Determination of Loading Speed
3.3. Determination of Freezing Time
3.4. Effect of Initial Temperature on Adhesion Strength under Heating Conditions
3.5. Effect of Heating Power on Adhesion Strength
4. Conclusions
- (1)
- The loading speed and the freezing time are determined to be 0.5 mm/s and 90 min, respectively, by measuring the shear strength under different conditions.
- (2)
- The adhesion strength degrades as the heating temperature increases. As the initial temperature drops, the adhesion strength decreases slower.
- (3)
- The weak adhesion state (WAS) is defined to describe the adhesion. The temperature of WAS under heating varies with the initial temperature. A higher heating power reduces the adhesion strength more with the same temperature rise.
- (4)
- The dimensionless parameter AW is introduced to take the energy consumption and adhesion weakening into account. The values of AW suggest that a medium power should be selected for heating to reduce the adhesion strength.
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Lampton, A.; Valasek, J. Prediction of icing effects on the lateral/directional stability and control of light airplanes. Aerosp. Sci. Technol. 2012, 23, 305–311. [Google Scholar] [CrossRef]
- Cao, Y.; Tan, W.; Wu, Z. Aircraft icing: An ongoing threat to aviation safety. Aerosp. Sci. Technol. 2018, 75, 353–385. [Google Scholar] [CrossRef]
- Bennani, L.; Trontin, P.; Radenac, E. Numerical Simulation of an Electrothermal Ice Protection System in Anti-Icing and Deicing Mode. Aerospace 2023, 10, 75. [Google Scholar] [CrossRef]
- Wang, Y.; Guo, T.; Li, K.; Zhu, C.; Du, Q. Research on the dual-channel electro-impulse de-icing system of aircrafts. Proc. Inst. Mech. Eng. Part G J. Aerosp. Eng. 2022, 236, 2315–2326. [Google Scholar] [CrossRef]
- Planquart, P.; Vanden Borre, G.; Buchlin, J.-M. Experimental and numerical optimization of a wing leading edge hot air anti-icing system. In Proceedings of the 43rd AIAA Aerospace Sciences Meeting and Exhibit, Reno, NV, USA, 10–13 January 2005; p. 1277. [Google Scholar]
- Wang, P.; Yao, T.; Li, Z.; Wei, W.; Xie, Q.; Duan, W.; Han, H. A superhydrophobic/electrothermal synergistically anti-icing strategy based on graphene composite. Compos. Sci. Technol. 2020, 198, 108307. [Google Scholar] [CrossRef]
- Zhang, Z.; Lusi, A.; Hu, H.; Bai, X.; Hu, H. An experimental study on the detrimental effects of deicing fluids on the performance of icephobic coatings for aircraft icing mitigation. Aerosp. Sci. Technol. 2021, 119, 107090. [Google Scholar] [CrossRef]
- Kolbakir, C.; Hu, H.; Liu, Y.; Hu, H. An experimental study on different plasma actuator layouts for aircraft icing mitigation. Aerosp. Sci. Technol. 2020, 107, 106325. [Google Scholar] [CrossRef]
- Al-Khalil, K. Thermo-Mechanical Expulsive Deicing System—TMEDS. In Proceedings of the Aiaa Aerospace Sciences Meeting & Exhibit, Reno, NV, USA, 8–11 January 2013. [Google Scholar]
- Strobl, T.; Storm, S.; Thompson, D.; Hornung, M.; Thielecke, F. Feasibility Study of a Hybrid Ice Protection System. J. Aircr. 2015, 52, 2064–2076. [Google Scholar] [CrossRef]
- Petrenko, V.F.; Whitworth, R.W. Physics of Ice; OUP: Oxford, UK, 1999. [Google Scholar]
- Knuth, T.D. Ice Adhesion Strength Modeling Based on Surface Morphology Variations. Master’s Thesis, The Pennsylvania State University, State College, PA, USA, 2015. [Google Scholar]
- Deriagin, B.V.; Krotova, N.; Smilga, V.d.P. Adhesion of Solids; Springer: Berlin/Heidelberg, Germany, 1978. [Google Scholar]
- Fortin, G.; Perron, J. Ice adhesion models to predict shear stress at shedding. J. Adhes. Sci. Technol. 2012, 26, 523–553. [Google Scholar] [CrossRef]
- Guerin, F.; Laforte, C.; Farinas, M.-I.; Perron, J. Analytical model based on experimental data of centrifuge ice adhesion tests with different substrates. Cold Reg. Sci. Technol. 2016, 121, 93–99. [Google Scholar] [CrossRef]
- Qin, L.; Du, W.; Cipiccia, S.; Bodey, A.J.; Rau, C.; Mi, J. Synchrotron X-ray operando study and multiphysics modelling of the solidification dynamics of intermetallic phases under electromagnetic pulses. Acta Mater. 2024, 265, 119593. [Google Scholar] [CrossRef]
- Scavuzzo, R.J.; Chu, M.L. Structural Properties of Impact Ices Accreted on Aircraft Structures; NASA: Washington, DC, USA, 1987. [Google Scholar]
- Huang, Y.; Yi, X.; Liu, Q.; Ni, Z.; Pan, P.; Zhang, Y. Simulation of Electro-Impulse De-Icing Process Based on an Improved Ice Shedding Criterion; Springer: Singapore, 2023. [Google Scholar] [CrossRef]
- Laforte, C.; Beisswenger, A. Icephobic material centrifuge adhesion test. In Proceedings of the 11th International Workshop on Atmospheric Icing of Structures, IWAIS, Montreal, QC, Canada, 12–16 June 2005; pp. 12–16. [Google Scholar]
- Morelli, M.; Guardone, A. A simulation framework for rotorcraft ice accretion and shedding. Aerosp. Sci. Technol. 2021, 129, 107157. [Google Scholar] [CrossRef]
- Kulinich, S.; Farzaneh, M. On ice-releasing properties of rough hydrophobic coatings. Cold Reg. Sci. Technol. 2011, 65, 60–64. [Google Scholar] [CrossRef]
- Tarquini, S.; Antonini, C.; Amirfazli, A.; Marengo, M.; Palacios, J. Investigation of ice shedding properties of superhydrophobic coatings on helicopter blades. Cold Reg. Sci. Technol. 2014, 100, 50–58. [Google Scholar] [CrossRef]
- Turnbull, B.; Choy, K.L.; Pandis, C.; Liu, J.; Hou, X.; Choi, K.S. Performance and durability tests of smart icephobic coatings to reduce ice adhesion. Appl. Surf. Sci. 2017, 407, 555–564. [Google Scholar] [CrossRef]
- Brouwers, E.W.; Peterson, A.A.; Palacios, J.L.; Centolanza, L.R. Ice adhesion strength measurements for rotor blade leading edge materials. In Proceedings of the 67th American Helicopter Society International Annual Forum 2011, Virginia Beach, VA, USA, 3–5 May 2011; pp. 3011–3023. [Google Scholar]
- Meuler, A.J.; Smith, J.D.; Varanasi, K.K.; Mabry, J.M.; McKinley, G.H.; Cohen, R.E. Relationships between water wettability and ice adhesion. ACS Appl. Mater. Interfaces 2010, 2, 3100–3110. [Google Scholar] [CrossRef]
- Ge, L.; Ding, G.; Wang, H.; Yao, J.; Cheng, P.; Wang, Y. Anti-icing property of superhydrophobic octadecyltrichlorosilane film and its ice adhesion strength. J. Nanomater. 2013, 2013, 278936. [Google Scholar] [CrossRef]
- Golovin, K.; Dhyani, A.; Thouless, M.; Tuteja, A. Low–interfacial toughness materials for effective large-scale deicing. Science 2019, 364, 371–375. [Google Scholar] [CrossRef] [PubMed]
- Yusong, W.; Ke, X.; Chunling, Z.; Chengxiang, Z.; Lei, C. Evaluation of the shear adhesion strength of impact ice by a new method. Eng. Fract. Mech. 2023, 292, 109641. [Google Scholar] [CrossRef]
- Sarkar, D.K.; Farzaneh, M. Superhydrophobic Coatings with Reduced Ice Adhesion. J. Adhes. Sci. Technol. 2009, 23, 1215–1237. [Google Scholar] [CrossRef]
- Javan-Mashmool, M.; Volat, C.; Farzaneh, M. A new method for measuring ice adhesion strength at an ice–substrate interface. Hydrol. Process. 2010, 20, 645–655. [Google Scholar] [CrossRef]
- Davis, A.; Yeong, Y.H.; Steele, A.; Bayer, I.S.; Loth, E. Superhydrophobic Nanocomposite Surface Topography and Ice Adhesion. ACS Appl. Mater. Interfaces 2014, 6, 9272–9279. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Chen, L.; Liu, H. Study on ice adhesion of composite anti-/deicing component under heating condition. Adv. Compos. Lett. 2020, 29, 2633366X20912440. [Google Scholar] [CrossRef]
Series Number | Material | Roughness (Ra)/μm |
---|---|---|
1 | Aluminum | 2.8 |
2 | Aluminum | 1.2 |
Series Number | Material | Mass (m)/Kg |
---|---|---|
1 | Lead | 1.14 |
2 | Iron | 0.978 |
Series Number | Critical Inclination ()/° | Friction Coefficient () |
---|---|---|
1-1 | 30.94 | 0.6 |
1-2 | 25.05 | 0.47 |
2-1 | 20.21 | 0.37 |
2-2 | 14.53 | 0.26 |
Series Number | Push Force (T)/N | Friction Coefficient () |
---|---|---|
1-1 | 6.1 | 0.55 |
1-2 | 4.65 | 0.49 |
2-1 | 3.95 | 0.35 |
2-2 | 2.55 | 0.27 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, Y.; Zhu, C.; Xiong, K.; Zhu, C. Experimental Investigation on Ice–Aluminum Interface Adhesion Strength under Heating Conditions. Aerospace 2024, 11, 152. https://doi.org/10.3390/aerospace11020152
Wang Y, Zhu C, Xiong K, Zhu C. Experimental Investigation on Ice–Aluminum Interface Adhesion Strength under Heating Conditions. Aerospace. 2024; 11(2):152. https://doi.org/10.3390/aerospace11020152
Chicago/Turabian StyleWang, Yusong, Chengxiang Zhu, Ke Xiong, and Chunling Zhu. 2024. "Experimental Investigation on Ice–Aluminum Interface Adhesion Strength under Heating Conditions" Aerospace 11, no. 2: 152. https://doi.org/10.3390/aerospace11020152
APA StyleWang, Y., Zhu, C., Xiong, K., & Zhu, C. (2024). Experimental Investigation on Ice–Aluminum Interface Adhesion Strength under Heating Conditions. Aerospace, 11(2), 152. https://doi.org/10.3390/aerospace11020152