Radio Science Experiments during a Cruise Phase to Uranus
Abstract
:1. Introduction
2. Advanced Radio Tracking System for Interplanetary Missions
3. Method
3.1. Calibration of Solar Plasma Dispersive Effects
3.2. Orbit Determination Process
4. Interplanetary Trajectory
5. Numerical Simulations
5.1. Dynamical Model
5.2. Generation of Synthetic Observed Observables
5.3. Simulation of the Orbit Determination Process
6. Results
7. Study of the Solar Corona
7.1. Analysis of Electron Density
7.2. Space–Time Localization of Plasma Features
7.3. Estimation of Solar Wind Velocity
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hueso, R. The Ice Giants Uranus and Neptune: Current Data and Future Exploration. In Planetary Systems Now; World Scientific (Europe): London, UK, 2023; pp. 211–233. [Google Scholar] [CrossRef]
- Witze, A. Next stop, Uranus? Icy planet tops priority list for next big NASA mission. Nature 2022, 604, 607. [Google Scholar] [CrossRef] [PubMed]
- Hammel, H.B. The Ice Giant Systems of Uranus and Neptune. In Solar System Update; Springer: Berlin/Heidelberg, Germany, 2006; pp. 251–265. [Google Scholar] [CrossRef]
- Stanley, S.; Bloxham, J. Convective-region geometry as the cause of Uranus’ and Neptune’s unusual magnetic fields. Nature 2004, 428, 151–153. [Google Scholar] [CrossRef]
- Stanley, S.; Bloxham, J. Numerical dynamo models of Uranus’ and Neptune’s magnetic fields. Icarus 2006, 184, 556–572. [Google Scholar] [CrossRef]
- Castillo-Rogez, J.; Weiss, B.; Beddingfield, C.; Biersteker, J.; Cartwright, R.; Goode, A.; Daswani, M.M.; Neveu, M. Compositions and Interior Structures of the Large Moons of Uranus and Implications for Future Spacecraft Observations. J. Geophys. Res. Planets 2023, 128, e2022JE007432. [Google Scholar] [CrossRef] [PubMed]
- Rogers, L.A. MOST 1.6 Earth-radius planets are not rocky. Astrophys. J. 2015, 801, 41. [Google Scholar] [CrossRef]
- National Academy of Sciences, Engineering and Medicine. Origins, Worlds, and Life; National Academies Press: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Cappuccio, P.; Di Benedetto, M.; Cascioli, G.; Iess, L. Analysis of the 3GM gravity experiment of ESA’s JUICE mission. Adv. Astronaut. Sci. 2018, 167, 3551–3561. [Google Scholar]
- Iess, L.; Asmar, S.W.; Cappuccio, P.; Cascioli, G.; De Marchi, F.; di Stefano, I.; Genova, A.; Ashby, N.; Barriot, J.P.; Bender, P.; et al. Gravity, Geodesy and Fundamental Physics with BepiColombo’s MORE Investigation. Space Sci. Rev. 2021, 217, 21. [Google Scholar] [CrossRef]
- Will, C.M. Theory and Experiment in Gravitational Physics; Cambridge University Press: Cambridge, UK, 2018. [Google Scholar]
- Bertotti, B.; Iess, L.; Tortora, P. A test of general relativity using radio links with the Cassini spacecraft. Nature 2003, 425, 374–376. [Google Scholar] [CrossRef] [PubMed]
- di Stefano, I.; Cappuccio, P.; Iess, L. Analysis on the solar irradiance fluctuations effect on the bepicolombo superior conjunction experiment. In 2019 IEEE International Workshop on Metrology for AeroSpace, MetroAeroSpace 2019-Proceedings; IEEE: Piscataway, NJ, USA, 2019. [Google Scholar] [CrossRef]
- di Stefano, I.; Cascioli, G.; Iess, L.; Cappuccio, P. Environmental disturbances on missions for precise tests of relativistic gravity and solar system dynamics: The bepicolombo case. In International Astronautical Congress, IAC; International Astronautical Federation: Paris, France, 2019. [Google Scholar]
- Santoli, F.; Fiorenza, E.; Lefevre, C.; Lucchesi, D.M.; Lucente, M.; Magnafico, C.; Morbidini, A.; Peron, R.; Iafolla, V. ISA, a High Sensitivity Accelerometer in the Interplanetary Space. Space Sci. Rev. 2020, 216, 145. [Google Scholar] [CrossRef]
- di Stefano, I.; Cappuccio, P.; Iess, L. The BepiColombo solar conjunction experiments revisited. Class. Quantum Gravity 2021, 38, 055002. [Google Scholar] [CrossRef]
- Cappuccio, P.; Hickey, A.; Durante, D.; Di Benedetto, M.; Iess, L.; De Marchi, F.; Plainaki, C.; Milillo, A.; Mura, A. Ganymede’s gravity, tides and rotational state from JUICE’s 3GM experiment simulation. Planet Space Sci. 2020, 187, 104902. [Google Scholar] [CrossRef]
- Shapira, A.; Stern, A.; Prazot, S.; Mann, R.; Barash, Y.; Detoma, E.; Levy, B. An Ultra Stable Oscillator for the 3GM experiment of the JUICE mission. In 2016 European Frequency and Time Forum (EFTF); IEEE: Piscataway, NJ, USA, 2016. [Google Scholar] [CrossRef]
- Fabrizio, D.M.; Gaetano, D.A.; Giuseppe, M.; Paolo, C.; Ivan, D.S.; Mauro, D.B.; Luciano, I. Observability of Ganymede’s gravity anomalies related to surface features by the 3GM experiment onboard ESA’s JUpiter ICy moons Explorer (JUICE) mission. Icarus 2021, 354, 114003. [Google Scholar] [CrossRef]
- di Stefano, I.; Cappuccio, P.; Di Benedetto, M.; Iess, L. A test of general relativity with ESA’s JUICE mission. Adv. Space Res. 2022, 70, 854–862. [Google Scholar] [CrossRef]
- Richie-Halford, A.C.; Iess, L.; Tortora, P.; Armstrong, J.W.; Asmar, S.W.; Woo, R.; Habbal, S.R.; Morgan, H. Space-time localization of inner heliospheric plasma turbulence using multiple spacecraft radio links. Space Weather 2009, 7, S12003. [Google Scholar] [CrossRef]
- Soja, B.; Heinkelmann, R.; Schuh, H. Probing the solar corona with very long baseline interferometry. Nat. Commun. 2014, 5, 4166. [Google Scholar] [CrossRef] [PubMed]
- Ciarcia, S.; Simone, L.; Gelfusa, D.; Colucci, P.; De Angelis, G.; Argentieri, F.; Iess, L.; Formaro, R. MORE and JUNO Ka-band transponder design, performance, qualification and in-flight validation. In 6th ESA International Workshop on Tracking, Telemetry and Command Systems for Space Applications; ESA-ESOC: Darmstadt, Germany, 2013. [Google Scholar]
- Bertotti, B.; Comoretto, G.; Iess, L. Doppler tracking of spacecraft with multi-frequency links. Astron. Astrophys. 1993, 269, 608–616. [Google Scholar]
- Smrekar, S.; Hensley, S.; Nybakken, R.; Wallace, M.S.; Perkovic-Martin, D.; You, T.-H.; Nunes, D.; Brophy, J.; Ely, T.; Burt, E.; et al. VERITAS (Venus Emissivity, Radio Science, InSAR, Topography, and Spectroscopy): A Discovery Mission. In 2022 IEEE Aerospace Conference (AERO); IEEE: Piscataway, NJ, USA, 2022; pp. 1–20. [Google Scholar] [CrossRef]
- Buccino, D.R.; Kahan, D.S.; Parisi, M.; Paik, M.; Barbinis, E.; Yang, O.; Park, R.S.; Tanner, A.; Bryant, S.; Jongeling, A. Performance of Earth Troposphere Calibration Measurements with the Advanced Water Vapor Radiometer for the Juno Gravity Science Investigation. Radio Sci. 2021, 56, e2021RS007387. [Google Scholar] [CrossRef]
- Manghi, R.L.; Zannoni, M.; Tortora, P.; Martellucci, A.; De Vicente, J.; Villalvilla, J.; Mercolino, M.; Maschwitz, G.; Rose, T. Performance Characterization of ESA’s Tropospheric Delay Calibration System for Advanced Radio Science Experiments. Radio Sci. 2021, 56, 1–14. [Google Scholar] [CrossRef]
- Manghi, R.L.; Bernacchia, D.; Casajus, L.G.; Zannoni, M.; Tortora, P.; Martellucci, A.; De Vicente, J.; Villalvilla, J.; Maschwitz, G.; Cappuccio, P.; et al. Tropospheric Delay Calibration System performance during the first two BepiColombo solar conjunctions. Earth Space Sci. Open Arch. 2022, 58, e2022RS007614. [Google Scholar] [CrossRef]
- Tortora, P.; Iess, L.; Bordi, J.J.; Ekelund, J.E.; Roth, D.C. Precise Cassini Navigation During Solar Conjunctions Through Multifrequency Plasma Calibrations. J. Guid. Control. Dyn. 2004, 27, 251–257. [Google Scholar] [CrossRef]
- Schutz, B.; Tapley, B.; Born, G.H. Statistical Orbit Determination; Academic Press: Cambridge, MA, USA, 2004. [Google Scholar]
- Will, C.M. The confrontation between general relativity and experiment. Living Rev. Relativ. 2014, 17, 4. [Google Scholar] [CrossRef]
- di Stefano, I.; Cappuccio, P.; Iess, L. Precise Modeling of Non-Gravitational Accelerations of the Spacecraft BepiColombo During Cruise Phase. J. Spacecr. Rocket. 2023, 60, 1625–1638. [Google Scholar] [CrossRef]
- Evans, S.; Taber, W.; Drain, T.; Smith, J.; Wu, H.-C.; Guevara, M.; Sunseri, R.; Evans, J. MONTE: The next generation of mission design and navigation software. CEAS Space J. 2018, 10, 79–86. [Google Scholar] [CrossRef]
- Park, R.S.; Folkner, W.M.; Williams, J.G.; Boggs, D.H. The JPL Planetary and Lunar Ephemerides DE440 and DE441. Astron J. 2021, 161, 105. [Google Scholar] [CrossRef]
- Rogers, G.D.; Flanigan, S.H.; Stanbridge, D. Effects of radioisotope thermoelectric generator on dynamics of the new horizons spacecraft. Adv. Astronaut. Sci. Guid. Navig. Control. 2014, 151, 801–812. [Google Scholar]
- Wie, B. Space Vehicle Dynamics and Control, 2nd ed.; Reston, V.A., Ed.; American Institute of Aeronautics and Astronautics: Reston VA, USA, 2008. [Google Scholar] [CrossRef]
- Simon, A.; Nimmo, F.; Anderson, R.C. Journey to an Ice Giant System. 2021. Available online: https://drive.google.com/file/d/1TxDt_qU6H2j2fYGqcDUTJQioSJ2W_KnN/view?usp=drive_link (accessed on 20 October 2023).
- Kopp, G. Magnitudes and timescales of total solar irradiance variability. J. Space Weather. Space Clim. 2016, 6, A30. [Google Scholar] [CrossRef]
- Kopp, G. TSIS TIM Level 3 Total Solar Irradiance 6-Hour Means; Version 03; Greenbelt, MD, USA, 2020. Available online: https://disc.gsfc.nasa.gov/datasets/TSIS_TSI_L3_06HR_04/summary (accessed on 4 September 2023). [CrossRef]
- Kopp, G.; Lawrence, G.; Rottman, G. The Total Irradiance Monitor Design and On-Orbit Functionality. In Proceedings of the Optical Science and Technology, SPIE’s 48th Annual Meeting, San Diego, CA, USA, 3–8 August 2003. [Google Scholar]
- Turyshev, S.G.; Toth, V.T. The Pioneer Anomaly. Living Rev. Relativ. 2010, 13, 4. [Google Scholar] [CrossRef]
- King, J.H. Solar wind spatial scales in and comparisons of hourly Wind and ACE plasma and magnetic field data. J. Geophys. Res. 2005, 110, 2104. [Google Scholar] [CrossRef]
- Cappuccio, P.; Notaro, V.; di Ruscio, A.; Iess, L.; Genova, A.; Durante, D.; di Stefano, I.; Asmar, S.W.; Ciarcia, S.; Simone, L. Report on first inflight data of bepicolombo’s mercury orbiter radio science experiment. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4984–4988. [Google Scholar] [CrossRef]
- Cappuccio, P.; di Stefano, I.; Cascioli, G.; Iess, L. Comparison of light-time formulations in the post-Newtonian framework for the BepiColombo MORE experiment. Class. Quantum Gravity 2021, 38, 227001. [Google Scholar] [CrossRef]
- Imperi, L.; Iess, L. The determination of the post-Newtonian parameter γ during the cruise phase of BepiColombo. Class. Quantum Gravity 2017, 34, 075002. [Google Scholar] [CrossRef]
- Damour, T.; Polyakov, A.M. The string dilation and a least coupling principle. Nucl. Phys. B 1994, 423, 532–558. [Google Scholar] [CrossRef]
- Damour, T.; Piazza, F.; Veneziano, G. Violations of the equivalence principle in a dilaton-runaway scenario. Phys. Rev. D 2002, 66, 046007. [Google Scholar] [CrossRef]
- Izurieta, E.D.L. Toapanta Guamanarca, and H. Barbier. Ionospheric total electron content (TEC) above Ecuador. J. Phys. Conf. Ser. 2022, 2238, 012010. [Google Scholar] [CrossRef]
- Verma, A.K.; Fienga, A.; Laskar, J.; Issautier, K.; Manche, H.; Gastineau, M. Electron density distribution and solar plasma correction of radio signals using MGS, MEX, and VEX spacecraft navigation data and its application to planetary ephemerides. Astron. Astrophys. 2013, 550, A124. [Google Scholar] [CrossRef]
- Feltens, J.; Bellei, G.; Springer, T.; Kints, M.V.; Zandbergen, R.; Budnik, F.; Schönemann, E. Tropospheric and ionospheric media calibrations based on global navigation satellite system observation data. J. Space Weather. Space Clim. 2018, 8, A30. [Google Scholar] [CrossRef]
- Scott, S.L.; Coles, W.A.; Bourgois, G. Solar wind observations near the sun using interplanetary scintillation. Astron. Astrophys. 1983, 123, 207–215. [Google Scholar]
- Chiba, S.; Imamura, T.; Tokumaru, M.; Shiota, D.; Matsumoto, T.; Ando, H.; Takeuchi, H.; Murata, Y.; Yamazaki, A.; Häusler, B.; et al. Observation of the Solar Corona Using Radio Scintillation with the Akatsuki Spacecraft: Difference between Fast and Slow Wind. Sol. Phys. 2022, 297, 34. [Google Scholar] [CrossRef]
Parameter | Nominal Value | A Priori Uncertainty | Perturbation |
---|---|---|---|
[x, y, z] | From reference trajectory | 100 km | 15 km |
[u, v, w] | From reference trajectory | 1 m/s | 1 cm/s |
Absorptivity | 0.86 | 0.06 | −0.06 |
Range bias | 0 cm | 100 km | 60 cm |
1 | 0 | ||
DSS 25 offset [x, y, z] | [0, 0, 0] m | 10 cm | [0, 0, 0] m |
SCE | |
---|---|
1 | 2.5 |
2 | |
3 | |
4 | |
5 | |
6 | |
7 | |
8 | |
9 | |
Global analysis | 0.71 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
di Stefano, I.; Durante, D.; Cappuccio, P.; Racioppa, P. Radio Science Experiments during a Cruise Phase to Uranus. Aerospace 2024, 11, 282. https://doi.org/10.3390/aerospace11040282
di Stefano I, Durante D, Cappuccio P, Racioppa P. Radio Science Experiments during a Cruise Phase to Uranus. Aerospace. 2024; 11(4):282. https://doi.org/10.3390/aerospace11040282
Chicago/Turabian Styledi Stefano, Ivan, Daniele Durante, Paolo Cappuccio, and Paolo Racioppa. 2024. "Radio Science Experiments during a Cruise Phase to Uranus" Aerospace 11, no. 4: 282. https://doi.org/10.3390/aerospace11040282
APA Styledi Stefano, I., Durante, D., Cappuccio, P., & Racioppa, P. (2024). Radio Science Experiments during a Cruise Phase to Uranus. Aerospace, 11(4), 282. https://doi.org/10.3390/aerospace11040282