Built On-Orbit Robotically Assembled Gigatruss (BORG): Ground Robotic Demonstration
Abstract
:1. Introduction
2. Background
3. Materials and Methods
3.1. Mixed Assembly Method
3.2. Hardware
3.2.1. BORG Truss Module Design
3.2.2. BORG Truss Module Prototype
3.2.3. Robotic Manipulators
3.2.4. Camera
3.2.5. Turntable
3.2.6. OptiTrack Motion Capture System
3.2.7. Metrology Marker Unit
3.2.8. Test Setup
3.3. Software
SF-GraphSLAM Review
4. Results
4.1. Trying Point Cloud Based VSLAM
4.2. BORG Manufacturing Error Analysis
4.3. BORG Full Truss Assembly Testing
4.3.1. Deployable Relation
4.3.2. Close-out-Strut Relation
4.3.3. Close-out-Square Relation
4.3.4. Full BORG Truss
5. Conclusions
5.1. Future Work
5.2. Consideration for a Future Space Application of This Approach
5.2.1. Advanced Ground Testing
5.2.2. Space Rated Sensors and Truss Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Abbreviations
ASAL | Automated Structures Assembly Laboratory |
BORG | Built On-Orbit Robotically Assembled Gigatruss |
FASER | Field and Space Experimental Robotics Laboratory |
GraphSlAM | Graph Simultaneous Localization and Mapping |
IMU | Inertial Measurement Unit |
ISAM | In-Space Servicing, Assembly, and Manufacturing |
JACS | Jigging Apparatus for Closeout Structures |
JWST | James Webb Space Telescope |
LSMS | Lightweight Surface Manipulation System |
MDPI | Multidisciplinary Digital Publishing Institute |
NASA | National Aeronautics and Space Administration |
NINJAR | NASA Intelligent Jigging and Assembly Robot |
PASS | Precision Assembled Space Structure |
RAMST | Robotically Assembled, Modular Space Telescope |
SF-GraphSLAM | Semantic and Fiducial Aided Graph Simultaneous Localization and Mapping |
SLAM | Simultaneous Localization and Mapping |
SP | Stewart Platform |
VSLAM | Visual Simultaneous Localization and Mapping |
References
- Chapin, S.; Everson, H.; Chapin, W.; Quartaro, A.; Komendera, E. Built On-orbit Robotically assembled Gigatruss (BORG): A mixed assembly architecture trade study. Front. Robot. AI 2023, 10. [Google Scholar] [CrossRef] [PubMed]
- Arney, D.; Mulvaney, J.; Williams, C.; Stockdale, C.; Gelin, N.; le Gouellec, P. In-Space Servicing, Assembly, and Manufacturing (ISAM) State of Play; NASA: Washington, DC, USA, 2023. [Google Scholar]
- Doggett, W. Robotic assembly of truss structures for space systems and future research plans. IEEE Aerosp. Conf. 2002, 7, 7. [Google Scholar] [CrossRef]
- Wong, I.; Chapin, W.; Komendera, E.E. Validation of Operations for the In-Space Assembly of a Backbone Truss for a Solar-Electric Propulsion Tug. In Proceedings of the 2018 AIAA SPACE and Astronautics Forum and Exposition, Orlando, FL, USA, 17–19 September 2018. [Google Scholar] [CrossRef]
- Lee, N.; Backes, P.; Burdick, J.; Pellegrino, S.; Fuller, C.; Hogstrom, K.; Kennedy, B.; Kim, J.; Mukherjee, R.; Seubert, C.; et al. Architecture for in-space robotic assembly of a modular space telescope. J. Astron. Telesc. Instruments Syst. 2016, 2, 041207. [Google Scholar] [CrossRef]
- Cooper, J.R.; Cresta, C.J.; Avila, T.V.; Rajaram, R.; McQuarry, A.K.; Martin, J.; Stohlman, O.R. Test Results for Autonomous Assembly of Modular Space Structures. ASCEND 2023, 2023, 4699. [Google Scholar] [CrossRef]
- Karumanchi, S.; Edelberg, K.; Nash, J.; Bergh, C.; Smith, R.; Emanuel, B.; Carlton, J.; Koehler, J.; Kim, J.; Mukherjee, R.; et al. Payload-centric autonomy for in-space robotic assembly of modular space structures. J. Field Robot. 2018, 35, 1005–1021. [Google Scholar] [CrossRef]
- Nakanose, S.; Nakamura-Messenger, K. GITAI USA: Providing Safe and Affordable Means of Labor in Space. ASCEND 2023, 2023, 4744. [Google Scholar] [CrossRef]
- Corbin, B.A. Global Trends in On Orbit Servicing, Assembly, and Manufacturing (OSAM); Science and Technology Policy Institute: Washington, DC, USA, 2020. [Google Scholar]
- Gangestad, J.W.; Venturini, C.C.; Hinkley, D.A.; Kinum, G. A Sat-to-Sat Inspection Demonstration with the AeroCube-10 1.5U CubeSats. In Proceedings of the 35th Annual Small Satellite Conference, Logan, UT, USA, 7–12 August 2021. [Google Scholar]
- Kalia, P.; Evans, J.; Menzel, M.; Kilic, H.A. Managing Risk for the James Webb Space Telescope Deployment Mechanisms: Enabling First Light. In Proceedings of the 2023 Annual Reliability and Maintainability Symposium (RAMS), Orlando, FL, USA, 23–26 January 2023; pp. 1–6. [Google Scholar] [CrossRef]
- Luxonis. OAK-D. 2024. Available online: https://shop.luxonis.com/products/oak-d (accessed on 1 May 2024).
- Primex 13 Optitrack. 2024. Available online: https://optitrack.com/cameras/primex-13/ (accessed on 1 May 2024).
- Aurand, A.M.; Dufour, J.S.; Marras, W.S. Accuracy map of an optical motion capture system with 42 or 21 cameras in a large measurement volume. J. Biomech. 2017, 58, 237–240. [Google Scholar] [CrossRef] [PubMed]
- Chapin, S.; Chapin, W.; Komendera, E. Semantic and Fiducial Aided Graph Simultaneous Localization and Mapping (SF-GraphSLAM) for Robotic In-Space Assembly and Servicing of Large Truss Structures. Frontiers in Robotics and AI, Semantic SLAM for Mobile Robot Navigation Research Topic [Submitted Awaiting Review] Currently Available in Chapters 3.2 and 4 of Samantha Chapin’s Dissertation. 2024. Available online: https://hdl.handle.net/10919/119063 (accessed on 24 May 2024).
- Thrun, S.; Montemerlo, M. The Graph SLAM Algorithm with Applications to Large-Scale Mapping of Urban Structures. Int. J. Robot. Res. 2006, 25, 403–429. [Google Scholar] [CrossRef]
- Christian Rauch. AprilTag 3. AprilRobotics GitHub. 2023. Available online: https://github.com/AprilRobotics/apriltag (accessed on 3 May 2024).
- Pablo Prietz. Pupil-Apriltags. GitHub. 2022. Available online: https://github.com/pupil-labs/apriltags (accessed on 3 May 2024).
- Garth Zeglin. OPTITRACK.CSV_READER. Human-Machine Virtuosity. 2019. Available online: https://courses.ideate.cmu.edu/16-455/s2020/ref/text/_modules/optitrack/csv_reader.html#CSVReader (accessed on 3 May 2024).
- Chapin, W. Basic Robotics. Github. 2023. Available online: https://github.com/64-B1T/basic_robotics (accessed on 3 May 2024).
- AIST. National Institute of Advanced Industrial Science and Technology, Stella VSLAM. 2019. Available online: https://stella-cv.readthedocs.io/en/latest/ (accessed on 1 May 2024).
- Schwartz, J.L.; Peck, M.A.; Hall, C.D. Historical Review of Air-Bearing Spacecraft Simulators. J. Guid. Control Dyn. 2003, 26, 513–522. [Google Scholar] [CrossRef]
- Creamer, G. The SUMO/FREND project: Technology development for autonomous grapple of geosynchronous satellites. Adv. Astronaut. Sci. 2007, 128, 895–900. [Google Scholar]
- Han, O.; Kienholz, D.A.; Janzen, P.C.; Kidney, S. Gravity-Off-Loading System for Large-Displacement Ground Testing of Spacecraft Mechanisms. 2010. Available online: https://ntrs.nasa.gov/api/citations/20100021948/downloads/20100021948.pdf (accessed on 24 May 2024).
- Heard, W.L.; Lake, M.S. Neutral buoyancy evaluation of extravehicular activity assembly of a large precision reflector. J. Spacecr. Rocket. 1994, 31, 569–577. [Google Scholar] [CrossRef]
- Stamm, S.; Motaghedi, P. Orbital express capture system: Concept to reality. Proc. SPIE 2004, 5419, 78–91. [Google Scholar] [CrossRef]
- Arney, D.; Mulvaney, J.; Williams, C. In-Space Servicing, Assembly, and Manufacturing (ISAM) State of Play. 2023 Edition. 2023. 27-28, 114-122. Available online: https://www.nasa.gov/wp-content/uploads/2023/10/isam-state-of-play-2023.pdf (accessed on 24 May 2024).
- Doggett, W.; Dorsey, J.; Jones, T.; Mikulas, M.; Teter, J.; Paddock, D. TriTruss: A New and Novel Structural Concept Enabling Modular Space Telescopes and Space Platforms. In Proceedings of the 70th International Astronautical Congress (IAC), Washington, DC, USA, 21–25 October 2019; Volume 1114. [Google Scholar]
Category | Identifier | X_Trans (m) | Y_Trans (m) | Z_Trans (m) | X_Rot (rad) | Y_Rot (rad) | Z_Rot (rad) |
---|---|---|---|---|---|---|---|
Tag 3 Pose Estimate | GraphSLAM | −0.03341176 | 0.23270883 | 0.77072598 | 0 | 0 | 0 |
SF-GraphSLAM | −0.03341176 | 0.23270883 | 0.77072598 | 0 | 0 | 0 | |
Raw AprilTag Measurement at t = 0 | −0.033615 | 0.236615 | 0.780796 | 0.996213 | −0.008484 | −0.066907 | |
OptiTrack Reference | −3.367959 | 0.339124 | 0.847187 | 0.10466 | 0.811889 | 0.071459 | |
Tag 4 Pose Estimate | GraphSLAM | −0.02597586 | −0.262368 | 0.72929555 | 0 | 0 | 0 |
SF-GraphSLAM | −0.02597586 | −0.262368 | 0.72929555 | 0 | 0 | 0 | |
Raw AprilTag Measurement at t = 0 | −0.025706 | −0.262339 | 0.731435 | 0.993234 | −0.007135 | −0.113714 | |
OptiTrack Reference | −3.359789 | 0.840594 | 0.858209 | 0.019802 | −0.057923 | 0.009992 | |
Tag 4 wrt Tag 3 Transform | Ideal Simulation | 0 | 0.5 | 0 | 0 | 0 | 0 |
Raw AprilTag Measurement at t = 0 | 0.039098 | −0.311234 | 0.391228 | −0.002534 | −0.020398 | −0.040027 | |
GraphSLAM | 0.007436 | −0.495077 | −0.04143 | 0 | 0 | 0 | |
SF-GraphSLAM | 0 | 0.5 | 0 | 0 | 0 | 0 | |
Absolute Value Difference from Ideal | GraphSLAM | 0.007436 | −0.004923 | 0.04143 | 0 | 0 | 0 |
SF-GraphSLAM | 0.007436 | −0.004923 | 0.04143 | 0 | 0 | 0 | |
Category | Identifier | Distance (m) | |||||
Distance of Tag 4 to Tag 3 | Ideal | 0.5 | |||||
OptiTrack Reference | 0.501656964 | ||||||
Raw AprilTag Measurement at t = 0 | 0.501452828 | ||||||
GraphSLAM | 0.496863002 | ||||||
SF-GraphSLAM | 0.499999777 | ||||||
Difference of Distance | GraphSLAM vs. OptiTrack | 0.004793961 | |||||
GraphSLAM vs. Ideal | 0.003136998 | ||||||
SF-GraphSLAM vs. OptiTrack | 0.001657187 | ||||||
SF-GraphSLAM vs. Ideal | 0.000000223 |
Step | Assembly Task(s) | Step | Assembly Task(s) |
---|---|---|---|
1 | Place 1P | 9 | Deploy and Place 13D, Insert 14S |
2 | Deploy 2D and Place | 10 | Insert 15P and 16S |
3 | Deploy and Place 3D | 11 | Deploy and Place 17D, Insert 18S |
4 | Deploy 4D and Place | 12 | Insert 19P and 20S |
5 | Deploy and Place 5D | 13 | Deploy and Place 21D, Insert 22S |
6 | Insert 6S, 7S, 8S, and 9S | 14 | Insert 23P and 24S |
7 | Deploy 10CT and Place | 15 | Insert 25P and 26S |
8 | Deploy and Place 11D, Insert 12S | 16 | Insert 27P |
Requirement | Verification | Result | Comments |
---|---|---|---|
Vertical struts rotate to deploy | Visual | ✓ | |
Vertical struts sit at 90 degrees | Measurement | ✓ | |
Nodes lock vertical struts in place | Testing | - | Additional lockouts added for security |
Deployable allows for proper weight loading | Measurement | ✓ | |
All deployables attach to their center close-out-squares | Visual | ✓ | |
All close-out-struts can be inserted | Visual | ✓ | |
Truss is squared off | Measurement | ✓ | |
Truss elements sit in standoffs | Visual | ✓ |
Tag Number (Location in Image) | SLAM | X_Trans (m) | Y_Trans (m) | Z_Trans (m) | X_Rot (rad) | Y_Rot (rad) | Z_Rot (rad) |
---|---|---|---|---|---|---|---|
Tag 7 (Corner Deployable Bottom) | GraphSLAM | 0.0032618 | −0.3106846 | 1.34712022 | 0.83257264 | −0.0464243 | −0.5520683 |
SF-GraphSLAM | 0.0855154 | −0.2392015 | 1.05279175 | 0.88337071 | −0.0159959 | −0.3862347 | |
Tag 12 (Insertion Strut) | GraphSLAM | −0.41730999 | −0.2491637 | 1.08578045 | 0.95755029 | 0.01569564 | −0.2753446 |
SF-GraphSLAM | −0.3792887 | −0.0721678 | 1.12116063 | 0.88338201 | −0.0159691 | −0.386176 | |
Tag 45 (Bottom Right Turntable) | GraphSLAM | 0.28395107 | −0.1396594 | 1.39699767 | 0.84429191 | 0.01767223 | −0.5360217 |
SF-GraphSLAM | 0.29479852 | −0.4393834 | 1.04855031 | 0.88336358 | −0.0159858 | −0.3862082 | |
Tag 46 (Bottom Left Turntable) | GraphSLAM | −0.43205479 | −0.0403225 | 0.95670014 | 0.90418669 | 0.08140275 | −0.3670429 |
SF-GraphSLAM | −0.50936866 | −0.1514242 | 1.16583825 | 0.88338808 | −0.0159323 | −0.3861891 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chapin, S.; Everson, H.; Chapin, W.; Komendera, E. Built On-Orbit Robotically Assembled Gigatruss (BORG): Ground Robotic Demonstration. Aerospace 2024, 11, 447. https://doi.org/10.3390/aerospace11060447
Chapin S, Everson H, Chapin W, Komendera E. Built On-Orbit Robotically Assembled Gigatruss (BORG): Ground Robotic Demonstration. Aerospace. 2024; 11(6):447. https://doi.org/10.3390/aerospace11060447
Chicago/Turabian StyleChapin, Samantha, Holly Everson, William Chapin, and Erik Komendera. 2024. "Built On-Orbit Robotically Assembled Gigatruss (BORG): Ground Robotic Demonstration" Aerospace 11, no. 6: 447. https://doi.org/10.3390/aerospace11060447
APA StyleChapin, S., Everson, H., Chapin, W., & Komendera, E. (2024). Built On-Orbit Robotically Assembled Gigatruss (BORG): Ground Robotic Demonstration. Aerospace, 11(6), 447. https://doi.org/10.3390/aerospace11060447