Coaxial Helicopter Attitude Control System Design by Advanced Model Predictive Control under Disturbance
Abstract
:1. Introduction
2. System Model
3. Attitude Control System Design
3.1. Extended State Observer for Disturbance Estimation
3.2. Advanced MPC Framework
4. Simulation Results
4.1. Numerical Simulation
4.2. Flight Experiment
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Maaruf, M.; Mahmoud, M.S.; Ma’arif, A. A survey of control methods for quadrotor UAV. Int. J. Robot. Control Syst. 2022, 2, 652–665. [Google Scholar] [CrossRef]
- Pan, J.; Shao, B.; Xiong, J.; Zhang, Q. Attitude control of quadrotor UAVs based on adaptive sliding mode. Int. J. Control Autom. Syst. 2023, 21, 2698–2707. [Google Scholar] [CrossRef]
- Liu, K.; Yang, P.; Wang, R.; Jiao, L.; Li, T.; Zhang, J. Observer-based adaptive fuzzy finite-time attitude control for quadrotor UAVs. IEEE Trans. Aerosp. Electron Syst. 2023, 59, 8637–8654. [Google Scholar] [CrossRef]
- Lopez-Sanchez, I.; Pérez-Alcocer, R.; Moreno-Valenzuela, J. Trajectory tracking double two-loop adaptive neural network control for a Quadrotor. J. Franklin Inst. 2023, 360, 3770–3799. [Google Scholar] [CrossRef]
- Liu, H.; Li, B.; Xiao, B.; Ran, D.; Zhang, C. Reinforcement learning-based tracking control for a quadrotor unmanned aerial vehicle under external disturbances. Int. J. Robust Nonlinear Control 2023, 33, 10360–10377. [Google Scholar] [CrossRef]
- Miranda-Colorado, R.; Aguilar, L.T. Robust PID control of quadrotors with power reduction analysis. ISA Trans. 2020, 98, 47–62. [Google Scholar] [CrossRef]
- Noormohammadi-Asl, A.; Esrafilian, O.; Arzati, M.A.; Taghirad, H.D. System identification and H-based control of quadrotor attitude. Mech. Syst. Signal Process 2020, 135, 106358. [Google Scholar] [CrossRef]
- Hossam, A.; El-Badawy, A. Mu-based trajectory tracking control for a quad-rotor UAV. Control. Theory Technol. 2022, 20, 536–554. [Google Scholar] [CrossRef]
- Jiang, W.; Ge, S.S.; Hu, Q.; Li, D. Sliding-Mode Control for Perturbed MIMO Systems With Time-Synchronized Convergence. IEEE Trans. Cybern. 2023, in press. [CrossRef]
- Jiang, W.; Ge, S.S.; Hu, Q.L. Fixed-time-synchronized control: A system-dimension-categorized approach. Sci. China Inf. Sci 2023, 66, 172–203. [Google Scholar] [CrossRef]
- Li, Y.; Huang, Y.; Li, D.; Sun, Y.; Liu, H.; Jin, Y. Flight Tracking Control for Helicopter Attitude and Altitude Systems Using Output Feedback Method under Full State Constraints. Aerospace 2023, 10, 696. [Google Scholar] [CrossRef]
- Zhang, S.; Zhang, H.; Ji, K. Incremental Nonlinear Dynamic Inversion Attitude Control for Helicopter with Actuator Delay and Saturation. Aerospace 2023, 10, 521. [Google Scholar] [CrossRef]
- Wang, D.; Pan, Q.; Shi, Y.; Hu, J.; Zhao, C. Efficient Nonlinear Model Predictive Control for Quadrotor Trajectory Tracking: Algorithms and Experiment. IEEE Trans Cybern 2021, 51, 5057–5068. [Google Scholar] [CrossRef]
- Liu, M.; Zhang, F.; Lang, S. The Quadrotor Position Control Based on MPC with Adaptation. In Proceedings of the 2021 40th Chinese Control Conference (CCC), Shanghai, China, 26–28 July 2021. [Google Scholar]
- Dai, P.D.; Quoc, D.V.; Hai, D.M. Nonlinear Model Predictive Control for Quadrotors Using Simultaneous Optimization Approach. In Proceedings of the 2023 12th International Conference on Control, Automation and Information Sciences (ICCAIS), Hanoi, Vietnam, 27–29 November 2023. [Google Scholar]
- Wang, P.; Dai, L.; Xue, R.; Huo, D.; Xia, Y. Ground Moving Target Tracking with Quadrotors using Nonlinear Model Predictive Control. In Proceedings of the 2022 China Automation Congress (CAC), Xiamen, China, 25–27 November 2022. [Google Scholar]
- Filho, J.O.D.A.L.; Lourenço, T.S.; Fortaleza, E.; Murilo, A.; Lopes, R.V. Trajectory tracking for a quadrotor system: A flatness-based nonlinear predictive control approach. In Proceedings of the 2016 IEEE Conference on Control Applications (CCA), Buenos Aires, Argentina, 19–22 September 2016. [Google Scholar]
- Bicego, D.; Mazzetto, J.; Carli, R.; Farina, M.; Franchi, A. Nonlinear Model Predictive Control with Enhanced Actuator Model for Multi-Rotor Aerial Vehicles with Generic Designs. J. Intell. Robot. Syst. 2020, 100, 1213–1247. [Google Scholar] [CrossRef]
- Okulski, M.; Ławryńczuk, M. A Novel Neural Network Model Applied to Modeling of a Tandem-Wing Quadplane Drone. IEEE Access 2021, 9, 14159–14178. [Google Scholar]
- Torrente, G.; Kaufmann, E.; Föhn, P.; Scaramuzza, D. Data-Driven MPC for Quadrotors. IEEE Robot. Autom. Lett. 2021, 6, 3769–3776. [Google Scholar] [CrossRef]
- Romero, A.; Sun, S.; Foehn, P.; Scaramuzza, D. Model Predictive Contouring Control for Time-Optimal Quadrotor Flight. IEEE Trans. Robot. 2022, 38, 3340–3356. [Google Scholar] [CrossRef]
- Salzmann, T.; Kaufmann, E.; Arrizabalaga, J.; Pavone, M.; Scaramuzza, D.; Ryll, M. Real-Time Neural MPC: Deep Learning Model Predictive Control for Quadrotors and Agile Robotic Platforms. IEEE Robot. Autom. Lett. 2023, 8, 2397–2404. [Google Scholar] [CrossRef]
- Saviolo, A.; Li, G.; Loianno, G. Physics-Inspired Temporal Learning of Quadrotor Dynamics for Accurate Model Predictive Trajectory Tracking. IEEE Robot. Autom. Lett. 2022, 7, 10256–10263. [Google Scholar] [CrossRef]
- Berberich, J.; Köhler, J.; Müller, M.A.; Allgöwer, F. Linear tracking MPC for nonlinear systems—Part I: The model-based case. IEEE Trans. Automat. Contr. 2022, 67, 4390–4405. [Google Scholar] [CrossRef]
- Limon, D.; Ferramosca, A.; Alvarado, I.; Alamo, T. Nonlinear MPC for tracking piece-wise constant reference signals. IEEE Trans. Automat. Contr. 2018, 63, 3735–3750. [Google Scholar] [CrossRef]
- Mayne, D.Q.; Rawlings, J.B.; Rao, C.V.; Scokaert, P.O.M. Constrained model predictive control: Stability and optimality. Automatica 2000, 36, 789–814. [Google Scholar] [CrossRef]
- Berberich, J.; Köhler, J.; Müller, M.A.; Allgöwer, F. Linear tracking MPC for nonlinear systems—Part II: The data-driven case. IEEE Trans. Automat. Contr. 2022, 67, 4406–4421. [Google Scholar] [CrossRef]
Variable Name | Variable Symbol | Variable Symbol |
---|---|---|
Inertia matrix | J | diag{0.0768, 0.0775, 0.0361} |
Drone quality | m | 2.84 kg |
Gravitational acceleration | g | 9.8 m/s2 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Chen, Z.; Lin, X.; Jiang, W. Coaxial Helicopter Attitude Control System Design by Advanced Model Predictive Control under Disturbance. Aerospace 2024, 11, 486. https://doi.org/10.3390/aerospace11060486
Chen Z, Lin X, Jiang W. Coaxial Helicopter Attitude Control System Design by Advanced Model Predictive Control under Disturbance. Aerospace. 2024; 11(6):486. https://doi.org/10.3390/aerospace11060486
Chicago/Turabian StyleChen, Zhi, Xiangyu Lin, and Wanyue Jiang. 2024. "Coaxial Helicopter Attitude Control System Design by Advanced Model Predictive Control under Disturbance" Aerospace 11, no. 6: 486. https://doi.org/10.3390/aerospace11060486
APA StyleChen, Z., Lin, X., & Jiang, W. (2024). Coaxial Helicopter Attitude Control System Design by Advanced Model Predictive Control under Disturbance. Aerospace, 11(6), 486. https://doi.org/10.3390/aerospace11060486