Adaptive Scheduling Method for Passenger Service Resources in a Terminal
Abstract
:1. Introduction
2. The Process–Resource Interdependent Network
2.1. Network Topology
2.2. Time-Varying Characteristics of Network Topology
- (1)
- The state of any node changes, such as the weight of nodes vAi or vBi changes;
- (2)
- Network GA or GB adds new object node vAk or vBk;
- (3)
- The relationship between nodes changes, such as eAij, eBij, or eAiBi.
3. Resource Adaptive Scheduling Method for Load Redistribution Based on Cascading Failure
3.1. Capacity, Load, Cascading Failure Process
3.2. Load Distribution Model under Cascading Failure Condition
4. Empirical Analysis
4.1. Example
4.2. Simulation Analysis
4.2.1. Service Efficiency Analysis
4.2.2. Robustness Analysis
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Yang, S.; Tieqiao, T.T.; Wang, T. How to raise the check-in efficiency at an airport terminal: A route guidance strategy. IEEE Access 2022, 10, 97692–97700. [Google Scholar] [CrossRef]
- Zhang, T.; Bao, D.; Zhu, T.; Yang, Z.; Di, Z. Airport passenger queuing model based on social force model. Syst. Eng. Electron. 2020, 42, 1776–1783. [Google Scholar]
- Li, J.; Zhang, Y.; Cheng, S.; Luo, Q.; Dang, W. A choice model of security check channel for airline passengers considering heterogeneity in airport terminal. Phys. A Stat. Mech. Its Appl. 2023, 624, 28930. [Google Scholar] [CrossRef]
- Yu, C.; Jiang, J.; Xu, H.; Zhu, P. Multi-objective optimization of flight-gate assignment based on improved genetic algorithm. J. Traffic Transp. Eng. 2020, 20, 121–130. [Google Scholar]
- Liu, J.; Yang, S.; Jiang, H.; Wang, Z. Review on the Optimization Methods of Terminal Departure Resources Allocation. Sci. Technol. Eng. 2023, 23, 1812–1822. [Google Scholar]
- Wang, S.; Yang, Y.; Sun, L.; Li, X.; Li, Y.; Guo, K. Controllability Robustness against Cascading Failure for Complex Logistic Network Based on Dynamic Cascading Failure Model. IEEE Access 2020, 8, 127450–127461. [Google Scholar] [CrossRef]
- Chen, C.; Zhao, Y.; Gao, J.; Stanley, H.E. Nonlinear model of cascade failure in weighted complex networks considering overloaded edges. Sci. Rep. 2020, 10, 13428. [Google Scholar] [CrossRef]
- Xu, X.; Huang, A.; Shalaby, A.; Feng, Q.; Chen, M.; Qi, G. Exploring cascading failure processes of interdependent multi-modal public transit networks. Phys. A Stat. Mech. Its Appl. 2024, 638, 129576. [Google Scholar] [CrossRef]
- Li, M.J.; Chi, K.T. Quantification of Cascading Failure Propagation in Power Systems. IEEE Trans. Circuits Syst. I Regul. Pap. 2024. [Google Scholar] [CrossRef]
- Bai, J.; Wang, B.; Zeng, L.; Yang, Y. A cascading failure model of the air traffic control network based on the theory of interdependent networks. Appl. Sci. 2023, 13, 6256. [Google Scholar] [CrossRef]
- Ge, Y.; Li, Y.; Xu, T.; He, Z.; Zhu, Q. Analysis of Controllability in Cyber–Physical Power Systems under a Novel Load-Capacity Model. Processes 2023, 11, 3046. [Google Scholar] [CrossRef]
- Ma, J.L.; Xin, J.H. Robustness of dual-layer networks considering node load redistribution. Int. J. Mod. Phys. C 2023, 35, 1–18. [Google Scholar] [CrossRef]
- Liang, H.J.; Lu, J.Y.; Chen, N. Invulnerability Analysis and Optimization Strategy of Sector Network Using Cascading Failure Model. Complexity 2022, 2022, 5388630. [Google Scholar] [CrossRef]
- Wang, Y.; Dong, J.; Zhao, J.; Qu, Z.; Huang, J. Dynamic Load Redistribution of Power CPS Based on Comprehensive Index of Coupling Node Pairs. Processes 2022, 10, 1937. [Google Scholar] [CrossRef]
- Wang, L.; Li, H.; Zhao, G. Improved Load Re-allocation Strategy Based on Maximum Residual Capacity of Node. J. Northeast. Univ. Nat. Sci. 2020, 41, 1223–1230. [Google Scholar]
- Zhang, Q.; Song, T.; Cao, J.; Yan, X.; Xing, B. Evolution Model of Equipment Support Network Considering Interdependent Relationship. Acta Armamentarii 2019, 40, 1918–1927. [Google Scholar]
- Zhang, Q.; Cao, J.; Song, T.; Du, D.; Zhang, C. Cascading Failure Analysis Considering Load Redistributionin Equipment Support Network. J. Ordnance Equip. Eng. 2021, 42, 86–90. [Google Scholar]
- Wang, X.; He, M.; Liu, M. Air traffic CPS cascading failure and mitigation strategy. J. Beijing Univ. Aeronaut. Astronaut. 2021, 47, 2426–2433. [Google Scholar]
- Yu, R.; Jiang, Y.; Yan, Y.; Hong, C. Research on Robustness of nterdependent Networks Considering Dependent Side Load. J. Univ. Electron. Sci. Technol. China 2022, 51, 774–785. [Google Scholar]
- Xie, Y.R.; Wang, T.Y.; Yang, B. Effect of network topologies and attacking strategies on cascading failure model with power-law load redistribution. J. Stat. Mech. Theory Exp. 2024, 2024, 023402. [Google Scholar] [CrossRef]
- Song, B.; Wu, H.M.; Song, Y.R.; Jiang, G.P.; Xia, L.L.; Wang, X. Robustness of community networks against cascading failures with heterogeneous redistribution strategies. Chin. Phys. B 2023, 32, 9. [Google Scholar] [CrossRef]
- Zhang, J.R.; Huang, J.; Zhang, Z.J. Analysis of the effect of node attack method on cascading failures in multi-layer directed networks. Chaos Solitons Fractal. Interdiscip. J. Nonlinear Sci. Nonequilibrium Complex Phenom. 2023, 168, 113156. [Google Scholar] [CrossRef]
- Lao, S.; Wang, J.; Bai, L. Review of the interdependent networks. J. Natl. Univ. Def. Technol. 2016, 38, 122–128. [Google Scholar]
- Xu, X.; Fu, X. Analysis on Cascading Failures of Directed–Undirected Interdependent Networks with Different Coupling Patterns. Entropy 2023, 25, 471. [Google Scholar] [CrossRef] [PubMed]
- Shen, Y.; Yang, H.; Ren, G.; Ran, B. Model cascading overload failure and dynamic vulnerability analysis of facility network of metro station. Reliab. Eng. Syst. Saf. 2024, 242, 109711. [Google Scholar] [CrossRef]
- Wang, N.; Jin, Z.; Zhao, J. Cascading failures of overload behaviors on interdependent networks. Phys. A Stat. Mech. Its Appl. 2021, 574, 125989. [Google Scholar] [CrossRef]
- Cumelles, J.; Lordan, O.; Sallan, J.M. Cascading failures in airport networks. J. Air Transp. Manag. 2021, 92, 102026. [Google Scholar] [CrossRef]
- Yu, J.; Xiao, B.; Cui, Y. Robustness of Double-Layer Group-Dependent Combat Network with Cascading Failure. Electronics 2023, 12, 3061. [Google Scholar] [CrossRef]
- Wu, Y.; Chen, Z.; Zhao, X.; Liu, Y.; Zhang, P.; Liu, Y. Robust analysis of cascading failures in complex networks. Phys. A: Stat. Mech. Its Appl. 2021, 583, 126320. [Google Scholar] [CrossRef]
- Liu, S.; Yin, C.; Chen, D.; Lv, H.; Zhang, Q. Cascading failure in multiple critical infrastructure interdependent networks of syncretic railway system. IEEE Trans. Intell. Transp. Syst. 2021, 23, 5740–5753. [Google Scholar] [CrossRef]
- Ghasemi, A.; de Meer, H. Robustness of interdependent power grid and communication networks to cascading failures. IEEE Trans. Netw. Sci. Eng. 2023, 10, 1919–1930. [Google Scholar] [CrossRef]
Check-In Counter | Weights | Average Service Rate | Capacity | Load before Scheduling | Distribution of Loads | Load after Scheduling |
---|---|---|---|---|---|---|
m1 | 0.55 | 109 | 22.33 | 12 | 2 | 14 |
m2 | 0.50 | 120 | 24.70 | 12 | 3 | 15 |
m3 | 0.60 | 100 | 20.37 | 11 | 2 | 13 |
m4 | 0.65 | 92 | 18.70 | 10 | 2 | 12 |
m5 | 0.70 | 86 | 17.27 | 9 | 2 | 11 |
m6 | 0.60 | 100 | 20.37 | 10 | 2 | 12 |
m7 | 0.65 | 92 | 18.70 | 10 | 2 | 12 |
m8 | 0.75 | 80 | 16.03 | 9 | 2 | 10 |
m9 | 0.80 | 75 | 14.95 | 8 | 1 | 10 |
m10 | 0.70 | 85 | 17.27 | 9 | 2 | 11 |
total | 100 | 20 | 120 |
Security Check Channel | Weights | Capacity | Load before Scheduling | Distribution of Loads | Load after Scheduling |
---|---|---|---|---|---|
m11 | 1 | 22.4 | 13 | 2 | 15 |
m12 | 0.9 | 25.1 | 14 | 2 | 16 |
m13 | 0.95 | 23.7 | 14 | 2 | 16 |
m14 | 1.05 | 21.3 | 12 | 2 | 14 |
m15 | 1.05 | 21.3 | 11 | 2 | 13 |
m16 | 1 | 22.4 | 10 | 3 | 13 |
m17 | 1 | 22.4 | 9 | 3 | 12 |
m18 | 1.1 | 20.2 | 8 | 3 | 11 |
m19 | 1.15 | 19.3 | 7 | 3 | 10 |
m20 | 1.2 | 18.4 | 7 | 3 | 10 |
total | 105 | 25 | 130 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Mou, Q.; Liang, Q.; Tian, J.; Jing, X. Adaptive Scheduling Method for Passenger Service Resources in a Terminal. Aerospace 2024, 11, 528. https://doi.org/10.3390/aerospace11070528
Mou Q, Liang Q, Tian J, Jing X. Adaptive Scheduling Method for Passenger Service Resources in a Terminal. Aerospace. 2024; 11(7):528. https://doi.org/10.3390/aerospace11070528
Chicago/Turabian StyleMou, Qifeng, Qianyu Liang, Jie Tian, and Xin Jing. 2024. "Adaptive Scheduling Method for Passenger Service Resources in a Terminal" Aerospace 11, no. 7: 528. https://doi.org/10.3390/aerospace11070528
APA StyleMou, Q., Liang, Q., Tian, J., & Jing, X. (2024). Adaptive Scheduling Method for Passenger Service Resources in a Terminal. Aerospace, 11(7), 528. https://doi.org/10.3390/aerospace11070528