Non-Cooperative Spacecraft Pose Estimation Based on Feature Point Distribution Selection Learning
Abstract
:1. Introduction
- Utilizing the PnP angular error propagation model alongside the mathematical theory of sensor mounting configuration optimization, we can effectively analyze and guide the impact of coplanar and non-coplanar surfaces at crucial points on the accuracy of pose estimation.
- In the process of detecting key points, the region encompassing the spacecraft’s location is first identified. Subsequently, an uncertainty prediction is conducted for these key points. Based on theoretical knowledge, key points that exhibit high uncertainty are eliminated. To enhance accuracy, a non-coplanar feature point selection network incorporating uncertainty is proposed. Finally, the bit pose is estimated utilizing the Efficient Perspective-n-Point (EPnP) algorithm.
- We fully experimented with the SPEED dataset and compared it with the key point detection methods in various cases and found that our method can reduce the average error of the pose estimation by 61.3%.
2. Related Work
3. Method
3.1. Sensor Layout
3.2. Three-Dimensional Reconstruction
3.3. Spacecraft Detection Network
3.4. Key Point Detection Network
3.5. Pose Estimation
4. Experiment
4.1. Datasets and Implementation Details
4.2. Evaluation Metrics
4.3. Experimental Results and Comparison with Benchmark Experiments
4.3.1. Performance with Synthetic Images
4.3.2. Performance with Real Images
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Chen, B.; Cao, J.; Parra, A.; Chin, T.-J. Satellite Pose Estimation with Deep Landmark Regression and Nonlinear Pose Refinement. In Proceedings of the 2019 IEEE/CVF International Conference on Computer Vision Workshop (ICCVW), Seoul, Republic of Korea, 27–28 October 2019; pp. 2816–2824. [Google Scholar]
- Li, K.; Zhang, H.; Hu, C. Learning-Based Pose Estimation of Non-Cooperative Spacecrafts with Uncertainty Prediction. Aerospace 2022, 9, 592. [Google Scholar] [CrossRef]
- Kisantal, M.; Sharma, S.; Park, T.H.; Izzo, D.; Märtens, M.; D’Amico, S. Satellite Pose Estimation Challenge: Dataset, Competition Design, and Results. IEEE Trans. Aerosp. Electron. Syst. 2020, 56, 4083–4098. [Google Scholar] [CrossRef]
- Park, T.H.; Märtens, M.; Jawaid, M.; Wang, Z.; Chen, B.; Chin, T.-J.; Izzo, D.; D’Amico, S. Satellite Pose Estimation Competition 2021: Results and Analyses. Acta Astronaut. 2023, 204, 640–665. [Google Scholar] [CrossRef]
- Dhome, M.; Richetin, M.; Lapreste, J.-T.; Rives, G. Determination of the Attitude of 3D Objects from a Single Perspective View. IEEE Trans. Pattern Anal. Mach. Intell. 1989, 11, 1265–1278. [Google Scholar] [CrossRef]
- Dhome, M.; Richetin, M.; Lapreste, J.T.; Rives, G. The Inverse Perspective Problem from a Single View for Polyhedra Location. In Proceedings of the Proceedings CVPR ’88: The Computer Society Conference on Computer Vision and Pattern Recognition, Ann Arbor, MI, USA, 5–9 June 1988; pp. 61–66. [Google Scholar]
- Lepetit, V.; Moreno-Noguer, F.; Fua, P. EPnP: An Accurate O(n) Solution to the PnP Problem. Int. J. Comput. Vis. 2009, 81, 155–166. [Google Scholar] [CrossRef]
- Experimental Evaluation of Pose Initialization Methods for Relative Navigation Between Non-Cooperative Satellites|IEEE Conference Publication|IEEE Xplore. Available online: https://ieeexplore.ieee.org/document/9856146 (accessed on 17 June 2024).
- Relative Computer Vision-Based Navigation for Small Inspection Spacecraft|Journal of Guidance, Control, and Dynamics. Available online: https://arc.aiaa.org/doi/10.2514/1.G000687 (accessed on 17 June 2024).
- Sharma, S.; Beierle, C.; D’Amico, S. Pose Estimation for Non-Cooperative Spacecraft Rendezvous Using Convolutional Neural Networks. In Proceedings of the 2018 IEEE Aerospace Conference, Big Sky, MT, USA, 3–10 March 2018; pp. 1–12. [Google Scholar]
- Park, T.H.; Sharma, S.; D’Amico, S. Towards Robust Learning-Based Pose Estimation of Noncooperative Spacecraft. arXiv 2019, arXiv:1909.00392. [Google Scholar]
- Zhu, W.S.; Mou, J.Z.; Li, S.; Han, F. Advances in spacecraft attitude estimation based on deep learning. J. Astronaut. 2023, 44, 1633–1644. [Google Scholar]
- Lotti, A.; Modenini, D.; Tortora, P.; Saponara, M.; Perino, M.A. Deep Learning for Real Time Satellite Pose Estimation on Low Power Edge TPU. arXiv 2022, arXiv:2204.03296. [Google Scholar]
- Huo Fast and Accurate Spacecraft Pose Estimation From Single Shot Space Imagery Using Box Reliability and Keypoints Existence Judgments—DOAJ. Available online: https://doaj.org/article/ff655c5ff2ee4ae38c601f93e0a5b832 (accessed on 4 March 2024).
- Proença, P.F.; Gao, Y. Deep Learning for Spacecraft Pose Estimation from Photorealistic Rendering. In Proceedings of the 2020 IEEE International Conference on Robotics and Automation (ICRA), Paris, France, 31 May–31 August 2020; pp. 6007–6013. [Google Scholar]
- Chen, H.Y.; Wu, J.F.; Kang, G.H.; Wu, J.Q.; Li, X. A cooperative spacecraft position measurement method based on laser beacon and its accuracy analysis. J. Instrum. 2023, 44, 101–110. [Google Scholar] [CrossRef]
- Wang, G. Neural Network Based Position Measurement Method for Non-Cooperative Spacecraft. Master’s Thesis, Harbin Institute of Technology, Harbin, China, 2022. [Google Scholar]
- Pan, J.; Ren, D.; Shi, Y.; Wang, L. Research on monocular position estimation algorithm based on improved YOLO6D. Sens. Microsyst. 2024, 43, 44–47+51. [Google Scholar] [CrossRef]
- Pasqualetto Cassinis, L.; Fonod, R.; Gill, E. Review of the Robustness and Applicability of Monocular Pose Estimation Systems for Relative Navigation with an Uncooperative Spacecraft. Prog. Aerosp. Sci. 2019, 110, 100548. [Google Scholar] [CrossRef]
- Axelrad, P.; Ward, L.M. Spacecraft Attitude Estimation Using the Global Positioning System—Methodology and Results for RADCAL. J. Guid. Control. Dyn. 1996, 19, 1201–1209. [Google Scholar] [CrossRef]
- Fan, R.; Xu, T.-B.; Wei, Z. Estimating 6D Aircraft Pose from Keypoints and Structures. Remote Sens. 2021, 13, 663. [Google Scholar] [CrossRef]
- Kelvins—Pose Estimation Challenge—Home. Available online: https://kelvins.esa.int/satellite-pose-estimation-challenge/ (accessed on 23 April 2024).
Method | medianET | medianER | medianE | meanET | meanER | meanE |
---|---|---|---|---|---|---|
Ours_Uncertainty | 0.0042 | 0.0079 | 0.0121 | 0.0159 | 0.0207 | 0.0366 |
Ours_Non | 0.0058 | 0.0118 | 0.0176 | 0.0152 | 0.0254 | 0.0406 |
Method | medianET | medianER | medianE | meanET | meanER | meanE |
---|---|---|---|---|---|---|
4 points (coplanarity) | 0.0215 | 0.0631 | 0.0846 | 0.0382 | 0.0681 | 0.1063 |
5 points (coplanarity) | 0.0174 | 0.0458 | 0.0632 | 0.0294 | 0.0635 | 0.0929 |
5 points (non-coplanarity) | 0.0056 | 0.0163 | 0.0219 | 0.0203 | 0.0498 | 0.0701 |
7 points (non-coplanarity) | 0.0036 | 0.0075 | 0.0111 | 0.0046 | 0.0102 | 0.0148 |
Method | medianET | medianER | medianE | meanET | meanER | meanE |
---|---|---|---|---|---|---|
Ours | 0.0036 | 0.0075 | 0.0111 | 0.0046 | 0.0102 | 0.0148 |
Chen | 0.0047 | 0.0118 | 0.0172 | 0.0083 | 0.0299 | 0.0383 |
Park | 0.0198 | 0.0539 | 0.0783 | 0.0287 | 0.0929 | 0.1216 |
Method | medianET | medianER | medianE | meanET | meanER | meanE |
---|---|---|---|---|---|---|
4 points (coplanarity) | 0.0845 | 0.1259 | 0.2104 | 0.2196 | 0.2593 | 0.4789 |
7 points (coplanarity) | 0.0712 | 0.0572 | 0.1284 | 0.0511 | 0.1645 | 0.2156 |
7 points (non-coplanarity) | 0.0563 | 0.0247 | 0.0810 | 0.0345 | 0.1024 | 0.1369 |
11 points (non-coplanarity) | 0.0158 | 0.0196 | 0.0354 | 0.0412 | 0.0901 | 0.1313 |
Method | medianET | medianER | medianE | meanET | meanER | meanE |
---|---|---|---|---|---|---|
Ours | 0.0158 | 0.0196 | 0.0354 | 0.0412 | 0.0901 | 0.1313 |
Chen | 0.1253 | 0.2342 | 0.3595 | 0.1793 | 0.5457 | 0.7250 |
Park | 0.0842 | 0.0965 | 0.1807 | 0.1135 | 0.1350 | 0.2485 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yuan, H.; Chen, H.; Wu, J.; Kang, G. Non-Cooperative Spacecraft Pose Estimation Based on Feature Point Distribution Selection Learning. Aerospace 2024, 11, 526. https://doi.org/10.3390/aerospace11070526
Yuan H, Chen H, Wu J, Kang G. Non-Cooperative Spacecraft Pose Estimation Based on Feature Point Distribution Selection Learning. Aerospace. 2024; 11(7):526. https://doi.org/10.3390/aerospace11070526
Chicago/Turabian StyleYuan, Haoran, Hanyu Chen, Junfeng Wu, and Guohua Kang. 2024. "Non-Cooperative Spacecraft Pose Estimation Based on Feature Point Distribution Selection Learning" Aerospace 11, no. 7: 526. https://doi.org/10.3390/aerospace11070526
APA StyleYuan, H., Chen, H., Wu, J., & Kang, G. (2024). Non-Cooperative Spacecraft Pose Estimation Based on Feature Point Distribution Selection Learning. Aerospace, 11(7), 526. https://doi.org/10.3390/aerospace11070526