Fuzzy Control for Aircraft Engine: Dynamics Clustering Modeling, Compensation and Hardware-in-Loop Experimental Verification
Abstract
:1. Introduction
2. T–S Fuzzy Modeling and Fuzzy Control Method for Aircraft Engines
2.1. Methodology
2.2. T–S Fuzzy Model-Based Control
3. Turbofan T–S Fuzzy Model
3.1. Hierarchical Clustering of Turbofan Dynamics
3.2. Identification of Local Systems
3.3. Turbofan T–S Fuzzy Model
4. T–S Fuzzy Model-Based Robust Control for Aircraft Engines
4.1. Nominal Compensator
4.2. Robust Control Design
4.3. Aircraft Engine Tracking Control Design
4.4. Hardware-in-Loop Experimental Testing
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
Appendix B
Appendix C
References
- Jaw, L.C.; Mattingly, J.D. Aircraft Engine Controls: Design, System Analysis, and Health Monitoring; American Institute of Aeronautics and Astronautics: New York, NY, USA, 2009. [Google Scholar]
- Richter, H. Advanced Control of Turbofan Engines; Springer: Cleveland, OH, USA, 2012. [Google Scholar]
- Chipperfield, A.J.; Bica, B.; Fleming, P.J. Fuzzy Scheduling Control of a Gas Turbine Aero-Engine: A Multiobjective Approach. IEEE Trans. Ind. Electron. 2002, 49, 536–548. [Google Scholar] [CrossRef]
- Gilbert, W.; Henrion, D.; Bernussou, J.; Boyer, D. Polynomial LPV Synthesis Applied to Turbofan Engines. Control. Eng. Pract. 2008, 18, 1077–1083. [Google Scholar] [CrossRef]
- Pakmehr, M.; Fitzgerald, N.; Feron, E.M.; Shamma, J.S.; Behbahani, A. Gain Scheduled Control of Gas Turbine Engines: Stability and Verification. J. Eng. Gas. Turbine Power 2013, 136, 031201. [Google Scholar] [CrossRef]
- Wang, Y.; Huang, J.; Pan, M.; Zhou, W. Game-Theory-Based Mode Switch Control Schedule Design for Variable Cycle Engine. Aerospace 2023, 10, 112. [Google Scholar] [CrossRef]
- Li, R.; Guo, Y.; Nguang, S.K.; Chen, Y. Takagi-Sugeno Fuzzy Model Identification for Turbofan Aero-Engines with Guaranteed Stability. Chinese J. Aeronaut. 2018, 31, 1206–1214. [Google Scholar] [CrossRef]
- Pan, M.X.; Wang, H.; Huang, J.Q. T-S Fuzzy Modeling for Aircraft Engines: The Clustering and Identification Approach. Energies 2019, 12, 3284. [Google Scholar] [CrossRef]
- Hwang, C.L.; Chen, Y.H. Fuzzy fixed-time learning control with saturated input, nonlinear switching surface, and switching gain to achieve null tracking error. IEEE Trans. Fuzzy Syst. 2019, 28, 1464–1476. [Google Scholar] [CrossRef]
- Wang, W.; Peng, J.; Zhang, Y. Modeling and Control for an Aero-Engine Based on the Takagi-Sugeno Fuzzy Model. Aerospace 2023, 10, 523. [Google Scholar] [CrossRef]
- Feng, G. Analysis and Synthesis of Fuzzy Control Systems: A Model-Based Approach; CRC Press: Boca Raton, FL, USA, 2010. [Google Scholar]
- Lam, H.K.; Leung, F.H. Stability Analysis of Fuzzy-Model-Based Control Systems: Linear-Matrix-Inequality Approach; Springer: Berlin/Heidelberg, Germany, 2011. [Google Scholar]
- Wang, L.X. Fuzzy Systems Are Universal Approximators. In Proceedings of the IEEE International Conference on Fuzzy Systems, San Diego, CA, USA, 8–12 March 1992; pp. 1163–1170. [Google Scholar]
- Takagi, T.; Sugeno, M. Fuzzy Identification of Systems and Its Applications to Modeling and Control. IEEE Trans. Syst. Man Cybern. Syst. 1985, 15, 116–132. [Google Scholar] [CrossRef]
- Kyriazis, A.; Mathioudakis, K. Gas Turbine Fault Diagnosis Using Fuzzy-Based Decision Fusion. J. Propuls. Power 2012, 25, 335–343. [Google Scholar] [CrossRef]
- Banazadeh, A.; Gol, H.A. Model-Based Fuzzy Control of a Gas Turbine Coupled with a Dynamometer. J. Propuls. Power 2018, 34, 1178–1188. [Google Scholar] [CrossRef]
- Guerra, T.M.; Kruszewski, A.; Lauber, J. Discrete Tagaki–Sugeno Models for Control: Where Are We. Annu. Rev. Control 2009, 33, 37–47. [Google Scholar] [CrossRef]
- Askari, M.; Davaie-Markazi, A.H. Application of A New Compact Optimized T-S Fuzzy Model to Nonlinear System Identification. In Proceedings of the International Symposium on Mechatronics and its Applications, Amman, Jordan, 27–29 May 2008; pp. 1–6. [Google Scholar]
- Wang, L.X. A Course in Fuzzy Systems and Control; Prentice Hall: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Ku, H.; Kung, C.; Chen, W. A Novel Cluster Validity Criterion for the Bilinear Models and Its Application to the T-S Fuzzy Bilinear Model Identification. In Proceedings of the 2012 IEEE International Conference on Fuzzy Systems, Brisbane, QLD, Australia, 10–15 June 2012; pp. 1–7. [Google Scholar]
- Kung, C.; Ku, H. T-S Fuzzy Affine Linear Modeling Algorithm by Possibilistic C-Regression Models Clustering Algorithm. In Proceedings of the 2014 IEEE International Conference on Fuzzy Systems, Beijing, China, 6–11 July 2014; pp. 1242–1247. [Google Scholar]
- Klir, G.J.; Yuan, B. Fuzzy Sets and Fuzzy Logic: Theory and Applications; Prentice Hall: Upper Saddle River, NJ, USA, 1995. [Google Scholar]
- Rezaee, M.R.; Lelieveldt, B.P.F.; Reiber, J.H.C. A New Cluster Validity Index for the Fuzzy C-Mean. Pattern Recognit Lett. 1998, 19, 237–246. [Google Scholar] [CrossRef]
- Li, Y.; Yu, F. A New Validity Function For Fuzzy Clustering. In Proceedings of the 2009 International Conference on Computational Intelligence and Natural Computing, Wuhan, China, 6–7 June 2009; pp. 462–465. [Google Scholar]
- Mahmuddin, M.; Yusof, Y. Automatic Estimation Total Number of Cluster Using A Hybrid Test-and-Generate and K-means Algorithm. In Proceedings of the 2010 International Conference on Computer Applications and Industrial Electronics, Kuala Lumpur, Malaysia, 5–7 December 2010; pp. 593–596. [Google Scholar]
- Ubukata, S.; Yanagisawa, K.; Notsu, A.; Honda, K. Automatic Estimation of Cluster Number in Fuzzy Co-clustering Based on Competition and Elimination of Clusters. In Proceedings of the 2018 Joint 10th International Conference on Soft Computing and Intelligent Systems and 19th International Symposium on Advanced Intelligent Systems, Toyama, Japan, 5–8 December 2018; pp. 660–665. [Google Scholar]
- Muneeswaran, P.; Velvizhy, P.; Kannan, A. Clustering Fusion with Automatic Cluster Number. In Proceedings of the 2014 International Conference on Recent Trends in Information Technology (ICRTIT 2014), Chennai, India, 10–12 April 2014; pp. 1–6. [Google Scholar]
- Xu, Y.J. Optimization of the Clusters Number of an Improved Fuzzy C-Means Clustering Algorithm. In Proceedings of the 2015 10th International Conference on Computer Science & Education (ICCSE 2015), Cambridge, UK, 22–24 July 2015; pp. 931–935. [Google Scholar]
- Wang, H.O.; Tanaka, K.; Griffin, M. Parallel Distributed Compensation of Nonlinear Systems by Takagi-Sugeno Fuzzy Model. In Proceedings of the IEEE International Conference on Fuzzy Systems, Yokohama, Japan, 20–24 March 1995; pp. 531–538. [Google Scholar]
- Horng, W.R.; Fang, C.H.; Chou, J.H. Quadratic optimal control with disturbance attenuation for uncertain continuous-time TS fuzzy systems. IETE J. Res. 2017, 63, 98–108. [Google Scholar] [CrossRef]
- Vu, V.P.; Wang, W.J. State/disturbance observer and controller synthesis for the T–S fuzzy system with an enlarged class of disturbances. IEEE Trans. Fuzzy Syst. 2018, 26, 3645–3659. [Google Scholar] [CrossRef]
- Yang, R.; Gao, Y.; Wang, H.; Ni, X. Fuzzy Neural Network PID Control Used in Individual Blade Control. Aerospace 2023, 10, 623. [Google Scholar] [CrossRef]
- Pan, M.X.; Wang, H.; Gu, B.B.; Qiu, X.J.; Chen, Y.H. A Hierarchical Robust Control Design with Non-Parallel Distributed Compensator and Application to Aircraft Engines. IEEE Access 2019, 7, 144813–144825. [Google Scholar] [CrossRef]
- Taniguchi, T.; Tanaka, K.; Yamafuji, K.; Wang, H.O. A New PDC for Fuzzy Reference Models. In Proceedings of the IEEE International Fuzzy Systems, Conference Proceedings, Seoul, Republic of Korea, 22–25 August 1999; pp. 898–903. [Google Scholar]
- Johansson, M.; Rantzer, A.; Arzen, K. Piecewise Quadratic Stability of Fuzzy Systems. IEEE Trans. Fuzzy Syst. 2000, 7, 713–722. [Google Scholar] [CrossRef]
- Nguyen, A.; Taniguchi, T.; Eciolaza, L.; Campos, V.; Palhares, R.; Sugeno, M. Fuzzy Control Systems: Past, Present and Future. IEEE Comput. Intell. Mag. 2019, 14, 56–68. [Google Scholar] [CrossRef]
- Peters, J.; Mistry, M.; Udwadia, F.; Cory, R.; Nakanishi, J.; Schaal, S. A unifying methodology for the control of robotic systems. In Proceedings of the IEEE IRS/RSJ International Conference on Intelligent Robots and Systems, Edmonton, Canada, 2–6 August 2005; pp. 1824–1831. [Google Scholar]
- Ansari, U.Z.; Bajodah, A.H. Spacecraft Attitude Control Using Robust Generalized Dynamic Inversion. In Proceedings of the IEEE Conference on Control Technology and Applications, Copenhagen, Denmark, 21–24 August 2018; pp. 1741–1746. [Google Scholar]
- Karnik, N.N.; Mendel, J.M.; Liang, Q. Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Syst. 2000, 7, 643–658. [Google Scholar] [CrossRef]
- Wang, L. A New Look at Type-2 Fuzzy Sets and Type-2 Fuzzy Logic Systems. IEEE Trans. Fuzzy Syst. 2016, 25, 693–706. [Google Scholar] [CrossRef]
- Franklin, G.F.; Powell, J.D.; Emami-Naeini, A. Feedback Control of Dynamic Systems; Addison-Wesley: Reading, MA, USA, 1986. [Google Scholar]
- Tuan, H.D.; Apkarian, P.; Narikiyo, T.; Yamamoto, Y. Parameterized Linear Matrix Inequality Techniques in Fuzzy Control System Design. IEEE Trans. Fuzzy Syst. 2001, 9, 324–332. [Google Scholar] [CrossRef]
- Barya, K.; Tiwari, S.; Jha, R. Comparison of LQR and robust controllers for stabilizing inverted pendulum system. In Proceedings of the IEEE International Conference on Communication Control and Computing Technologies, Nagercoil, Tamil Nadu, India, 7–9 October 2010; pp. 300–304. [Google Scholar]
- Fakoor, M.; Nikpay, S.; Kalhor, A. On the ability of sliding mode and LQR controllers optimized with PSO in attitude control of a flexible 4-DOF satellite with time-varying payload. Adv. Space Res. 2021, 67, 334–349. [Google Scholar] [CrossRef]
- Shyu, K.K.; Lai, C.K.; Tsai, Y.W.; Yang, D.I. A newly robust controller design for the position control of permanent-magnet synchronous motor. IEEE Trans. Ind. Electron. 2002, 49, 558–565. [Google Scholar] [CrossRef]
- Zhou, K.; Doyle, J.C.; Glover, K. Robust and Optimal Control; Prentice Hall: Englewood Cliffs, NJ, USA, 1995. [Google Scholar]
- Corless, M.; Leitmann, G. Continuous State Feedback Guaranteeing Uniform Ultimate Boundedness for Uncertain Dynamic Systems. IEEE Trans. Automat. Contr. 1981, 26, 1139–1144. [Google Scholar] [CrossRef]
- Barrnett, S. Matrices in Control Theory with Application in Linear Programming; Van Nostrand Reinhold Company: London, UK, 1971. [Google Scholar]
Center Point | H (km) | ||
---|---|---|---|
8.075 | 1.003 | 0.816 | |
12.192 | 1.139 | 0.821 | |
4.129 | 0.652 | 0.837 | |
… | |||
2.134 | 0.513 | 0.995 |
Model | Center Point | ||
---|---|---|---|
… | |||
… | |||
… | |||
… | |||
… |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, M.; Wang, H.; Zhang, C.; Xu, Y. Fuzzy Control for Aircraft Engine: Dynamics Clustering Modeling, Compensation and Hardware-in-Loop Experimental Verification. Aerospace 2024, 11, 610. https://doi.org/10.3390/aerospace11080610
Pan M, Wang H, Zhang C, Xu Y. Fuzzy Control for Aircraft Engine: Dynamics Clustering Modeling, Compensation and Hardware-in-Loop Experimental Verification. Aerospace. 2024; 11(8):610. https://doi.org/10.3390/aerospace11080610
Chicago/Turabian StylePan, Muxuan, Hao Wang, Chenchen Zhang, and Yun Xu. 2024. "Fuzzy Control for Aircraft Engine: Dynamics Clustering Modeling, Compensation and Hardware-in-Loop Experimental Verification" Aerospace 11, no. 8: 610. https://doi.org/10.3390/aerospace11080610
APA StylePan, M., Wang, H., Zhang, C., & Xu, Y. (2024). Fuzzy Control for Aircraft Engine: Dynamics Clustering Modeling, Compensation and Hardware-in-Loop Experimental Verification. Aerospace, 11(8), 610. https://doi.org/10.3390/aerospace11080610