Advancing the Diagnosis of Aero-Engine Bearing Faults with Rotational Spectrum and Scale-Aware Robust Network
Abstract
:1. Introduction
- The rotation spectrum was fused with deep neural networks to guide the learning of the key features of the bearing faults. Furthermore, a diagnostic network RSSR was proposed for rotating machinery bearing health state recognition.
- The application of a composite feature extraction block captures intricate signal characteristics, thereby markedly improving the diagnostic performance. The anti-noise block is established by scale-aware feature extraction, non-activation convolutional networks, and channel attention modules.
- Comprehensive validation of our proposed method using two distinct public datasets: one representing a broad spectrum of bearing failure scenarios across rotating machinery and the other specifically focused on aircraft engine data. The inclusion of a comparative noise level analysis further underscores the robustness and superiority of the proposed algorithm.
2. Proposed Approach
2.1. Rotational Spectrum
2.2. Scale-Aware Robust Block
3. Experimental Details
3.1. Chosen Models for Comparison
3.2. Dataset
3.3. Evaluation Indexes
3.4. Results and Discussion
4. Effectiveness Verification
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
AD | Analog-to-digital |
AE | AutoEncoder |
BN | Batch Normalization |
CNN | Convolutional Neural Network |
DL | Deep Learning |
DBN | Deep Belief Network |
DAE | Denoising autoencoder |
DNN | Deep neural network |
IF | Inner-ring failure |
LN | Layer Normalization |
MLP | Multi-layer perceptron |
MSA | Multi-scale attention |
MIXCNN | The CNN with MIXed information |
OF | Outer-ring failure |
RSSR | Rotational-Spectrum-informed Scale-aware Robustness |
ReLU | Rectified Linear Unit |
SAR | Scale-Aware Robust Block |
SNR | Signal-to-noise ratio |
References
- Randall, R.B.; Antoni, J. Rolling element bearing diagnostics—A tutorial. Mech. Syst. Signal Process. 2011, 25, 485–520. [Google Scholar] [CrossRef]
- Mir-Haidari, S.E.; Behdinan, K. On the vibration transfer path analysis of aero-engines using bond graph theory. Aerosp. Sci. Technol. 2019, 95, 105516. [Google Scholar] [CrossRef]
- Duyar, A.; Eldem, V.; Merrill, W.; Guo, T.H. Fault detection and diagnosis in propulsion systems—A fault parameter estimation approach. J. Guid. Control. Dyn. 1994, 17, 104–108. [Google Scholar] [CrossRef]
- Bernardi, E.; Adam, E.J. Observer-based fault detection and diagnosis strategy for industrial processes. J. Frankl. Inst. 2020, 357, 10054–10081. [Google Scholar] [CrossRef]
- Basri, H.M.; Lias, K.; Abidin, W.W.Z.; Tay, K.; Zen, H. Fault detection using dynamic parity space approach. In Proceedings of the 2012 IEEE International Power Engineering and Optimization Conference, Melaka, Malaysia, 6–7 June 2012; IEEE: Piscataway, NJ, USA, 2012; pp. 52–56. [Google Scholar]
- Kim, K.; Parlos, A.G. Induction motor fault diagnosis based on neuropredictors and wavelet signal processing. IEEE/ASME Trans. Mechatron. 2002, 7, 201–219. [Google Scholar]
- Qin, Y.; Zou, J.; Tang, B.; Wang, Y.; Chen, H. Transient feature extraction by the improved orthogonal matching pursuit and K-SVD algorithm with adaptive transient dictionary. IEEE Trans. Ind. Inform. 2019, 16, 215–227. [Google Scholar] [CrossRef]
- Zhang, M.; Kong, P.; Hou, A.; Xia, A.; Tuo, W.; Lv, Y. Identification Strategy Design with the Solution of Wavelet Singular Spectral Entropy Algorithm for the Aerodynamic System Instability. Aerospace 2022, 9, 320. [Google Scholar] [CrossRef]
- Wang, Z.; Du, W.; Wang, J.; Zhou, J.; Han, X.; Zhang, Z.; Huang, L. Research and application of improved adaptive MOMEDA fault diagnosis method. Measurement 2019, 140, 63–75. [Google Scholar] [CrossRef]
- Lu, J.; Huang, J.; Lu, F. Sensor fault diagnosis for aero engine based on online sequential extreme learning machine with memory principle. Energies 2017, 10, 39. [Google Scholar] [CrossRef]
- Vanini, Z.S.; Khorasani, K.; Meskin, N. Fault detection and isolation of a dual spool gas turbine engine using dynamic neural networks and multiple model approach. Inf. Sci. 2014, 259, 234–251. [Google Scholar] [CrossRef]
- Wang, Y.; Tang, B.; Qin, Y.; Huang, T. Rolling bearing fault detection of civil aircraft engine based on adaptive estimation of instantaneous angular speed. IEEE Trans. Ind. Inform. 2019, 16, 4938–4948. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, D.; Xiao, Y.; Yin, H. Semi-supervised Contrast Learning Based on Multi-scale Attention and Multi-target Contrast Learning for Bearing Fault Diagnosis. IEEE Trans. Ind. Inform. 2023, 19, 10056–10068. [Google Scholar] [CrossRef]
- Zhao, Z.; Jiao, Y. A fault diagnosis method for rotating machinery based on CNN with mixed information. IEEE Trans. Ind. Inform. 2022, 19, 9091–9101. [Google Scholar] [CrossRef]
- Mao, W.; Chen, J.; Liang, X.; Zhang, X. A new online detection approach for rolling bearing incipient fault via self-adaptive deep feature matching. IEEE Trans. Instrum. Meas. 2019, 69, 443–456. [Google Scholar] [CrossRef]
- Chen, L.; Zhang, Z.; Cao, J.; Wang, X. A novel method of combining nonlinear frequency spectrum and deep learning for complex system fault diagnosis. Measurement 2020, 151, 107190. [Google Scholar] [CrossRef]
- Vincent, P.; Larochelle, H.; Bengio, Y.; Manzagol, P.A. Extracting and composing robust features with denoising autoencoders. In Proceedings of the 25th international Conference on Machine Learning, Helsinki, Finland, 5–9 July 2008; pp. 1096–1103. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Deep residual learning for image recognition. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Las Vegas, NV, USA, 27–30 June 2016; pp. 770–778. [Google Scholar]
- Vaswani, A.; Shazeer, N.; Parmar, N.; Uszkoreit, J.; Jones, L.; Gomez, A.N.; Kaiser, Ł.; Polosukhin, I. Attention is all you need. In Proceedings of the 31st International Conference on Neural Information Processing Systems (NIPS’17), Long Beach, CA, USA, 4–9 December 2017; Volume 30, pp. 6000–6010. [Google Scholar]
- Weng, C.; Lu, B.; Yao, J. A one-dimensional vision transformer with multiscale convolution fusion for bearing fault diagnosis. In Proceedings of the 2021 Global Reliability and Prognostics and Health Management (PHM-Nanjing), Nanjing, China, 15–17 October 2021; IEEE: Piscataway, NJ, USA, 2021; pp. 1–6. [Google Scholar]
- Zhou, H.; Huang, X.; Wen, G.; Dong, S.; Lei, Z.; Zhang, P.; Chen, X. Convolution enabled transformer via random contrastive regularization for rotating machinery diagnosis under time-varying working conditions. Mech. Syst. Signal Process. 2022, 173, 109050. [Google Scholar] [CrossRef]
- Yan, Z.; Liu, H.; Tao, L.; Ma, J.; Cheng, Y. A Universal Feature Extractor Based on Self-Supervised Pre-Training for Fault Diagnosis of Rotating Machinery under Limited Data. Aerospace 2023, 10, 681. [Google Scholar] [CrossRef]
- Wang, Z.; Wang, Y.; Wang, X.; Yang, K.; Zhao, Y. A Novel Digital Twin Framework for Aeroengine Performance Diagnosis. Aerospace 2023, 10, 789. [Google Scholar] [CrossRef]
- An, Y.; Zhang, K.; Chai, Y.; Zhu, Z.; Liu, Q. Gaussian Mixture Variational Based Transformer Domain Adaptation Fault Diagnosis Method and Its Application in Bearing Fault Diagnosis. IEEE Trans. Ind. Inform. 2023, 20, 615–625. [Google Scholar] [CrossRef]
- Li, W.; Yang, W.; Jin, G.; Chen, J.; Li, J.; Huang, R.; Chen, Z. Clustering federated learning for bearing fault diagnosis in aerospace applications with a self-attention mechanism. Aerospace 2022, 9, 516. [Google Scholar] [CrossRef]
- Zhao, Z.; Li, T.; Wu, J.; Sun, C.; Wang, S.; Yan, R.; Chen, X. Deep learning algorithms for rotating machinery intelligent diagnosis: An open source benchmark study. ISA Trans. 2020, 107, 224–255. [Google Scholar] [CrossRef]
- Ebert, F.J. An overview of performance characteristics, experiences and trends of aerospace engine bearings technologies. Chin. J. Aeronaut. 2007, 20, 378–384. [Google Scholar] [CrossRef]
- Zhang, H.; Chen, X.; Zhang, X.; Ye, B.; Wang, X. Aero-engine bearing fault detection: A clustering low-rank approach. Mech. Syst. Signal Process. 2020, 138, 106529. [Google Scholar] [CrossRef]
- Flouros, M. Correlations for heat generation and outer ring temperature of high speed and highly loaded ball bearings in an aero-engine. Aerosp. Sci. Technol. 2006, 10, 611–617. [Google Scholar] [CrossRef]
- Maas, A.L.; Hannun, A.Y.; Ng, A.Y. Rectifier nonlinearities improve neural network acoustic models. In Proceedings of the 30th International Conference on Machine Learning (ICML 2013), Atlanta, GA, USA, 16–21 June 2013; Volume 30, p. 3. [Google Scholar]
- He, K.; Zhang, X.; Ren, S.; Sun, J. Delving deep into rectifiers: Surpassing human-level performance on imagenet classification. In Proceedings of the IEEE International Conference on Computer Vision, Santiago, Chile, 7–13 December 2015; pp. 1026–1034. [Google Scholar]
- Hu, J.; Shen, L.; Sun, G. Squeeze-and-excitation networks. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition, Salt Lake City, UT, USA, 18–23 June 2018; pp. 7132–7141. [Google Scholar]
- Liu, S.; Chen, J.; He, S.; Shi, Z.; Zhou, Z. Subspace Network with Shared Representation learning for intelligent fault diagnosis of machine under speed transient conditions with few samples. ISA Trans. 2022, 128, 531–544. [Google Scholar]
- Hou, L.; Yi, H.; Jin, Y.; Gui, M.; Sui, L.; Zhang, J.; Chen, Y. Inter-Shaft Bearing Fault Diagnosis Based on Aero-Engine System: A Benchmarking Dataset Study. J. Dyn. Monit. Diagn. 2023, 2, 228–242. [Google Scholar] [CrossRef]
Fault Position | Degree of Fault | Label of Fault | Area of Fault (mm2) | Depth of Fault (mm) |
---|---|---|---|---|
Inner ring (IF) | minor | C1 | 4 | 0.5 |
Inner ring (IF) | moderate | C2 | 8 | 4 |
Inner ring (IF) | severe | C3 | 12 | 2 |
NC | C4 | |||
Outer ring (OF) | minor | C5 | 4 | 0.5 |
Outer ring (OF) | moderate | C6 | 8 | 4 |
Outer ring (OF) | severe | C7 | 12 | 2 |
Fault Position | Label of Fault | Depth of Fault (mm) | Length of Fault (mm) |
---|---|---|---|
NC | C1 | ||
Outer ring | C2 | 0.5 | 0.5 |
Inner ring | C3 | 0.5 | 0.5 |
Inner ring | C4 | 0.5 | 1.0 |
Model | XJ-SQV | ||
---|---|---|---|
Accuracy | F1 | Recall | |
AE | 0.6622 ± 0.0027 | 0.6580 ± 0.0012 | 0.6622 ± 0.0027 |
DAE | 0.6471 ± 0.0037 | 0.6441 ± 0.0030 | 0.6471 ± 0.0037 |
Resnet | 0.8307 ± 0.0162 | 0.8224 ± 0.0187 | 0.8307 ± 0.0162 |
Vit | 0.8383 ± 0.0036 | 0.8298 ± 0.0052 | 0.8383 ± 0.0036 |
MCF | 0.8832 ± 0.0072 | 0.8813 ± 0.0088 | 0.8832 ± 0.0072 |
Conv-ET | 0.7543 ± 0.0105 | 0.7410 ± 0.0201 | 0.7543 ± 0.0105 |
RSSR | 0.9343 ± 0.0064 | 0.9344 ± 0.0067 | 0.9345 ± 0.0067 |
Model | HIT-Dataset | ||
---|---|---|---|
Accuracy | F1 | Recall | |
AE | 0.9020 ± 0.0357 | 0.9016 ± 0.0364 | 0.9020 ± 0.0357 |
DAE | 0.9564 ± 0.0044 | 0.9563 ± 0.0044 | 0.9564 ± 0.0044 |
Resnet | 0.9998 ± 0.0003 | 0.9998 ± 0.0003 | 0.9998 ± 0.0003 |
Vit | 0.9997 ± 0.0003 | 0.9997 ± 0.0003 | 0.9997 ± 0.0003 |
MCF | 0.9995 ± 0.0005 | 0.9995 ± 0.0005 | 0.9995 ± 0.0005 |
Conv-ET | 0.9984 ± 0.0010 | 0.9984 ± 0.0010 | 0.9984 ± 0.0010 |
RSSR | 0.9989 ± 0.0017 | 0.9989 ± 0.0017 | 0.9989 ± 0.0017 |
Model | AE | DAE | Resnet | Vit | MCF | Conv-ET | RSSR |
---|---|---|---|---|---|---|---|
FLOPs | 28.017 M | 11.18 M | 175.68 M | 11.32 M | 28.97 M | 562.76 M | 8.41 M |
Params | 280 K | 111 K | 3.84 M | 128.50 K | 1.27 M | 225.04 K | 78.11 K |
Methods | Dataset | Metrics | SNR (dB) | ||||||
---|---|---|---|---|---|---|---|---|---|
−4 | −2 | 0 | 2 | 4 | 6 | 8 | |||
AE | XJ-SQV | Acc | 0.6123 | 0.6214 | 0.6308 | 0.6401 | 0.6371 | 0.6365 | 0.6359 |
F1 | 0.6085 | 0.6099 | 0.6231 | 0.6224 | 0.6161 | 0.6267 | 0.6273 | ||
Recall | 0.6123 | 0.6214 | 0.6308 | 0.6396 | 0.6392 | 0.6365 | 0.6359 | ||
HIT-dataset | Acc | 0.7078 | 0.8079 | 0.8671 | 0.9068 | 0.9251 | 0.9406 | 0.9503 | |
F1 | 0.7064 | 0.8089 | 0.8673 | 0.9062 | 0.9249 | 0.9405 | 0.9504 | ||
Recall | 0.7078 | 0.8079 | 0.8671 | 0.9068 | 0.9258 | 0.9406 | 0.9503 | ||
DAE | XJ-SQV | Acc | 0.6158 | 0.6246 | 0.6312 | 0.6355 | 0.6502 | 0.6436 | 0.6397 |
F1 | 0.6102 | 0.6230 | 0.6260 | 0.6359 | 0.6427 | 0.6412 | 0.6352 | ||
Recall | 0.6158 | 0.6246 | 0.6312 | 0.6333 | 0.6471 | 0.6436 | 0.6397 | ||
HIT-dataset | Acc | 0.7563 | 0.8513 | 0.9097 | 0.9523 | 0.9634 | 0.9728 | 0.9802 | |
F1 | 0.7577 | 0.8520 | 0.9099 | 0.9519 | 0.9623 | 0.9728 | 0.9802 | ||
Recall | 0.7563 | 0.8513 | 0.9097 | 0.9497 | 0.9611 | 0.9728 | 0.9802 | ||
Conv-ET | XJ-SQV | Acc | 0.7438 | 0.7654 | 0.7488 | 0.7434 | 0.7317 | 0.7463 | 0.7526 |
F1 | 0.7291 | 0.7551 | 0.7305 | 0.7249 | 0.7142 | 0.7294 | 0.7334 | ||
Recall | 0.7438 | 0.7654 | 0.7488 | 0.7434 | 0.7317 | 0.7463 | 0.7526 | ||
HIT-dataset | Acc | 0.5520 | 0.7931 | 0.8729 | 0.9247 | 0.9541 | 0.9726 | 0.9833 | |
F1 | 0.5750 | 0.7950 | 0.8746 | 0.9246 | 0.9541 | 0.9725 | 0.9832 | ||
Recall | 0.5520 | 0.7931 | 0.8729 | 0.9247 | 0.9541 | 0.9726 | 0.9833 | ||
Resnet | XJ-SQV | Acc | 0.7947 | 0.7918 | 0.8058 | 0.7967 | 0.8038 | 0.8096 | 0.8122 |
F1 | 0.7854 | 0.7819 | 0.7975 | 0.7875 | 0.7945 | 0.8045 | 0.8049 | ||
Recall | 0.7947 | 0.7918 | 0.8058 | 0.7967 | 0.8038 | 0.8096 | 0.8122 | ||
HIT-dataset | Acc | 0.6915 | 0.7994 | 0.8732 | 0.9275 | 0.9599 | 0.9786 | 0.9901 | |
F1 | 0.7084 | 0.8047 | 0.8738 | 0.9282 | 0.9600 | 0.9786 | 0.9901 | ||
Recall | 0.6915 | 0.7994 | 0.8732 | 0.9275 | 0.9599 | 0.9786 | 0.9901 | ||
Vit | XJ-SQV | Acc | 0.7838 | 0.8054 | 0.8188 | 0.8454 | 0.8545 | 0.8366 | 0.8372 |
F1 | 0.7691 | 0.7951 | 0.8121 | 0.8345 | 0.8484 | 0.8278 | 0.8298 | ||
Recall | 0.7838 | 0.8054 | 0.8188 | 0.8450 | 0.8565 | 0.8366 | 0.8372 | ||
HIT-dataset | Acc | 0.9263 | 0.9092 | 0.9264 | 0.9619 | 0.9798 | 0.9762 | 0.9984 | |
F1 | 0.9259 | 0.9073 | 0.9358 | 0.9707 | 0.9893 | 0.9761 | 0.9984 | ||
Recall | 0.9263 | 0.9092 | 0.9264 | 0.9686 | 0.9894 | 0.9762 | 0.9984 | ||
MCF | XJ-SQV | Acc | 0.8736 | 0.8735 | 0.8874 | 0.8746 | 0.8910 | 0.8806 | 0.8879 |
F1 | 0.8708 | 0.8710 | 0.8856 | 0.8848 | 0.8968 | 0.8772 | 0.8862 | ||
Recall | 0.8736 | 0.8735 | 0.8874 | 0.8882 | 0.8953 | 0.8806 | 0.8879 | ||
HIT-dataset | Acc | 0.8706 | 0.9239 | 0.9715 | 0.9576 | 0.9806 | 0.9901 | 0.9975 | |
F1 | 0.8708 | 0.9239 | 0.9715 | 0.9644 | 0.9857 | 0.9901 | 0.9975 | ||
Recall | 0.8706 | 0.9239 | 0.9715 | 0.9649 | 0.9876 | 0.9901 | 0.9975 | ||
RSSR | XJ-SQV | Acc | 0.9022 | 0.9058 | 0.9183 | 0.9186 | 0.9246 | 0.9210 | 0.9267 |
F1 | 0.9026 | 0.9056 | 0.9183 | 0.9185 | 0.9245 | 0.9206 | 0.9263 | ||
Recall | 0.9022 | 0.9058 | 0.9183 | 0.9186 | 0.9246 | 0.9210 | 0.9267 | ||
HIT-dataset | Acc | 0.9317 | 0.9661 | 0.9638 | 0.9793 | 0.9857 | 0.9945 | 0.9972 | |
F1 | 0.9326 | 0.9662 | 0.9638 | 0.9793 | 0.9857 | 0.9945 | 0.9972 | ||
Recall | 0.9317 | 0.9661 | 0.9638 | 0.9793 | 0.9857 | 0.9945 | 0.9972 |
Method | Acc (%) | F1 Score (%) | Recall (%) |
---|---|---|---|
scale-aware#0 | 93.43 ± 0.082 | 93.44 ± 0.084 | 93.45 ± 0.082 |
scale-aware#1 | 88.20 ± 1.04 | 87.86 ± 1.22 | 88.20 ± 1.04 |
AF#0 | 93.43 ± 0.082 | 93.44 ± 0.084 | 93.45 ± 0.082 |
AF#1 | 90.11 ± 0.49 | 90.03 ± 0.44 | 90.11 ± 0.49 |
AF#2 | 91.18 ± 0.37 | 90.98 ± 0.45 | 91.18 ± 0.37 |
channel-attention#0 | 93.43 ± 0.082 | 93.44 ± 0.084 | 93.45 ± 0.082 |
channel-attention#1 | 88.84 ± 1.13 | 88.65 ± 1.20 | 88.84 ± 1.13 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Li, J.; Yang, Z.; Zhou, X.; Song, C.; Wu, Y. Advancing the Diagnosis of Aero-Engine Bearing Faults with Rotational Spectrum and Scale-Aware Robust Network. Aerospace 2024, 11, 613. https://doi.org/10.3390/aerospace11080613
Li J, Yang Z, Zhou X, Song C, Wu Y. Advancing the Diagnosis of Aero-Engine Bearing Faults with Rotational Spectrum and Scale-Aware Robust Network. Aerospace. 2024; 11(8):613. https://doi.org/10.3390/aerospace11080613
Chicago/Turabian StyleLi, Jin, Zhengbing Yang, Xiang Zhou, Chenchen Song, and Yafeng Wu. 2024. "Advancing the Diagnosis of Aero-Engine Bearing Faults with Rotational Spectrum and Scale-Aware Robust Network" Aerospace 11, no. 8: 613. https://doi.org/10.3390/aerospace11080613
APA StyleLi, J., Yang, Z., Zhou, X., Song, C., & Wu, Y. (2024). Advancing the Diagnosis of Aero-Engine Bearing Faults with Rotational Spectrum and Scale-Aware Robust Network. Aerospace, 11(8), 613. https://doi.org/10.3390/aerospace11080613